A note on transversals *

Hamid-Reza Fanaï †

Abstract

Let B be an $m \times n$ array in which each symbol appears at most k times. We show that if $k \leq \frac{n(n-1)}{8(m+n-2)} + 1$ then B has a transversal.

1 Introduction

Let m and n be integers, $2 \le m \le n$. An $m \times n$ array is a table of mn cells, arranged in m rows and n columns and each cell contains exactly one symbol. A section of an array consists of m cells, one from each row and no two from the same column. A transversal is a section in which no two cells contain the same symbol.

Stein [3] introduced the following interesting notion. Let L(m,n) be the largest integer z such that every $m \times n$ array in which no symbol appears more than z times has a transversal. He determined L(2,n) and L(3,n). Upper and lower bounds on L(m,n) are also obtained in [3], namely $n-m+1 \le L(m,n) \le \lfloor \frac{mn-1}{m-1} \rfloor$. It is shown [1] that this upper bound on L(m,n) is tight when n is large enough compared to m. Erdös and Spencer [2] showed that an $n \times n$ array in which each symbol appears at most $k \le (n-1)/16$ times has a transversal. This gives also a lower bound on L(n,n). They used a new version of the Lovász Local Lemma. Here we use their method to obtain the following lower bound on L(m,n):

Theorem 1. If
$$2 \le m \le n$$
, then $\lfloor \frac{n(n-1)}{8(m+n-2)} \rfloor + 1 \le L(m,n)$.

We note that for n slightly larger than m, Theorem 1 improves on existing inequalities on L(m, n). Similar reasoning establishes the following result.

Theorem 2. If $2 \le m \le n$ and each symbol appears at most k times with $k^2 \le n(n-1)(n-2)/12(m+n)$, then B has a section in which each symbol appears at most twice.

^{*}Key words: transversal, rectangular array.

[†]AMS (2000) Subject Classification: 05B15,05D15.

2 Proofs

Let us first recall the extended version of the Lovász Local Lemma proved in [2].

Lemma 1. Let A_1, \ldots, A_r be events in a probability space and G be a graph with the vertex set $V(G) = \{1, \ldots, r\}$ such that for any $i, 1 \le i \le r$, $\Pr(A_i) \le p$ and $\deg(i) \le d$. Suppose that for any $S \subset V(G)$ and for any $i \in V(G) \setminus S$ which is adjacent to no vertex of S, $\Pr(A_i \mid \bigcap_{j \in S} \bar{A}_j) \le \Pr(A_i)$. If $4dp \le 1$, then $\bigcap_{i=1}^r \bar{A}_i \ne \emptyset$.

To prove Theorem 1 fix an $m \times n$ array B with no entry b(i,j) appearing more than $k \leq \frac{n(n-1)}{8(m+n-2)} + 1$ times. We follow the lines of [2]. Suppose that U is the set of all sections of B. Let σ be uniformly chosen from U. Let T denote the set of (i,j,i',j') with b(i,j) = b(i',j'), $1 \leq i < i' \leq m$ and $j \neq j'$, $1 \leq j,j' \leq n$. For each $(i,j,i',j') \in T$ let $A_{iji'j'}$ denote the event $\sigma(i) = j$ and $\sigma(i') = j'$. The existence of a transversal is equivalent to the statement $\bigcap_T \bar{A}_{iji'j'} \neq \emptyset$.

We have $\Pr(A_{iji'j'}) = \frac{(n-2)(n-3)\cdots(n-m+1)}{n(n-1)\cdots(n-m+1)} = \frac{1}{n(n-1)}$. Let G be the graph with the vertex set T in which (i,j,i',j') is adjacent to (x,y,x',y') if and only if the four cells (i,j), (i',j'), (x,y), (x',y') lie on fewer than four rows or on fewer than four columns. For a given vertex (i,j,i',j') we have at most 2m+2n-4 choices of (x,y) with a common coordinate and then k-1 choices for (x',y') with b(x,y) = b(x',y') giving either (x,y,x',y') or (x',y',x,y) adjacent to (i,j,i',j'). This implies that G has maximal degree at most $(2m+2n-4)(k-1) \leq n(n-1)/4$. Thus our result follows as a direct application of Lemma 1 if we can show that G satisfies the condition on $S \subset V(G)$. By symmetry it suffices to show

$$\Pr(A_{1122}|\bigcap_{S}\bar{A}_{iji'j'}) \leq 1/n(n-1)$$

where $i, j, i', j' \notin \{1, 2\}$. Following [2] call σ GOOD if it belongs to $\bigcap_S \bar{A}_{iji'j'}$. Let s_{ij} denote the number of GOOD σ with $\sigma(1) = i, \sigma(2) = j$. We can suppose that $m \geq 4$ since we know Theorem 1 is true for m = 2, 3. Note that $s_{ij} = s_{ji}$.

We claim that $s_{12} \leq s_{ij}$ for all possible $i \neq j$. We show this, for example, only for 2 < i < j. Let σ be GOOD with $\sigma(1) = 1$, $\sigma(2) = 2$ and $\sigma(r) = n_r$ for $3 \leq r \leq m$ where $3 \leq n_3, n_4, \ldots, n_m \leq n$. We have four distinct cases, but will treat only cases 1 and 4.

- 1. We have $n_r \neq i, j$ for $3 \leq r \leq m$.
- 2. There exists x with $\sigma(x) = j$ but $n_r \neq i$ for $3 \leq r \leq m$.
- 3. There exists y with $\sigma(y) = i$ but $n_r \neq j$ for $3 \leq r \leq m$.
- 4. There exist x, y with $\sigma(x) = i$, $\sigma(y) = j$.

In case 1, define σ^* by $\sigma^*(1) = i$, $\sigma^*(2) = j$, $\sigma^*(t) = \sigma(t)$ for $t \neq 1, 2$. In case 4, define σ^* by $\sigma^*(1) = i$, $\sigma^*(2) = j$, $\sigma^*(x) = 1$, $\sigma^*(y) = 2$, $\sigma^*(t) = \sigma(t)$ for $t \neq 1, 2, x, y$. Then in any case, σ^* is a section of B that is GOOD as the new values (1, i), (2, j), (x, 1), (y, 2) cannot be part of any member of S and σ was GOOD. Moreover, it is easy to check that the map σ to σ^* is injective from

GOOD σ with $\sigma(1) = 1$, $\sigma(2) = 2$ to GOOD σ^* with $\sigma^*(1) = i$, $\sigma^*(2) = j$. This proves the claim for i, j > 2.

Hence we have

$$\Pr(A_{1122} \text{ GOOD}) = s_{12}/\sum_{i \neq j} s_{ij} \\ \leq s_{12}/\sum_{i \neq j} s_{12} = 1/n(n-1)$$

which completes the proof of Theorem 1.

The proof of Theorem 2 is similar, with the vertices having six entries (i, j, i', j', i'', j'') instead of four entries.

Acknowledgment. The author is indebted to the Research Council of Sharif University of Technology for support.

References

- [1] S. Akbari, O. Etesami, H. Mahini, M. Mahmoody and A. Sharifi, Latin transversals in long rectangular arrays, Discrete Math., to appear.
- [2] P. Erdös and J. Spencer, Lopsided Lovász Local Lemma and Latin transversals, Discrete Applied Math. 30 (1991) 151-154.
- [3] S.K. Stein, Latin transversals of rectangular arrays, arXiv: math. CO/0107066 v3 18 Sep. 2001.

HAMID-REZA FANAÏ fanai@sharif.ac.ir Department of Mathematical Sciences Sharif University of Technology P. O. Box 11365-9415 Tehran, Iran.