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Abstract

Let T be a partially ordered set whose Hasse diagram is a binary
tree and let T posses a unique maximal element 17. For a natural
n we compare the number A% of those chains of length n in T that
contain 17 and the number B} of those chains that do not contain
17. We show that if the depth of T is greater or equal to 2n+[nlnn]
then B} > A%.

1 Introduction and notation

A partially ordered set T will be called a tree if T is finite, T' has only one
maximal element and the Hasse diagram of T is a tree in the graph-theoretic
sense. The maximal element of T is called the root of T.

Let D and T be trees. An embedding of D into T is any subset of T'
whose induced order is that of D. If the root of this subset is the same as
the root of T, the embedding is called good; otherwise, it is called bad.

Motivated by looking for optimal best choice algorithms on complete bi-
nary trees and investigating some properties of such algorithms the authors
of [M] and [KLM1] considered the ratio of the number of good embeddings
of D into T, (the complete binary tree of depth n) to the number of all
embeddings of D into 7,,. In [KLM2], the problem of embedding chains
into complete binary trees was considered. Compare also a very interest-
ing paper [G] that develops the subject of the aforementioned papers and
proposes new methods. In [KMN] the subject was extended to embeddings
of chains into any trees.
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Let the number of all linearly ordered subsets of cardinality k of a tree
T be denoted C%. Of course, it is the number of all embeddings of a chain
of length k into Tj. Let the number of all good (bad) embeddings of such
a chain be called A% (B% respectively).

It is proved in [KMN] for agiven k € N thatif T i is not too "bushy” at its

top part and if T is sufficiently deep then the ratio —{- is smaller than 1. The

precise formulation of the above statement was possxble using the average
depth of T, AD(T'), which is the arithmetic mean of the depths of all leaves
of T. Namely, the conclusion g—:f: < 1 holds whenever AD(T) > 2k ([Th.2.2,
KMN]; actually a better upper bound is given involving the structure of T,
[Th.2.4, KMN]).

For some families of trees the condition "not too bushy at its top” is
naturally satisfied. This happens if there is some restriction imposed on
their branching. Of course, here the most natural family is that of binary
trees. Thus in the case of binary trees it should be possible to replace the
assumption on the average depth of T' by some assumption on simply the
depth of T', dp(T).

For a tree T, the depth of T' is the number

dp(T) = max{dp(l) : ! is a leaf of T}.

In this paper we show that, indeed, the conclusion —il < is achieved

if dp(T') > 2k + [k1n k) . This assumption on T was suggested by numerical
experiments.

2 Main result

Our main result is the following:

Theorem 2.1 If T is a binary tree and dp(T) > [nlnn] + 2n, then
B} > A%.

The proof of Theorem 2.1 is based on Lemma, 2.4 and, in turn, the proof
of Lemma 2.4 is based on an analytic inequality of Lemma 2.5. To make the
order of our reasoning more clear, we first present the proof of the theorem,
then that of Lemma 2.4 and next we present Lemma 2.5 and then series
of technical lemmas leading to the proof of Lemma 2.5 that concludes this
paper.

The worst situation from the point of view of considering the difference
A% — B%, i.e. the situation when this difference attains its maximum for a
given depth j, occurs for the family of trees defined below.
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Let j and n be two positive integers and let j > 2n — 1. We define
a family 7(; ) of binary trees by T' € 7(;,5) if and only if the following
conditions are met

i) T has only one leaf of depth j;

i) all leaves of T but one have depth 2n — 2 or 2n — 1;

iii) all vertices of T that have depth smaller than 2n — 2 have two sons.

For such two integers n, j, let T(;,n) be a binary tree of exactly 227~2 -1
leaves of depth 2n — 1 and one leaf of depth j. One can easily see that this
is a complete binary tree of depth 2n — 1 with one leaf extended by a chain
of length j — 2n + 1 (see Fig.1).

1r

Fig.1. A complete binary tree of depth 2n — 1 and a chain of depth j

As T(; ny can be obtained from any other tree T' € 7(; ) by extending
some leaves of depth 2n — 2 by new leaves of depth 2n — 1, and as such an
extension adds the same number of bad and good chains, we see that the
following lemma is true.

Lemma 2.2. Let n and j be two positive integers such that j > 2n — 1.
Then

At — Bt = Ag,,, — BE; .

Jor each T € T(j,). O
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Lemma 2.3. Let n and j be two positive integers such that j > 2n— 1.
Let T be a binary tree such that dp(T) = j and
A%} — B} = max{A%§ — Bg : S is a a binary tree and dp(S) = j}.
Then T € T(j,n)-

Proof. Aiming at contradiction, assume that T ¢ 7(; ). Then there are
two cases we have to consider: the first when there is a vertex (possibly a
leaf) of depth smaller than 2n — 2 that does not have two sons, and the
second when there are two leaves of depth greater than 2n — 1.

Assume first that there exists a vertex v of T such that m = dp(v) <
2n—2. fm >n—1let us extend T of v’s new son &. Let ' =T U {I}.
We have

m-—1 m-—1
%,—B?-,=(A%—B}‘~)+((n_2) - (n—l)) > A} -

If m < n—1let us extend T to a T' by adding under ! a chain of new
vertices of length n — m. We have now

AD, — B2, = (A} — B}) +1 > A} — Bp.

In both cases we get a contradiction.

Assume now that there are at least two leaves of T of depth greater
than 2n — 1. As dp(T") = j one of them must be of depth j. Let us pick
another one and call it . Let » = dp(l). Let now T' =T\ {{}. We have

n r—2 r—2
op=up-m - ((722)- (070)) > ap-p

A contradiction again. O
Lemma 2.4. Fori=1,2,..n-2,n >3,
[(i+2) In(i+2)]

3 (J+1)(2" 2;’)>(n 1—z)<" 2;”)2"-”*. (1)

F=[(i+1) In(i+1)]+1

Proof of Theorem 2.1 Let f(n) = [nInn] + 2n. Let j = dp(T'). By
Lemmas 2.3 and 2.2,

n_ npn n _pn
Ar BTSAT(:.:-) BT(:'.»)‘

Using the argument consisting in deleting the deepest leaf and comparing
the difference between the numbers of good and bad embeddings of a chain
of length n, we get

n _ AR n _ AR
BTu.n) AT(s.n)ZBTmu).u) Tig(n)n)*
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Thus it is enough to prove the theorem for j = f(n).
For T( F(n),n) W€ have

-2 ,. f(n)—2n .
n_ i-1\_; 2n—-2+1
P= 2 (n—2)2+ > ( n—2

i=n—1 i=0
and )2
2n-2 ,. n)~2n .
n i—-1\,; 2n—2+14
= 2 .

We want to prove that for every n > 2
“"’E"“ M —24+4) _ (2n—2+i >'§ n-24i\n-l-ij
4 n—-1 n—2 L n—2 n—1
=0 =0
which is equivalent to
[nIn(n)] R n-2 R
. 2n—-2+1 _ N (=240 o1
Z (z+l)( g ) >§:(n 1 z)( s )2 .®@
i=0 i=0
Note that for every n > 2
2n -2 2n—1 1
(n—2)+2(n—2) (n—=1)2""", 3)
Indeed, inequality (3) is equivalent to the inequality
' @2n - 3)N(GEn —1) > (n+1)!,

because (2n—2)! = 2"~ (n—1)!(2n—3)!!, where (2n—3)!! = 1-3-...-(2n—3).
Inequality (3) is obvious if we write it in the following form:

n—2 n—2
Gn-1)JJ@+1) <2m+1) [JG+2).
§==1 i=1

Let us notice that the left-hand side of inequality (3) is the sum of two
first terms of the left-hand side of inequality (2). Because the right-hand
side of inequality (3) is the first term of the right-hand side of inequality
(2) we get inequality (2) as a sum of inequality (3) and n — 2 inequalities
of the form (1) of Lemma 2.4. O
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Fig.2. Calculation and plot by Maple

In Fig.2 we can compare the graph of the function

g(n) = min {s : znz_z (' 1)2' %ﬂ (2"n’_21"' ‘) -

i=n =0

(B ()2 e9)

(the starred line) with the graph of the function f(n) (the continuous line).

Proof of Lemma 2.4. Let k = [(i + 2)In(¢ + 2)]. It is obvious that
the left-hand side of inequality(1) is greater than the sum of the two last
terms of it:

[(i+2) In(i+2)] :
z (J+1)(2n 2+]) >k(2n 3+k)+(k+l)(2n 2+k).
. . -2 n—2 2
F=[(i+1) In(Gi+1)]+1

Obviously,

k(2n;i3;—k)+(k+1)(2n _2;—1:) Sk ((211,7-:-_1:2— 3) + (Znn—:’.;-k)) -
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2n+k-3){(3n+2k-2)
(n - 2)(n + k)!

Thus in order to prove inequality (1) it is enough to prove that for every
n>3,i=1...n—2and k= [(i +2) In(i + 2)]

EBn+2k-2)2n+k-3)li! > (n—i—1)(n+i—2)(n+ k)21 (4)

k

For n = 3...200 we check it directly using a computer program. We
have used Maple. For n > 200 we prove it using some approximations.
Inequality (4) is equivalent to

k(3n+2k—2)(n+k+1)...(n+k+n-3) > (n—i—1)(i+1)...(i+n—-2)2" "L,
Taking logarithms of both sides we get
Ink+In(3n+2k-2)+ [ln(n+k+1)+..+In(n+k+n-23)] >

In(n—i-1)+(n+i-1)In2) + [In(i + 1) +... +In(n + i — 2)].
Let us notice that
2n+k-3
/ Inzde <ln(n+k+1)+..+1n2n+k - 3)
n+k
and

nti-1
/ Inzdz > In(i + 1) + ... + In(n +4 — 2).
i+1

Thus to prove (4) it is enough to prove that
Ink+InBn+2k-2)+(2n+k-3)In(2n + k- 3)-
Cn+k-3)—-(n+k)ln(n+k)+(n+k)>hhn—-i-1)+
(n+i-1)In(2)+(n+i-1)In(n+i-1)=(n+i—1)— (i+1) In(i+1)+ (i +1).

Let z =742,i=0,...,n — 2. In this notation the inequality above
takes the form:

In([zlnz]) + In(3n +2[zInz] — 2) + (2n + [zInz] — 3) In(2n + [zInz] — 3)+
(z-1)In(z-1)+1-ln(rn-z+1)—(n+z-3)In(2(n+z - 3))—
(n+ [zInz])In(n + [zlnz]) > 0.

Now, the conclusion clearly follows from following Lemma 2.5. O

Lemma 2.5. Let

fn(z) =In(zlnz—-1)+In(3n+2zInz—4)+(2n+z In z—4) In(2n+z In z—4)+
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(z=1)In(z-1)+1-In(n—2z+1)—(n+z-3) n(2(n+2-3))—(n+zlnz) In(n+zlnz
For every z € [2,n], n > 200, fa(z) > 0.
Proof. Let n > 200 and z € [2,n]. First let us notice that

In 3n+2zlnz—4 >1
n—z+1 )
Now let us scale the interval [2, n] to the interval [0, 1] by taking t = 2=2

n—-2"°
The function f,(x) — In 32:t22102=4 t5keq the form:

F(t,n) =In(g(t,n) — 1) + (2n + g(t,n) — 4) In(2n + g(t,n) — 4)+
+(1+tn—2)In1+t(n—-2))+1
—(n=14+t(n-2))In(2(n — 1+ t(n — 2))) — (n + g(¢,n)) In(n + g(¢,n)),
where g(t,n) = (2 + t(n — 2))In(2 + ¢(n — 2)). Note that we treat ¢ as an

independent variable. We shall prove the following two facts:

(A) F(t,n) is positive for every t € [0,1] and n = 200;

(B) F(t,n) is an increasing function with respect to n, for every fixed
te[o,1).

Fact (A) is obvious by Lemma 3.1 because F(t,200) = f(z) if we put

z = 2+ 198t in f(z). To prove (B) let us take the partial derivative of
F(t,n) with respect to n:

oF
on (bim) =
]
% +tln(1 +¢t(n-2)) + (2 + —gz(t,n)) In(2n + g(t,n) — 4)-

1+8)In2n-1+tn-2)) - (1 + z—‘:(t,n)) In(n + g(t,n)),

where -g%(t, n) = t(In(2 + t(n — 2)) + 1).
We can write it in the following form:

[:)
g—(f’%%’f_ll- + 81(t,n) + s2(t, n),
where
1+t(n—2) p 20t 9(tm) —
st = t[ln g gy + (I tn-2)+1) I = ]

and
(2n + g(t,n) — 4)®

2(n—1+t(n —2))(n+g(t,n))’

s2(t,n) =In
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By Lemma 3.5, it is easy to see that s;(¢,n) > —1/2, because
tln ztiBrB o = Ry (z) and t(1n(2+¢(n —2)) +1) In 220d — k()
if we put £ =2 + t(n — 2) in h,(z) and kn(z).

By Lemma 3.2, we get s2(t,n) > 1/2 if we put z = 2 + ¢(n — 2) in (5).
Hence s, (t,n) + 82(t,n) > 0, for every ¢ € [0,1] and n > 200.

It is obvious that

2(tn) _ In(2+tn—-2)+1 >0
gt,n) -1 "2+tn-2))n2+t(n—-2)) -1

Thus we have (B). By (A) and (B) F(t,n) is positive, which completes
the proof that f,(z) >0 for n > 200 and z € [2,n]. O

3 Technical lemmas

In this section we present several technical lemmas needed to prove Lemma
2.5.

Lemma 3.1. Let
f@)=h{zlnz-1)+(z-1)In(z—-1)+1+(396+zlnz)In(396 + zInx)—
(197 + z) In(394 + 2z) — (200 + zlnz) In(200 + z In z).

If z € 2,200, then f(z) > 0.
Proof. Let
§g(z)=In(zlnz-1)+(z—1)In(z - 1) +1
and
f(z) = (396 + zIn z) In(396 + zlnz) — (197 + z) In(394 + 2z)—

(200 + z1nz)In(200 + z In z).

Thus f(z) = §(z) + f(z). It is easy to see that g(z) is an increasing
positive function. Now we shall prove that f(z) is decreasing. Let us take
the derivative of f(z):

196

2\ 196
fllz)=(nz+1)ln (1+ 300+ 2107

) —In(394 + 2z) — 1.

The function In(1 + 55532—) is decreasing and positive, whence
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196 98
(nz+1)In (1+ m) < (In(200) +1)In (1+ m) .
Moreover,
98

(In200 + 1)In (l+m

) < In398 + 1.

Hence
196

200+ zlnz

because In(394 + 2z) is increasing and positive.

Now let us split the interval [2,200] into 6 subintervals in the follow-
ing way: [2,25],[25,40], 40, 60], (60, 80], [80, 120], [120,200] and let us find
values of functions f (z) and g(z) at the ends of these intervals (Maple).

We can see that f(25) > 0, thus g(z)—l-f(z) > Ofor z € (2,25] by the fact
that § > 0 and by monotonicity of f f(x). Now we can see that §(25) > 81
and f(40) > —80.5, whence, by monotonicity of §(z) and f(x), we have
gx) + f (x) > 0 for = € [25,40]. Analogously, we have §(40) + f(60) >
0, §(60) + f(80) > 0, g(80)+f(120) > 0 and §(120) + £(200) > 0. Thus, by
monotonicity of §(z) and f(z), we have f(z) > 0 for every z € [2,200].0

Lemma 3.2. Let n > 200. For every z € [2,n],

(lnz+1)ln (1+ ) <In(394 +2z) +1,

(2n+zlnz -4)?2 >3.4(n-3+z)(n+zinz). (5)

Proof. Let us treat inequality (5) as a quadratic inequality with respect
to n:

0.6n2 +n(0.6zInz — 5.8 — 3.42) + 2*(Inz)? - 3.4z Inz +2.2xInz + 16 > 0.
Let
b(z) = 0.6zInz — 5.8 — 3.4z, ¢(z) = z%(Inz)? - 3.4z%Inz + 2.2z Inz + 16

and A(z) = b?(z) — 2.4¢(z). Let us fix z, where z > 2. If A(z) < 0, then
the quadratic inequality above trivially holds for every n. If A(z) > 0, then

this inequality is valid for every n > —b(z)-ll-.2 CORE N complete the proof
it is enough to show that

—Ha) + VAR) o5
1.2
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which is equivalent to
A(z) < (240 + b(z))?

(it is easy to check that b(z) + 240 > 0).
Thus we are going to prove the following inequality for > 2

2472 Inz(lnz — 3.4) + £(293.28Inz — 1632) + 54854.4 > 0.  (6)

Let
v(z) = 2(293.28In z — 1632) + 54854.4

and

w(z) = 2.4z Inz(lnz — 3.4).
Let z; satisfy Inz; = sos2: — 1. We can see that v(z) is decreasing for
z € [2,21] and increasing for z > z; and, hence, the minimum of »(z) is
equal to v(z;) > 0 (Maple). Thus v(z) > 0.

Let us notice that w(z) > 0, for £ € [z2,00), where Inz, = 3.4. Hence
v(z) + w(z) > 0 for = € [r2,00). For z € [2,z;], w(z) < 0 and v(x)
is decreasing, because z; < z;. Obviously 2.4z%Inz is increasing and
positive, whereas In 2 — 3.4 is increasing and negative for z € [2, zo], whence

w(z) +v(z) 2 w(z) +v(z2) 2

2.4z3(In z5)(In z — 3.4) + v(z2) > 2423 Inz2(In2 — 3.4) + v(z2) >0
(Maple), which completes the proof of (6). O

Lemma 3.3. Letm € {1,%2,3,2,5} and = > 200. Then

- -2 z z—4
o) = B3 (2 1) (14 55
m m

18 positive and increasing, and

. £ _9
—_m — e
hn(2) = 23 3z 523

z_1

s negative and decreasing.
Proof. We can write k() in the following form:

} _ gm (2)] (@)
km(z) = ?:2 (1 _ 2:»_ 22) In [(1 + gml(z)) ] :

where gn(z) = ZXalim 5 0 and fm(z) = (1;:‘:_)—21'1—,‘%;—1) > 0. The

function gn,(z) is increasing because its derivative is positive: g;,(z) =
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_4“':"&:_ ';""1)*“ > 0. The function fn(z) is also increasing. It is obvious

if we write it in the following form:
1-m 4

fm(x)=m+1+;;-ln§ =TT

In

EJ
8
+
EILT NS
3=

Thus km(z) is increasing and positive.
Now we prove that h,,;(z) is decreasing. First, let us notice that

z_1
0<sz+s-p <t

=_1

21 -4 42
(2(§+z-3) = CE+ts-9E "

a_1
Hence, for m < 2, = 2In m is negative and decreasing, because

-‘;_—22— is increasing and positive.

Hence, for m < 2 the conclusion holds. For m = 5 we have to present
a separate proof.

For m = 5 we have the following function

z_1
2("+x 3)

1(_m—101n2+z—101n z—-5 )

- z _ 2
hs(z) = ; 2

5 z-2 z—-2 6xz-15
To prove that this function is decreasing it is enough to prove that

(z)_:c—loln r—35
e =22 "z -15

is decreasing. The derivative of this function is equal to

{J _ 1 (-’B 10)(:8 2)
<P(z)—(x_2)2(81n6 —15+15(x 5)(%_15)).

¢'(z) is negative because the function 8In z2=3- + 1572 5106:__125 is increas-
!
—10)(z—2 -
ing ( (8 In 52=% + 15 (:-5516:-155) =1257= "556’%33557) and

(z - 10)(z -2)
zlg%o(smﬁ —15+15(x 5)(62 —15))<°‘ O
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Let

z—-2 2Zn+zrnzr -4
k(@) = g ()
and
-2 z—-1

hn(z) = n—-2 2(n-3+z)

Lemma 3.4. Let n > 200 and = > 2. Then kn(z) is increasing and
hn(z) is decreasing.

Proof. Let us write k,(z) in the following form:

_ (@-2(n-4) n—4 \%%
ko(z) = m—2)(n+nz) (1+lnz)ln(1+n+lna:) .
It is easy to see that
(z-2)(n—4)

l+Inz
(n—2)(n+lna:)( )
is increasing when we take its derivative. Now it is already obvious that
kn(z) is increasing, because 22 is positive and increasing.

In order to prove that h,(z) is decreasing, we calculate its derivative

hy(@) = ~ i 5 ((z(f I)?,),(f;i)z) —hn (2 + 2(:_—12))) '

It is easy to see that Al (z) is negative. Namely, we first notice that 0 <

222 <1and 0 < 252 < 1. Now, if 2(n - 2)/(z — 1) > 1 then In(2 +

Hn=2)) > 1 and K/, (z) < 0. In the opposite case we have (n—2)/(z—1) < }
and all the more (n —2)/(n+2z—3) <  and, as1n2 > 1, h! (z) is negative
again. O

Lemma 3.5. For every = > 2 and n > 200,
ko(z) + ha(z) +1/2> 0. )

Proof. Let z > 2 and n > 200. By Lemma 3.4, we know that k,(z) is
increasing and h,,(x) is decreasing. Thus k,(z) is positive because k,(2) =
0, and hn(x) is negative because h,(2) = 0. _

Let us notice that kn(Z) = km(n) and ha(2) = hn(n).

By Lemma 3.3, for n > 200 and m € {1,12,4,2,5} fixed, km(n) is a
positive and increasing sequence and hm(n) is a negative and decreasing
sequence.
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Let
—In(2 + 2m)

am = nh_fgo hp(n) = —

Thus for each m as above i, (n) > ay,.
Let us split the interval [2, 7] into 5 subintervals in the following way:

51015217 1274771477107 |10 ]
Let us take the interval [2, 2]. We have there k,(z) + § > } and h,(z) >

ha(2)= hs(n) by monotonicity of these functions. In order to prove (7) in
[2, ] it is enough to prove that hs(n) > —1/2 for every n > 200.

= 1.1 1
hs(n) > a5 = glnﬁ > ~3

Hence hn(z) > —1/2 for every z € [2, 2].
Now let us take the next interval [, 2]. We have there

k() + bin(z) +1/2 > kn (g) + hn (g) +1/2 = Es(n) + ha(n) + 1/2
(by monotonicity of these sequences)

> k5(200) + hg(n) +1/2 > k5(200) + oz +1/2 > 0.
Analogously, for z € [2, 3n]:
ka(z) + ho(2) +1/2 > ka(n) + hg(n) + 1/2 > k(200) + a4 +1/2 >0,
for z € [3n, %n):
kn(z) + ha(2) +1/2 > kg(n) + hyg (n) +1/2 > k4(200) + @39 +1/2> 0
and for z € [&n,n):
kn(z) + ha(z) +1/2 > K1g (n) + h1(n) + 1/2 > k1p(200) + 01 +1/2 > 0.

Thus the inequality (7) holds for every n > 200 and = > 2.0
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