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Abstract

We determine the automorphism group and the spectrum of folded
hypercube. In addition, we define the Bi-folded hypercube and de-
termine its spectrum.
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1 Introduction

The spectrum of a graph X is the set of numbers which are eigenvalues of
A(X), together with their multiplicities. If the distinct eigenvalues of A(X)

are Ar,Ag,-++,A;, and their multiplicities are m(Ar),m{Az),- - ,m(X),
then we shall write
A1 As oo As
spec(X) = .
pec(X) ( m(\) mg) - m(A) )

Let " be a finite group with identity 1 and S be the subset of I'\l. Denote
by X(T',S) the Cayley graph of T with respect to S, where T is its vertex
set and edge set E(X(I,S)) = {uv:vu~! € §}. If Sis an arbitrary subset
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of T, then we can define a directed graph X (T', S) with vertex set I and arc
set {uv: vu~! € S}. If S is inverse closed, this is, ™! = {s"YseS}=35,
then this graph is undirected and has no loops.

Let Qi = (V, E) be a k-dimensional hypercube, where V = {a = (a1, a2,
.+-,ax) @ = 0or 1} and a ~ b is an edge if and only if they differ in
precisely one coordinate position. Let Z, be the cyclic group of integers
modulo 7 and Z¥ be the directed product of k copies of Z3 and C = {eili =
1,2,---,k}. It is easy to see that Qf is isomorphic to the Cayley graph
X(T,S) where I' = Z§ and S = C.

It is well-known that Qi has k + 1 distinct eigenvalues A, = k — 2r (r=
0,1,--- ,k) with multiplicities m(A-) = (£).

The k-dimensional folded hypercube, denoted by FQy is an undirected
graph obtained from Q) by adding all complementary edges. For two ver-
tices z = (1,22, ++ , &%) and ¥ = (y1,¥2, "+ ,¥) of FQk, Ty € E(FQx)
is a complementary edge if and only if their bits are the complement of
each other, i.e., y; = Z; for each ¢ = 1,2,---,k. Let H = {eili =
1,2, ,k}U {ext1 = (1,1,---,1)} C Z¥%, it is easy to see that FQy is
isomorphic to the Cayley graph X(T', S) where I' = Z5 and S=H.

In [5), L.Lovész determine the spectrum of graph with transitive auto-
morphism group. In (2], L.Babai derive an expression for the spectrum of
the Cayley graph X (T, S) in terms of irreducible characters of the group I
In this paper, we give a formula of the spectrum of Cayley graph on Abel
group by an explicit expression of primitive roots of unity. In terms of the
formula, we derive a explicit expression of the spectrum of the folded hyper-
cube FQi. In addition, we define the Bi-folded hypercube and determine
its spectrum.

2 Main results

Let T be a group, for any element p € T, let R;(p) be the irreducible
ropresentation of p, the irreducible character xi(p) of p is defined as the
trace of R;(p), that is

xi(p) = tr(Ri(p)).

Let G be an Abel group. It is well-known that G can be decomposed
uniquely into a directed product of cyclic groups, say



G = Zn X Zny X+ X Znp,
= (a1) x (a2) x -+ x (a),
where a;(i = 1,--- k) is the generator of the cyclic group Z,,. In this

section, we focus on to determine the spectrum of Cayley graph X (G, S)
on Abel group .

Lemma 2.1 (Babai [2]). Denoting by {\1---,\,} the spectrum of the
Cayley graph X = X (G, S) of the Abel group G we have

Xi=) xg)i=1,-,n),

ges

where x;(g) denotes the irreducible characters of g.

Forany g € G = Z,, x Zn, x -+ X Z,, , we have g = ay'ag®---ark,
ri=1,2,---,n;, i=1,--- k. Then

x(9) = x{of'a3®---a}*
x(al')--- x(ap*)
= x(a1)™ - x(ax)™.

Note that (x(a))™ = x(a*) = x(1) = 1, then x(a:) = wit, ji =
1,---,n;, where wy, = ez"_’? denotes the primitive unity roots of order ng,

! = +/~1. Hence
. , = (171 JJ2r2 L JkTk
XJhJ2,"' 12k (g) - w‘ru wnz wnk :

Let Ajyj,...j, denote the eigenvalues of Cayley graph on Abel group, where
Ji=1,---,n;,i=1,--- k. By Lemma 2.1, we have

)\J'l.iz-"jk = E :lejZ"‘jk (9)
ges
— Jiry dare | . JGkTk
= E Wit wlr w{”‘ ,
geS
where g = a7'ay? - - - aj*.
We summarize the above facts in the following Corollary.



Corollary 2.2. Let X = X(G,S) be a Cayley graph on Abel group G, then
the eigenvalues of X are

L = Jiry, Jat2 ,,,JkTk
)‘JlJZ'“Jk - anl Wig Why
geS

where g = al'al? -+ ai* , wy, denotes the primitive unity roots of order n;
andj,- =1, , My, = 1,2,"' ,k.

By Corollary 2.2, we have
Theorem 2.3. If k is even, then the spectrum of folded hypercube is

k+1 k—-2-1-1 k-2.3-1 ... k—2-(k=-1)-1
F = . ;
spec(FQu) ( N G O R B ¢ IR LA B (3 )
If k is odd, then the spectrum of folded hypercube is
k+1 —k—-1 k-2-1—1 k—=2-3-1 --- k-2-(k=2)—1
FQu) = .
spectFQu) ( oo ®ed O+G o G rGE) )

Proof. In fact, since FQ is a Cayley graph X (Z%, H) on Abel group z5,
where H = {e;Ji = 1,2, ,k} U {ex41 = (1,1,--+,1)}, then spec(F'Qr) =
spec(X). Note that we = —1, by Corollary 2.2, the eigenvalues of FQy are
Ajsjagi = Z ngnwgzrz T wgkrk
g€H
= (_1)1'1 + (_1).1'2 + (—1)j3 4o (_l)jk + (_1)jl+_’i2+"'+jk,

where j; = 1,2,i=1,2,--- k.

Let ’\;'1 . and )‘;"1 Jareedu be eigenvalues of folded hypercube FQy, then
Ajrigie = Majgere and only if they have the same number of j; =

1(1<i<k) Let r denote the number of 1 in {j1,J2, - ,jx} and then
r =0,1,--- k. Thus, FQy has eigenvalues A+ = r (—1)1+(k—r')(—1)2+
(—l)k"'(k"’,) =k-2 + (—1)2’°"" (' =0,1,---,k) with multiplicities
m()) = (%), obviously, Ao = k + 1 is a simple eigenvalue.

If k is even, then Aopq) = k—2(2t+1)—1 and Agq2 = k—2(2t+2)+1=
k—2(2t+1) — 1 = Ayeyy where t = 0,1,--- ,"—;2. Therefore, we can
get & distinet A, = k —2r — 1 (r = 1,3, ,k — 1) with multiplicities
m(A) = () + (-51)-

If k is odd, similarly, there are %—1- distinct A\, = k—=2r -1 (r =
1,3, , k—2) with multiplicities m().) = (¥)+(,%,) and M = k—2k-1=
—(k + 1) is a simple eigenvalue. a



Example. Let G = Z$ and the Folded hypercube FQ4. By Theorem 2.3,
the spectrum of F'Q, is

spec(FQy) = ( f 110 ;3 ) .

A graph X is called the integral graph if it has an integral spectrum.
Theorem 2.4. All the Cayley graph on Abel group Z¥ are integral.

For a group I, and a subset S (possibly, contains the identity element)
of I', the Bi-Cayley graph BC(T', S) of I" with respect to S is defined as the
bipartite graph with vertex set I x {0, 1} and edge set {{(9,0),(sg,1)}|g €
I',s € S}. The Bi-folded hypercube is a Bi-Cayley graph BC(T, S), where
I' = Z¥ and S = H, we denote Bi-folded hypercube by BFQ;..

Theorem 2.5. Let Ay, Az,--- , A, be the eigenvalues of folded hypercube
FQy, then the eigenvalues of Bi-folded hypercube BFQ);, are H{A1], £[A2], - - -
+ ||

Proof. Let A and B be adjacency matrices of FQj, and BFQy, respectivcely.

It is easy to see that
0 A
B = .

Therefore, we have

0 A M O —A
M~B|=| M- = =A% - A?|.
wesi= - (5 0) [=| 2 S |-
Since the eigenvalues of A are A\j, Az, -+, A, the eigenvalues of A2 are
A3,A3,--+, A2, then the eigenvalues of BFQy, are E|A1), £ A2, o, £ AR

]

It is easy to see that FQ is also a Cayley graph on Abel group
Z§. Let FQx = X(Z§,H), where H = {efi = 1,2,-+- ,k} U {exss =
(1,1,---,1)} € Z¥. The automorphism group of folded hypercube FQy is
denoted as Aut(FQy).



Lemma 2.6 (Xu [6]). Suppose that X(T',S) is strongly connected and
X(T,8) = X(T,T). If for every isomorphism o from X(T,S) to X(I',T)
with o(1) = 1, we have o(ab) = o(a)o(b) for all a and b in S, then o €
Aut(T) for all sucho.

Let FQ; be the folded hypercube and G = Zk. Let R(G) = {ra :
z — z + a(Vz € G)}, then R(G) is a subgroup of Aut(FQ) which is
isomorphic to G and acts transitively on vertices of FQy. Let Gp denote
the subgroup of Aut(FQy) which fixes the zero element of G, ie., Go =
{r € Aut(FQg)|7(0) = 0}. It is well known that Aut(FQi) = R(G) - Go.

Let o be linear transformation on linear space Z§ over binary field F»
and oH = H. Let L be the set of all these lincar transformation. If u
is adjacent to v, then u = v + ¢; and a(u) = o(v) + o(e;), thus o(u) is
adjacent to o(v). Therefore, o is automorphism of folded hypercube.

Conversely, if ¢ is a automorphism of folded hypercube and ¢(0) = 0,
then oH = H. Obviously, e; and e; have two common neighbors 0 and
e; +é; in folded hypercube, then a(e; +e;) should be the common neighbor
of a(e;) and o(e;). Since both a(e; + €;) # 0 and o(e;) + o(e;) # 0, hence
o(e; + ¢5) = o(es) + o(e;).

For any u,v € FQk, we have u =), i, v =), €;, and then o(u +v) =
o(F e+ X)) = o(T;e) + (X e;j) = o(u) + o(v). Therefore, o is
linear transformation on linear space Z¥ over binary field Fo.

Then L is the subgroup of Aut(FQy) stabilizing H setwise and L = Go.
Thus, we have Aut(FQ) = R(G)- L. We at once check that |L| = (k+1)!,
therefore, |Aut(FQy)| = 2%(k + 1)\

From above discussion, we have the following result.

Theorem 2.7. Let FQ) be the folded hypercube and G = Z%. Then
Aut(FQy) = R(G) - L and |Aut(FQy)| = 2k (k + 1)L

By Theorem 2.7, it is easy to see that

Corollary 2.8. Folded hypercube is edge-transitive.
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