Determinants involving generalized Stirling numbers

Yidong Sun[†] and Xiaoxia Wang[‡]

[†]Department of Mathematics,

Dalian Maritime University, 116026 Dalian, P.R. China [‡]Department of Mathematics,

Shanghai University, 200444 Shanghai, P. R. China Email: †sydmath@yahoo.com.cn; ‡xiaoxiadlut@yahoo.com.cn

Submitted: Sep 8, 2005; Accepted: Nev 21, 2005. (2000) MR Subject Classifications: 05A05, 15A15.

Abstract: In a previous paper the first author introduced two classes of generalized Stirling numbers, $s_m(n, k, p)$, $S_m(n, k, p)$ with m = 1 or 2, called p-Stirling numbers. In this paper, we discuss their determinant properties.

Keywords: Determinant, Generalized Stirling Numbers.

1. Introduction

It is well know that the first kind of unsigned Stirling numbers, $|s(n,k)| = (-1)^{n-k}s(n,k)$, count the number of permutations in the symmetric group S_n with k cycles [4, P18], and the second kind, S(n,k), count the number of partitions of $[n] = \{1,2,\ldots,n\}$ into k disjoint nonempty blocks [4, P33]. In the literature, there exist many beautiful determinants involving the classical Stirling numbers of the first kind s(n,k) and the second kind S(n,k) [2, P228], [3], [6]. For examples, for any integer $r \geq 0$, there hold

$$\det_{1 \le i,j \le k} \left(|s(r+i,j)| \right) = (r!)^k,$$

$$\det_{0 \le i,j \le k} \left(\frac{(ri)!}{(ri+j)!} s(ri+j,ri) \right) = \left(-\frac{r}{2} \right)^{\binom{k+1}{2}},$$

$$\det_{0 \le i,j \le k} \left(S(r+i+j,r+j) \right) = \prod_{i=0}^{k} (r+i)^i,$$

$$\det_{0 \le i, j \le k} \left(\frac{(ri)!}{(ri+j)!} S(ri+j, ri) \right) = \left(\frac{r}{2} \right)^{\binom{k+1}{2}},$$

$$\det_{0 \le i, j \le k} \left(\frac{S(r+i+j, r+i)}{(r+i+j)!} \right) = \prod_{v=0}^{k} \frac{1}{(r+v)!}.$$

In a previous paper [5], the first author introduced the concept of k-matrix partition (permutation) on a $p \times n$ matrix $M(n,p) = (M_{ij})$ with $M_{ij} = j$. The number of k-matrix partitions (permutations) of M(n,p) is counted by the generalized Stirling numbers $S_1(n,k,p)(|s_1(n,k,p)| = (-1)^{n-k}s_1(n,k,p))$, and the number of strong (k+p-1)-matrix partitions (permutations) of M(n+p-1,p) corresponds to $S_2(n,k,p)(|s_2(n,k,p)| = (-1)^{n-k}s_2(n,k,p))$. They satisfy respectively the recursive formulas:

$$S_1(n+1,k,p) = k^p S_1(n,k,p) + S_1(n,k-1,p),$$
 (1.1)

$$|s_1(n+1,k,p)| = n^p |s_1(n,k,p)| + |s_1(n,k-1,p)|,$$
 (1.2)

$$S_2(n+1,k,p) = {k+p-1 \choose p} S_2(n,k,p) + S_2(n,k-1,p), (1.3)$$

$$|s_2(n+1,k,p)| = {n+p-1 \choose p} |s_2(n,k,p)| + |s_2(n,k-1,p)|, (1.4)$$

with the initial conditions for m = 1 or 2,

$$S_m(n,k,p) = \begin{cases} 0 & \text{if } n < k, \\ & \text{or } k < 0, \\ 1 & \text{if } n = k \ge 0. \end{cases} |s_m(n,k,p)| = \begin{cases} 0 & \text{if } n < k, \\ & \text{or } k < 0, \\ 1 & \text{if } n = k \ge 0. \end{cases}$$

Note that the case p = 1 reduces to the classical Stirling numbers, and the case p = 0 reduces to the binomial coefficients.

The goal of this article is to evaluate determinants involving the generalized Stirling numbers $S_m(n, k, p)$ and $s_m(n, k, p)$ with m = 1 or 2, which extends the results in [1].

2. Determinantal properties of generalized Stirling numbers

Theorem 2.1 For any integer $r \geq 0$, we have

$$\det_{1 \le i,j \le k} \left(|s_1(r+i,j,p)| \right) = (r!)^{pk}, \tag{2.1}$$

$$\det_{1 \le i,j \le k} \left(S_1(r+i,j,p) \right) = (k!)^{pr}, \tag{2.2}$$

$$\det_{0 \le i, j \le k} \left(S_1(r+i+j, r+j) \right) = \prod_{v=1}^{\kappa} (r+v)^{pv}, \tag{2.3}$$

$$\det_{1 \le i,j \le k} \left(|s_2(r+i,j,p)| \right) = \prod_{v=1}^r \binom{v+p-1}{p}^k, \tag{2.4}$$

$$\det_{1 \le i,j \le k} \left(S_2(r+i,j,p) \right) = \prod_{v=1}^k \binom{v+p-1}{p}^r, \tag{2.5}$$

$$\det_{0 \le i, j \le k} \left(S_2(r+i+j, r+j) \right) = \prod_{v=1}^k \binom{r+v+p-1}{p}^v.$$
 (2.6)

Proof. We just prove (2.1)-(2.3), and (2.4)-(2.6) follow similarly. Let R_{α} , R_{β} be the α -th and β -th rows, and $R_{\alpha} \leftarrow \theta R_{\alpha} + \vartheta R_{\beta}$ mean the standard row operation on determinants, namely, to replace the row R_{α} by $\theta R_{\alpha} + \vartheta R_{\beta}$, where θ, ϑ are some constants. Let C_{α} , C_{β} and $C_{\alpha} \leftarrow \theta C_{\alpha} + \vartheta C_{\beta}$ denote the same meaning for columns.

For $\beta = 2, 3, \ldots, k$ and $\alpha = k, k-1, \ldots, \beta$, by (1.2), the operation $R_{\alpha} \leftarrow R_{\alpha} - (n + \alpha - \beta + 1)^{p} R_{\alpha - 1}$ can transform the matrix in (2.1) to a simpler form, an upper-triangular matrix with the diagonal entries $|s_{1}(r+1, 1, p)| = (r!)^{p}$, then (2.1) holds.

For $\alpha=k,k-1,\ldots,2$, by (1.1) and $S_1(n,1,p)=1$ for $n\geq 1$, the operation $C_{\alpha}\leftarrow \alpha^pC_{\alpha}+C_{\alpha-1}$ can induce the recursive relation:

$$\det_{1 \le i,j \le k} \left(S_1(r+i,j,p) \right) = \frac{1}{(k!)^p} \det_{1 \le i,j \le k} \left(S_1(r+1+i,j,p) \right),$$

then (2.2) follows by iteration on r.

For $\beta=2,3,\ldots,k+1$ and $\alpha=k+1,k,\ldots,\beta$, by (1.1) and $S_1(n,n,p)=1$ for $n\geq 1$, the operation $C_{\alpha}\leftarrow C_{\alpha}-\frac{(r+\alpha-1)^{p(\beta-2)}}{(r+\alpha-2)^{p(\beta-2)}}C_{\alpha-1}$ can transform the matrix in (2.3) to a simpler form, a lower-triangular matrix with the (i,i)-entries $(r+i)^{pi}S_1(r+i,r+i,p)=(r+i)^{pi}$, thus (2.3) follows.

Theorem 2.2 For any integers $r, k \ge 1$, let A(m), B(m) and C(m) denotes $six \ k \times k$ matrices whose (i, j)-entries are respectively $A(m)_{ij} = 1$

 $|s_m(r+i-1,r-2k+i+j)|$, $B(m)_{ij} = |s_m(r+i-1,r-k+j)|$ and $C(m)_{ij} = |s_m(r+i-1,r-k-1+i+j)|$ for $1 \le i,j \le k$ with m=1 or 2, then we have

$$\det A(m) = \det B(m) \cdot \det C(m).$$

Proof. We just prove the case m=1, and the case m=2 holds similarly. For $\beta=2,3,\ldots,k$ and $\alpha=k,k-1,\ldots,\beta$, by (1.2), the operation $R_{\alpha}\leftarrow R_{\alpha}-\frac{(r+\alpha-2)^p}{(r+\alpha-\beta)^p}R_{\alpha-1}$ can transform the matrix A(1) to a simpler form,

$$A(1)_{ij} = |s_1(r, r-2k+i+j)| \prod_{n=0}^{i-2} (r+v)^p,$$

then we get

$$\det A(1) = \det_{1 \le i, j \le k} \left(|s_1(r, r - 2k + i + j)| \right) \cdot \prod_{v=0}^{k-2} (r+v)^{p(k-v-1)}.$$

For $\beta = 2, 3, ..., k$ and $\alpha = k, k - 1, ..., \beta$, by (1.2), the operation $R_{\alpha} \leftarrow R_{\alpha} - (r + \alpha - \beta)^p R_{\alpha-1}$ can transform the matrix B(1) to a simpler form,

$$B(1)_{ij} = |s_1(r, r-k-i+j+1)|.$$

Note that

$$B(1)^{t} \cdot M = \left(|s_{1}(r, r-k-i+j+1)| \right)^{t} \cdot M = \left(|s_{1}(r, r-2k+i+j)| \right),$$

where $B(1)^t$ denotes the transposed matrix of B(1) and M is the $k \times k$ anti-unit matrix. Then we obtain

$$\det B(1) = (-1)^{\binom{k}{2}} \det_{1 \le i,j \le k} \left(|s_1(r,r-2k+i+j)| \right).$$

For $\beta=2,3,\ldots,k$ and $\alpha=k,k-1,\ldots,\beta$, by (1.2), the operation $R_{\alpha}\leftarrow R_{\alpha}-\frac{(r+\alpha-2)^p}{(r+\alpha-\beta)^p}R_{\alpha-1}$ can transform the matrix C(1) to a simpler form,

$$C(1) = \left(C(1)_{ij}\right) = \left(|s_1(r, r-k+i+j-1)| \prod_{v=0}^{i-2} (r+v)^p\right),$$

which is an anti-upper-triangular matrix with the anti-diagonal (i, k+1-i)-entries $s_1(r, r, p) \prod_{v=0}^{i-2} (r+v)^p = \prod_{v=0}^{i-2} (r+v)^p$. Then we have

$$\det C(1) = (-1)^{\binom{k}{2}} \prod_{v=0}^{k-2} (r+v)^{p(k-v-1)}.$$

Summarizing these facts, we obtain the desired result.

Theorem 2.3 For any integers $r \geq 1, k \geq 0$, let E(m), F(m) and G(m) denotes $six (k + 1) \times (k + 1)$ matrices whose (i, j)-entries are respectively $E(m)_{ij} = S_m(r+i+j, r+j), F(m)_{ij} = S_m(r+k+i, r+j)$ and $G(m)_{ij} = S_m(r+k+i+j, r+j)$ for $0 \leq i, j \leq k$ with m = 1 or 2, then we have

$$\det G(m) = \det E(m) \cdot \det F(m).$$

Proof. We just prove the case m=1, and the case m=2 holds similarly. For $\beta=2,3,\ldots,k+1$ and $\alpha=k+1,k,\ldots,\beta$, by (1.1), the operation $C_{\alpha} \leftarrow C_{\alpha} - \frac{(r+\alpha-1)^{p(\beta-2)}}{(r+\alpha-2)^{p(\beta-2)}}C_{\alpha-1}$ can transform the matrix G(1) to a simpler form,

$$G(1)_{ij} = S_1(r+k+i,r+j)(r+j)^{pj} = F(1)_{ij}(r+j)^{pj},$$

then we get

$$\det G(1) = \det F(1) \cdot \prod_{v=1}^{k} (r+v)^{pv}.$$

But (2.3) tells us that det $E(1) = \prod_{v=1}^{k} (r+v)^{pv}$, then the result holds. \square

Acknowledgments The authors would like to thank Leetsch C. Hsu for helpful comments. Thanks also to the referees for their careful reading of the manuscript and valuable suggestions.

References

- [1] B. S. Chandramouli, New determinantal identities on Stirling Numbers, Ars Combinatoria, 65 (2002), 251-263.
- [2] L. Comtet, Analyse Combinatoire, Presses Universitaires de France Io8, Boulevard Saint-Germain, Paris. 1970.
- [3] R. Ehrenborg, Determinants Involving q-Stirling Numbers, Adv. App. Math., 31 (2003), 630-642.
- [4] P. Stanley, Enumerative Combinatorics, Cambridge Univ. Press, Vol.1 (1998).
- [5] Y. Sun, Two Classes of p-Stirling Numbers, Dis. Math, 306(2006), No. 21, 2801-2805.
- [6] H. Wilf, A Combinatorical Determinant, math/9809120.