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Abstract: In a previous paper the first author introduced two classes of
generalized Stirling numbers, s, (n, k, p), Sm(n, k, p) with m = 1 or 2, called
p-Stirling numbers. In this paper, we discuss their determinant properties.
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1. Introduction

It is well know that the first kind of unsigned Stirling numbers, |s(n, k)| =
(—=1)""*s(n, k), count the number of permutations in the symmetric group
S. with k cycles [4, P18], and the second kind, S(n,k), count the num-
ber of partitions of [n] = {1,2,...,n} into k disjoint nonempty blocks [4,
P33]. In the literature, there exist many beautiful determinants involving
the classical Stirling numbers of the first kind s(n, k) and the second kind
S(n, k) [2, P228], [3], [6]. For examples, for any integer r > 0, there hold
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In a previous paper [5], the first author introduced the concept of k-
matrix partition (permutation) on a p X n matrix M(n,p) = (M;;) with
M;; = j. The number of k-matrix partitions (permutations) of M(n,p)
is counted by the generalized Stirling numbers S;(n,k,p)(|si(n,k,p)| =
(=1)*~*s,(n, k, p)), and the number of strong (k +p — 1)-matrix partitions
(permutations) of M(n + p — 1, p) corresponds to Sa2(n, k, p)(|s2(n, k,p)| =
(—1)"*sy(n, k,p)). They satisfy respectively the recursive formulas:

S](n-l'l,k,P) = kpSl(n,kxp)'i'Sl(n)k_lap)a (1'1)

s1(n+1,kp)| = nPlsy(nk,p)| + [sa(m, k= 1,p)], (1.2)
k -1

Saln+1kp) = (*ﬁ )sz(n,k,p)+s2(n,k—1,p), (13)

|52(n + 1,k,p)| = (n +§ B 1)“92(”’ k)p)l + |32(n1 k— I,P)l, (1-4)

with the initial conditions for m =1 or 2,

0 ifn <k, 0 ifn<k,
Spm(n, k,p) = ork <0, |sm(n, k,p)| = ork <0,
1 ifn=k2>0. 1 ifn=k2>0.

Note that the case p = 1 reduces to the classical Stirling numbers, and the
case p = 0 reduces to the binomial coefficients.

The goal of this article is to evaluate determinants involving the gener-
alized Stirling numbers Sy, (n, k,p) and s, (n, k,p) with m =1 or 2, which
extends the results in [1].
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2. Determinantal properties of generalized

Stirling numbers

Theorem 2.1 For any integer r > 0, we have
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Proof. We just prove (2.1)-(2.3), and (2.4)-(2.6) follow similarly. Let Ry, Rg
be the a-th and $-th rows, and R, <« 6R, + 9Rg mean the standard row
operation on determinants, namely, to replace the row R, by ORs + IR,
where 6,9 are some constants. Let C,,Cs and C, — 8C, + 9Cg denote
the same meaning for columns.

For3=2,3,...,kanda =k,k-1,...,8, by (1.2), the operation R, «—
Ry —(n+a—pB+1)?R,_; can transform the matrix in (2.1) to a simpler form,
an upper-triangular matrix with the diagonal entries |s; (r+1,1, p)| = (r!)?,
then (2.1) holds.

For o = k,k~1,...,2, by (1.1) and Si(n,1,p) = 1 for n > 1, the

operation Cy « aPCy + C,_; can induce the recursive relation:

o, (5 +i5m) = g det (S04 1+ i),
then (2.2) follows by iteration on 7.

For§=2,3,...,k+land a = k+1,k,...,3, by (1.1) and Si(n,n,p) = 1
for n > 1, the operation C, «— C, — (:Ig:;):(z::)
matrix in (2.3) to a simpler form, a lower-triangular matrix with the (z, i)-
entries (7 +2)P'S1(r + i,r + i, p) = (r + i)P*, thus (2.3) follows. 0O

Cq—1 can transform the

Theorem 2.2 For any integers r,k > 1, let A(m), B(m) and C(m) de-
notes sit k X k matrices whose (i,j)-entries are respectively A(m);; =
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|sm(r +i— 1,7 — 2k + ¢ + j)|, B(m)ij = |sm(r +i—1,r — k + j)| and
Cm)ij =|sm(r+i—1,r—k-=1+i+j)| for1<i,j<kwithm=1 or
2, then we have

det A(m) = det B(m)-detC(m).
Proof. We just prove the case m = 1, and the case m = 2 holds similarly.
For $=2,3,...,kand a = k, k- 1,...,8, by (1.2), the operation R, «—
R, — %%?)L,Ra_l can transform the matrix A(1) to a simpler form,

i-2
A)j = |sa(r,r — 2k +i+ )| [ (r + ),
v=0
then we get
k-2
— . _ . . . p(k—v-1)
det A(1) 15(}3%k(lsl(r’ r—2k+1i +])I) J;Io(r +v) .

For 8 = 2,3,...,k and « = k,k — 1,...,0, by (1.2), the operation
R, — Ry — (r + @ — B)PR,—_1 can transform the matrix B(1) to a simpler
form,

B(l)ij = |31('P,1‘ — k- t+7+ l)l
Note that

B(1)-M = (|sl(r,r—k—i+j+1)|)t ‘M= (|sl(r,r-2k+i+j)l),

where B(1)! denotes the transposed matrix of B(1) and M is the k x k
anti-unit matrix. Then we obtain

det B(1) = (_1)(5)15§31;Sk(|31(r,r -2k 414+ j)l).

For 8 = 2,3,...,k and @ = k,k - 1,...,8, by (1.2), the operation

R, — R, — :I:_B)" R._; can transform the matrix C(1) to a simpler
form,

o) = (€)= (Isstrr —k+i+35-1)| ﬁ(r +v)°),

v=0
which is an a.ntx-upper-trlanguldr matrix with the anti-diagonal (¢, k+1—1)-
entries s (7,7, p) HU_O('I‘ +o)P = Hv__o(r + v)P. Then we have

det (1) = (-1)(2) ﬁ(r + p)Pk=v=1),

v=0

Summarizing these facts, we obtain the desired result. O
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Theorem 2.3 For any integers r > 1,k > 0, let E(m), F(m) and G(m)
denotes siz (k + 1) x (k + 1) matrices whose (i, j)-entries are respectively
E(m)ij = Sm(r+i+34,7+7), F(m)ij = Sm(r +k+14,7+j) and G(m);; =
Sm(r+k+i+j,r+7) for0<i,j <k withm =1 or 2, then we have

detG(m) = det E(m)-det F(m).

Proof. We just prove the case m = 1, and the case m = 2 holds similarly.
For 8 =23,...,k+1and a = k+ 1,k,...,8, by (1.1), the operation

—1)P(6-2) . .
Co — Cp— (:Iz_;): —7Ca—1 can transform the matrix G(1) to a simpler
form,

G(1)ij = Si(r+ k +i,7 + j)(r + )P = F(1)i;(r + )",

then we get

k
det G(1) = det F(1) - [ (r + v)™.

v=1

But (2.3) tells us that det E(1) = [[*_, (r + v)?", then the result holds. O
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