A Note on Strongly Graceful Trees !

Bing YA0*2? Hui CHENG®*® Ming YAOP Meimei ZHAO ?

a. College of Mathematics and Information Science, Northwest Normal University,
Lanzhou, 730070, P.R.China

b. Department of Information Process and Control Engineering, Lanzhou
Petrochemical College of Vocational Technology, 730060, P.R.China

Abstract

A tree T with n vertices and a perfect matching M is strongly
graceful if T admits a graceful labeling f such that f(u)+f(v) = n—1
for every edge uv € M. Broersma and Hoede [5] conjectured that
cvery tree containing a perfect matching is strongly graceful in 1999.
We prove that a tree T with diameter D(T) < 5 supports the
strongly graceful conjecture on trees. We show several classes of
basic seeds and some constructive methods for constructing large
scale of strongly graceful trees.
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1 Introduction and concepts

Golomb (cf. [7], [9]) poses the question of how to notch a metal bar k units
in length at a minimum number of integer points in such a way that the
distances between any two notches, or between a notch and an endpoint,
are distinct and generate the set {1,2,...,k}. The above question could
be investigated by some graph labellings. A graceful labeling of a simple
graph G with ¢ edges is assignment of distinct labels from {0,1,...,q} to
vertices of G, where edges are labeled by absolute values of difference of
labels of adjacent vertices and every label from 1,2,...,q is used exactly
once as an edge label (cf. [9]).

All graphs mentioned in this article are simple, undirected and finite.
The undefined terminologies will follow [1]. For the sake of simplicity, the
shorthand symbol [m, n] stands for a set {m,m+1,...,n}, where m and n
are non-negative integers with m < n. We formulate formally the definition
of a graceful graph in the following:
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Definition 1. [1] [10] Let f be a labelling of a connected graph G with p
vertices and g edges. Each vertex u of G is assigned a number f(u) € [0, q]
such that f(u) # f(v) for © # v in G, and the label of an edge uv of G is
f(uv) = |f(u) — f(v)| and the set of all edge labels is equal to (1, g]. Then
f is called a graceful labelling, so say, G is graceful.

Let f be a graceful labelling of a connected graph G having g edges. The
labelling h(z) = ¢— f(z) for all z € V(G) is called the dual graceful labelling
of f. By Definition 1, a graceful tree T on p vertices admits a graceful
labelling f such that vertex label set {f(u) : u € V(T')} = [0, p—1] (denoted
by f(V(T))) and edge label set {f(uv): wv € E(T)} = [1,p — 1] (denoted
by f(E(T))). The following long-standing Graceful Tree Conjecture (GTC)
was found by many researchers (cf. [1, 10]):

Conjecture 1. (Alexander Rosa, 1966) (11] Each tree is graceful.

Rosa discovered that if each tree admits a graceful labelling, then this
will settle a longstanding, well-known Ringel-Kotzig Decomposition Con-
jecture in popularization: K, can be decomposed into 2n + 1 subgraphs
which are isomorphic with a given tree with n edges (cf. [10], [11]).

Despite the tremendous work of many literatures, GTC is still open up
to now. A caterpillar is a tree T such that the graph obtained by deleting
all leaves from T is just a path, where a vertex of degree one is called a leaf.
A lobster H is a tree such that thc graph obtained by deleting all leaves
from H is a caterpillar. One may consider: Every lobster is graceful (cf.
3D

In this article we will focus on strongly graceful lobsters. The definition
of a strongly graceful tree is formulated in the following:

Definition 2. Let T be a trce with n vertices and a perfect matching
M. T is strongly graceful if T admits a graceful labeling f such that
f(u) + f(v) =n —1 for every edge uv € M.

Conjecture 2. (H. J. Broersma and C. Hoede, 1999) (5] Every tree con-
taining a perfect matching is strongly graceful.

Definition 3. [4] A bipartite lubeling of a tree T on n vertices is a bijection
f: V = [0,n — 1] for which there exists a positive number &k such that
whenever f(u) < k < f(v), then u and v have different colors. The A-
size A(T) of the tree T is the maximum number of elements in the sets
{If(u) = f()| : uwv € E}, taken over all bipartite labelings f of T

The quantity A(n) is defined as the minimum of A(T') over all trees with
n vertices. In an earlier article [12], Rosa et al. proved that 5n/7 < A(n) <
(3n+4)/6 for all n > 4; the upper bound is believed to be the asymptotically
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correct value of A(n). Let A3(n) be the smallest A-size among all trees with
n vertices, each of degree at most three. They proved that A3(n) > 5n/6 for
all n > 12, thus supporting the belief above. This result can be seen as an
approximation toward GTC. Using a computer search, they also established
that A3(n) > n—2 for all n < 17.

Clearly, A(T) = n—1 if a tree T on n vertices is graceful. Furthermore.
we define a bipartite graceful tree T if it admits a graceful labelling f such
that f(u) < f(v) for all u € V; and v € V3, where V(T) = V; UV, and both
Vi, Vs are independent. For the sake of convenience, we write this case as
Ff(N) < f(V2) throughout this paper.

In Section 2 we prove that a tree T with diameter D(T") < 5 supports
Conjecture 2, and some lemmas for constructing strongly graceful trees. In
Section 3 we show several classes of basic sceds and a so-called recurrent
labelling that is useful for constructing strongly graceful trees. In Section
4 we introduce a new labelling on trees, called the k-strongly graceful la-
belling, and we propose some problems. By our experience, we present a
conjecture that any tree T on n vertices contains a certain largest matching
M and a graceful labelling f such that f(u) + f(v) = n — 1 for each edge
uwv € M.

2 Lemmas and theorems

Let w be a vertex of a tree T and let degy(w) stand for the degree of w in
T. A defect matching M * of T is a matching that saturates each vertex
of V(T)\ {w}. We say that T is defect strongly graceful if T admits a
graceful labelling h such that h(z) + h(y) = |T| — 1 for each edge zy of the
defect matching M *, also, /v is called a defect strongly graceful labelling.
An end-node v of T is a such vertex u that has its own neighbour set
N(u) = {v,u1,ug, ..., Udeg,(u)-1}> Where every u; isaleafof T for 1 < i <
deg,(u) — 1, and degree degp(v) > 2.

The following lemma shows some properties of a tree with a perfect
matching:

Lemma 1. Let T be a tree with a perfect matching M and n vertices.
Suppose that f is a strongly graceful labelling of T. Then
(i) The mazimum degree A(T) < n/2; each end-node of T has degree 2;
and |S| = |U| where S,U are independent sets of T such that V(T) = SUU.
(ii) Foruv € M there are f(u) = n—1—k and f(v) =k for0 < k < n/2.
(iii) There is a path P = uvzy in T such that uv,zy € M and f(u) =0,
fw)=n-1, f(z) =1and fly) =n~2, or f(u) =n-1, f(v) =0,
flz)=n—-2and f(y) = 1.
(vi) There are no lwo different perfect matchings in T .
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Proof. The assertions (i), (ii) and (iii) are obvious, so we only verify the
assertions (vi). By the induction. Let M be a perfect matching of T'. Since
each end-node of T has degree 2 we have an edge set S, = {z;y;: 1 <i < k}
where each z; is an end-node and cach y; is a leaf of T. Clearly, S, C M
and H = T — S, is a tree with a perfect matching M’. Note that S, is
unique in T, and M’ is unique in H by the induction hypothesis, we are
done. a

Theorem 2. Let T be a tree with a perfect maiching M and n vertices.
Then T is strongly graceful if the diameter D(Tj < 5.

Proof. Let T be a tree with a perfect matching M and n vertices. Since
T is a path P; on 2 vertices if D(T) = 1 and a path P4 on 4 vertices
if D(T) = 3, so the result is obvious. For D(T) = 4, it is easy to see
that the center of T is only a vertex w, and w also is the unique vertex
of maximum degree. Therefore, the order n of T must be even, without
loss of generalization, let n = 2k + 2. We can describe T as this: V(T') =
{w,z,z5,9: + 1 < i <k} and E(T) = {wz,wzi,ziy; 1 1 <0 < k}, and
a perfect matching M = {wz,z;y; : 1 <1 < k}. Note that the set of all
leaves of T is {z,y: : 1 < < k}.

It is straightforward to give T a strongly graccful labelling f in the
following: f(w) = 2k+1, f(z) = 0; and f(=z:) = 2i—1, f(v:) = 2k+1—f(z:)
for1 <i<k.

We, now, consider case D(T) = 5. There are two classes of trees with
diameter 5 and a perfect matching, denoted by Fi, F» respectively. Note
that the center of a tree T with diameter 5 has just two vertices. We write
one member of F; by T,(nl')n, where 1 < m < n. Furthermore, V(T,(,,I,)n) =
{wy, wa, i, Y5, uj,v5 1 1 £i<m, 1< j < n}, where wy,ws are the center
vertices and [V(T&D0)| = 2(m +n+1); E(Tan) = X U {wiw2} UU, where
X = {wzi,zyi : 1 <i<m}and U = {wouj,ujvj: 1 <5< n}; and
a perfect matching M = {z;y;, wiwa,ujv; : 1 <i<m,1<35< n}. Itis
straightforward to show a labclling f of T,(nl)n by setting f(y:) = 2( — 1)
and f(z;) =2(m4+n+1)-1-2(i—1) for 1 <i<m; f(wr) =1and
f(we) = 2(m+n+1)—2: f(v;) =1+2j and f(u;) = 2(m+n+1)—-2(j+1)
for 1 < j < n. Note that f(2;) + f(yi) =2(m+n+1)—-1(1 <i<m)and
f(w) + f(vj) =2(m+n+1) =1 (1 < j < n), and furthermore there are

0 = f(31) < flwr) < fly2) < f(v1) < flys) < flva) < flya) <
oo f(Ume2) < f(ym) = 2m — 2 and f(vmyei—1) < flun-y) for 0 < ¢ <
(m+n-1)/2-1,m > 2; and

Am+n+1)—1= f(z1) > fwa) > f(z2) > fu1) > flzs) > f(u2) >
flza) > -+ > f(tm=2) > f@m) = 2n + 3 and f(umye—1 > f(vn-s) for
0<t<(m+n-1)/2.
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Thereby, we claim that f is strongly graceful. See for an example shown
in Figure 1.(a).

Similarly, T; ,(,,’ D (1 £ m < n) stands for one member of 5. We write the
basic characters of T(,,] ,3 in the following: V(T, (”)) = {wy, we,wi, wh, z;,
¥i, 45,05 ¢ 1 <4 <m,1 < j < n}, where wy,ws are the center vertices;
E(T, (”)) = X U{ww], wyws, wowp} UU, where X = {wizs,ziy; : 1 <
i 5 m} and U = {wpuj,ujv; : 1 < j < n}, and a perfect matching

= {ziy;, wiw ], wawh,uv; : 1 <i<m,1 < j<n} Clearly, T, (”)l =
|Tm (” n|+2 = 2(m+n+2). We define a labelling h of T(”) in the following:
h(w 1) =0, h(wy) = 2(m+n+2)—~1, h(w2) = 2m+1 and h{wh) = 2(n+1);
h(yi) =2(m+n+2) — 2 and h(z;) = 1 +2(i —1) for 1 < i < m;
h(v;) =2(n+1) — 27 and h(u;) =2m +1+2j for 1 < j < n. It follows
that proof on T,(,,I,),, above, so that h is strongly graceful. A such example

T(l) is shown in Figure 1. (b). O

(a ®)
Figure 1: (a) A tree T2“7) ; (b) a tree Téfsl).

A tree T with 8 vertices, diameter 4 and a perfect matching is strongly
graceful (see the proof of Theorem 2), but bipartite graceful. Thereby,
we can claim that there are some trees that admit no labelling which is
strongly graceful, and bipartite graceful simultaneously.

Lemma 3. (String linking lemma) Let T be a bipartite graceful tree and
let H be a graceful tree. There exist vertices u € V(T) and v € V(H) such
that linking uw with v together by an edge yields a graceful tree.

Proof. For the sake of simplicity, we define a (A)-tree in the following:

A (A)-trec is a bipartite graceful tree T with n vertices and
V(T) = UUV where UNV = 0, and any edge zy of T
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holdsz € U andy € V. Let U = {u1,ue,...,us} and V =
{v1,v2,...,v}. Furthermore, T admits a graceful labelling

f such that f(u;) =i—1foru; € Uand 1 <i < sand
flvj)=s+j—1forv;eVand1<j<t.

Let H be a trec on m vertices that admits a graceful labelling 2. Assume
that h(w) = 0 for w € V(H), and w may be not a leaf of H.

We construct a tree G* by using an edge wwv; to adjoin vy with w
together, and make a labelling a as a(u;) = f(u;) for 1 < ¢ < s and
a(v;) = f(v;)+mfor 1 < j <t (as a result, {|a(z) —a(y)| : zy € E(T) C
E(G*)} = [m+1,m +n - 1]); and a(z) = h(z) + s for all z € V(H) (it
contributes {|a(z) - a(y)| : zy € E(H) C E(G*)} = [I,m - 1]). Note
that a(v;) — a(w) = (s + m) — s = m. Hence, the labelling a is exactly a
graceful labelling of G*. O

Be careful to check the proof of the string linking lemma (Lemma 3),
we are easy to verify the following results on strongly graceful trees:

Theorem 4. Let T' be a (A)-tree defined in the proof of Lemma 3.

(i) If f is strongly graceful for the perfect matching M of T and H is
a (respectively, a bipartite) strongly graceful tree with a leaf w labelled by
zero, then linking v; € V C V(T) with w by an edge yields a (respectively,
a bipartite) strongly graceful tree.

(ii) If f(u) + f(v) = n — 1 for each edge uv of a defect matching M’
of V(T)\ {us} and II is a (respectively, a bipartite) strongly graceful tree
with a leaf w labelled by zero, then identifying us with w into one provides
a (respectively, a bipartite) strongly graceful tree.

Lemma 5. Let T be a (A)-tree defined in the proof of Lemma 3 and let H
be a graceful trec with a leaf w labelled by zero.

(i) (Vertex-identified linking lemma) There ezists a vertex = € V(T)
such that identifying x with w into one results a graceful tree.

(i) (Edge-identificd linking lemma) If us is adjacent to vy that is a leaf
in T, then there is an edge xy € V(H) such that identifying the edge usvi
with the edge xy into one yields a graceful tree.

Proof. Let T be a (A)-tree described in the proof of Lemma 3. Let hbea
graceful labelling of the trec H on m vertices. Assume that there is a leaf
w of H such that h(w) = 0. We are rcady to run the proof of this lemma.

(i) There is a tree G obtained from identifying the leaf w of H with the
vertex u, of T into a vertex z. Next we define a labelling o for G by setting
a(z) =s—1(=h(w)+s—1= f(us)); and a(u;) = f(u) for 1<i <s—1
and a(v;) = f(vj)+m—1for1 < j <t (it implies that {lez)~a(y)| : zy €
E(T) C E(G)} = [m, m+n-2]); and a(z) = h(zx)+s—1forallz € V(H) (it
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shows that {|a(x) — a(y)|: zy € E(H) C E(G)} = [1,m — 1]). Therefore,
G is graceful.

(ii) Without loss of generalization, let a vertex w’ be adjacent to w in
H, thus, h{w') = m—1. We identify the edge usv; of T' with the edge ww’
of H into one, so we obtain a new tree G. To consider the gracefulness of
G, we define directly a graceful labelling «y for G in the following. We set
¥(u;) = f(us) for 1 <i < s and y(v;) = f(v;) +m—2for 1 <j <t; and
v(z) = h(z) + f(us) for all z € V(H). Furthermore, it is not difficult to
evaluate {|v(z) — v(y)| : zy € (E(T)\ {usn1}) C E(G)} = [m,m +n -2
and {}7(z) ~ v(v)| : 2y € (E(H)\ {ww’}) € E(G)} = [L,m — 2] and
Y(v1) = (us) = v(w') — y(w) =m ~ 1.

The proof of the lemma. is completed. O

Lemma 6. (Edge-symmetric linking lemma) Let T be a graceful tree and
let T' be a copy of T. Linking any vertez = € V(T') with its corresponding
vertez ' in T' by an edge yields a bipartite graceful tree.

Proof. Let T be a graceful tree on m vertices. Let S = {z;,z2,...,%s} and
U= {y1.y2,--.,y:} such that V(T) = SUU and SNU = 0. We take a
graceful labelling f with f(x;) = 0 and f(y:) = m — 1. Correspondingly,
V(T'y=U'US"andU'NS’' =0, where U’ = {y},y5,...,y:}and S’ =
{z1,x5,...,z%}. And, f’ is the corresponding copy of f with f/(z}) =0
and f'(y})=m - 1.

First, we have a new trec H obtained from linking y; € U with y, € U’
together by using an cdge, so that E(H) = E(T)U E(T') U {yy} and
V(H)=(SuU")U(UuUS’) where (SUU’)N(UUS’) =0. Furthermore,
it is straightforward to define a labelling o of H in the following. Let
a(z;) = f(z;) for 1 < i < s and a(y;) = fly;) +m for 1 < j < ¢; and
let ay}) = f'(y;) for 1 < j <tand a(z)) = f'(z;)+mfor1 <i<s.
Clearly, a(u) # a(v) if u # v for u,v € V(H) We are easy to see that
{la(u) = a@)]: wve BE(T) = EH - yyi) \(E(T'))} =[m+1,2m - 1],
{la(u) — a(v)| : wwe E(T’) = E(H - yy}) \ (E(T))} = [1,m — 1], and
ofy) —ayy) = 2m — 1 — (m — 1) = m. Clearly, the labelling « is just a
bipartite graceful labelling since a(u) < a(v) for v € SUU’ and v € UUS .

Second, observe that a(x}) — a(z;) = m for 1 < i < s and ofy;) —
a(y}) =mfor 1 < j < t. We delete the edge y,y; from H and then ad_]om
two vertlces x;,;v (01 Yj» ¥ ;) together, the resulting tree H — 4y ; + ziz
(or H —yey i +yy)) is blpartlte graceful too. D

It should be pointed out that the tree H' constructed in the proof
of Lemma 6 may be not bipartite graceful. And the structures of two
trees H, H' constructed in the proof of Lemma 6 may be distinct in each
other. Immediately, as a dircct sequence of Lemma 6 we have the following
theorem:
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Theorem 7. Let H be a tree constructed from a tree T and its copy T' by
means of the edge-symmetric linking lemma (Lemma 6).

(i) If T is strongly graceful, so is H.

(i) If T s bipartite graceful, so is H.

(iii) If T admits a labelling that is simultaneously strongly graceful and
bipartite graceful, so does H.

We define a class of (B)-trees as follows.

A (B)-tree is a trec T which satisfies the following conditions:
(i) T contains a perfect matching M.

(ii) T contains a vertex subset S = {w',wo,w”,z;,9: : 1 £
i < m} such that wp is adjacent to w’,w” and each z; for
1 < i < m, where degrees degp(w’) # 2, degp(w”) # 2,
degr(z:) = 2, degy(Ym—i+1) = 1 and edges Tiym—iy1 € M
for 1 <i < m. If degp(w’) = 2 (or degree degp(w”) = 2),
then no path P = zw'wp such that degree degp(z) =1 (or
no path P = yw "wp such that degree degp(y) = 1).

(iii) T admits a bipartite strongly graceful labelling f such that
there are integers s, t > 0, we have a case Cr: f(v:) = 2(s+1)
and f(z;) = 2(t + ) — 1, or another case Crr: f(y:) =
2(t+1i) — land f(z;) =2(s+i)forl <i<m.

Lemma 8. (Growing lemma) Let T be a (B)-tree and let Pj = ujvp—j41
be paths for 1 < j < b. A tree H obtained by adjoining wo with each vertex
u; is strongly graceful.

Proof. Clearly, degy(z) = degp(z) if z # wo,uj, vp—jr1, degy(u;) = 2
and degy(up—j1) = 1 for 1 < j < b. H contains a perfect matching
M' = MU {ujvp—j+1 : 1 < j < b}. Since the proofs about two cases
C1,Cy; are very similar, we apply the case Cy to define a labelling h of H
in the following.

(1) h(y:) = f(yi) = 2(s + 1) and h(z;) =2(t +b+i)—1for1 < i <m.

(2) h(u;) =2(t +j) — 1 and h(v;) =2(s +m+j) for 1 < j <b.

(3) For z € V(H)\ {wi,yi,uj,v; : 1 <i<m, 1 <5 < b}, let
h(z) = £(2) If f(2) < fn); h(z) = £(2) + 20 i€ £(z) > Flym) and f(2) is
even; and h(2) = f(2) + 2bif f(z) > f(zm) and f(2) is odd.

Let n = |T|. Note that f(ym-it+1)+f(2:) = 2(s+m—i+1)+2(t+i)—1=
2(s+m+t+1)—1=n—1 We have

R(ym—is1)+h(z:) = 2(s+m—i+1)+2(t+b+i)—1 = (n+2b)-1 = |H|-1,

R(vp 1) +h(1g) = 2s+m+b—j+1)+2(t+5)—1= (n+2b) -1 = [H| -1,
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as a result, h{x) + h(y) = |[H| - 1 forzy e M.

Suppose that |h(z)—h(y)| = |g(u)—h(v)| for some edges zy, uv € E(H).
It hlz) = f(z) + 2, h(y) = F(y), h(w) = f(u) + 2b, h(v) = f(v), by the
definition of the labelling ~ we have f(z) > f(y) and f(u) > f(v), in turn
that |f(z) — f(y)| = |f(u) — f(v)|, a contradiction. If h(z) = f(z) + 2b,
h(y) = f(y), h(u) = f(u), h(v) = f(v), it is impossible, we must have
h(u) = f(u)+2bor h(v) = f(v)+2b since T is strongly graceful. Therefore,
h is a strongly graceful labelling of H. O

3 Constructing strongly graceful trees

3.1 Basic seeds

Let T be a tree with n vertices and a perfect matching M. Since A(T) <
n/2 and each end-nodc of 7" has degree 2, we can make some seeds for
growing strongly graccful trees.

1. Path seeds contains two classes of paths.

(1) Py is a path on 2m vertices depicted by Pom = ujug--- tgm.
Thus, V(Ps,) = SUU where S = {ugi—; : 1 <i<m}and U =
{u2i : 1 £ ¢ < m}. The path Py, contains a perfect matching M =
{ugi—1ug; 1 1< i <m}, and has a strongly graceful labelling f defined in
the way: f(ugi—1) =t—1and f(ug) =2m—iforl1 <i<m.

(2) Posnt1 stands for a path Pomy) = ujug - - UgmUoms1 o0 2m + 1
vertices. It contains a defect matching M = {ug;_1ug; : 1 <7 < m}, and
admits a defect strongly graceful labelling h defined by setting h(ug;—1) =
t—1lforl1 <i<mand f(ugy;) =2m+1-jforl<j<m+1.

2. Spider seeds arc denoted as Gagyy and Gagio (kK > 1) that are
defined in the following.

(1) Gary2 is a tree of 2k +2 vertices with V(Gagq2) = {w, 2,7, 91 1 <
i < k}, E(Goryo) = {wz,wzi,z;y: © 1 < i <k}, and a perfect matching
M = {wz,z;jy; : 1 < i < k}. Each y; is a leaf and each z; of degree
2 is an end-node. D(Gopre) = 4 and A(Gogy2) = k+ 1. It admits a
strongly graceful a defined in the way that a(w) = 2k + 1 and a(z) = 0;
ofz;)=2i—1and a(y;)) =2k -2(: — 1) for 1 <i < k.

(2) Gag41 is a tree of 2k + 1 vertices with V(Gogqy) = {w,zi, 3¢ 1<
i <k}, E(Garg1) = {wai,ziyi @ 1 < i < k}, and a defect matching
M = {z;y; : 1<1i <k}, where only w is not saturated by M. The vertex
w is called the center of Gar+1. Each y; is a leaf of Gary1, and each x; of
degree 2 is an end-node of Gogyy. D(Gaort1) = 4 and A(Gaky1) = k. Gogyr
admits a graceful labelling « defined by a(w) = 0, a(z;) = 2k - 2(GE — 1)
and afy;)) =2i—1for1 <i<k.

3. An osg-seed H; is a tree which contains a perfect matching M and
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(a)

Figure 2: (a) A path seed P; and a spider seed G7; (b) a strongly graceful lobster
H grown from G7 and P; by using the vertex-identified linking lemma (Lemma
5); (c) a graceful lobster H ' constructed by applying the edge-symmetric linking
lemma (Lemma 6) to Gz; (d) a graceful lobster G grown from H,H' by using
the string linking lemma (Lemma 3).

V(H;) = U; UV; where the small verter set U; = {ui1,ui,2,. .., } and
the large vertez set V; = {vi1,v:2,..., iz, } such that any edge xy satisfies
z € U; and y € Vi. And, H; admits a bipartite and strongly graceful
labelling f such that f{u;;) =!—1for1<l<s;and f(vi;)=s8:+j—1
for 1 < j < t;. We say that u;; and v;; arc the S-head and L-head of each
osg-seed H;, and u; s, and v;,, are the S-teil and L-tail of each osg-seed
H;, respectively.

3.2 The recurrent labelling

In this subsection we use a so-called recurrent labelling to yield a bipartite
and strongly graceful labelling & for a so-called super caterpillar H obtained
in the following way.

Let H; be osg-secds for 1 < i < m, thus, we have a tree H obtained by
adjoining cvery S-head u;; € V(H;) with the L-head v;_1,) € V(H;_) by
an edge for 2 < i < m, here, we call H a super caterpillar.

Theorem 9. For osg-sceds H; for 1 < i < m, a super caterpillar H
resulted by H; is bipartite and strongly graceful.

Proof. First, we define the recurrent labelling h for H in the following:
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Figure 3: (a) A spider seed Gs and a path seed Ps; (b) a strongly graceful lobster
Q grown from seeds Gg and Ps by using the edge-identified linking lemma (Lemma
5); (c) a bipartite and strongly graceful lobster T constructed by applying the
edge-symmetric linking lemma (Lemma 6) to a strongly graceful tree Gs that is
not bipartite.

h(ugr) = (r—1) +Z, 181 1<r<s;, 1 SiSm,whereletZ?=ls; =
0; and
h(ve) = (G- D+ Xk s+ Litpp tn 1Sj<te, 1Sk <m.
Let M; = Y\ Zis;and N; = Y i+ 3, b for 2 < i < m, we
have
h(V(H:)) = { My, My +1, ..., Mi+(si— 1), N, Ny +1,..., N+ (t; = 1)};
PE(H:) = [Sinyy 51+ Simeys t1+ L X0 0+ St — 1]; and

mh(v,,l) h(uiy1,) = Zz=1 sp + Zt:H-l b - Ez=1 St = E;r;i+l st +

Lizier b

For the first osg-seed H, we have

h(V(Hy)) = {0,1,...,51=1,Ny, Ny+1,... Ny 4+ (¢; — 1)}, where N; =

1=y SUF 2ot

h(EHl) [Zz 231“'21 2tl+1zl 180+ Xjm t - 1], and

h(vy,1) — h(uz,1) — s =S+ Yyt

It is not dlfﬁcult to see that h(z) # h(y) as if 2 # y for vertices z,y €
V(H). Clearly, h(V(H)) = [0, st + 3w, tt—1] and h(E(H)) =
Ly s+ 200, 6= 1).

In fact we labcl vertices in small vertex sets U; from H; to H,, by
the order from S-head to S-tail in onc osg-seed tree H;; and after labelling
vertices in all small vertex sets, we then label vertices in large vertex sets V;
from H,, to H; by the order from L-head to L-tail in one osg-seed H;. This
is the reason that the above labelling A is named as the recurrent labelling.
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The trueness of the bipartite and strongly graceful tree H introduced
above is based on Lemma 3. It is not hard to see that we can adjoin
u;j € V(H;) with vi_y; € V(Hi-1) (since h(vi_1 ;) — h(u; ;) = h{vizy,1) —
h(u;,1)) and delete the cdge v;—q,1u;,1 in H, as a result, the resulting super
caterpillar may be not cqual to H.

Based on the above recurrent labelling, the proof of this theorem is
completed. (|

We consider a particular case in the proof of Theorem 9, that is, let
s; =1; = 8 > 1 for each osg-seed H;, 1 £ ¢ < m. Immediately, we have

hu; j)=(GE~-1)s+(j—-1),1<j<s, 1 <i<m;and

h(vij) =(2m—i)s+(j—1), 1<j<s, 1<i<m.

For this particular case, we have two approaches to form graceful trees
in the following. The first way is to adjoin a S-head u;,; € V(H;) with a
L-head v;_11 € V(H;-1) by an edge, 2 < i < m, so that we get a super
caterpillar H that is bipartite and strongly graceful. The second way is to
construct a so-called super spider H’ that is defect strongly graceful by
adding a new vertex w with labels 2ms such that w is adjacent to S-heads
uge-1,1 € V(Ho—y) for 1 < ¢ < ||, and to L-heads vo,) € V(Ha,) for
1 <7< 2] (see an cxample described in Figure 4). This is the proof of
the following Theorem 10:

Theorem 10. (Vertex-symmetric linking lemma) Let H; (1 < i < m) be
0sg-seeds and let s > 1 be a fized integer. If s; = t; = s for each H;, then
there is a super spider H obtained by adding a vertex w and adjoin w with
a certain vertex of H; (1 <i < m) such that H is defect strongly graceful.

In Figure 4, each bipartite and strongly graceful tree T; can be con-
structed by spider sceds and path seeds, where V(T;) = U; UV, the vertices
in U; are in black, and |U;| = |Vi| = 8 (1 < i < 3). There are two methods
for constructing graceful trees from T,72,73. One is to adjoin vertex 40
with vertex 8, and vertex 32 with vertex 16 (in fact, this way may product
many bipartite and strongly graceful trees); and another one is to adjoin a
new vertex w (labelled by 48) with vertices 0, 32 and 16, and then it yields
a defect strongly graccful tree.

By checking the proof of Lemma 8, we have a generalization of Lemma
8. Before stating this result, we need a particupar class of trees defined as
follows.

A super (B)-tree is a tree T that satisfics the following condi-
tions:
(i) T contains a perfect matching M.

(ii) T contains a vertex wo which is adjacent to w’,w"”, where
degrees degp(w’) # 2, degp(w”) # 2. And T has osg-seeds
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176 ;
0,7 20
8 28
. 19
25 215 26
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22 S-tail %41;,,4
T, T, T,

Figure 4: Two strongly graceful trees made by the recurrent labelling.

H; with s; = ¢; = s for 1 < < m. wp is adjacent to each
S-heads ug;—1,1 € V(Ha—1) for 1 <t < |21, and to each
L-heads vo,,1 € V(Ha,) for 1 <r < [ F].

(iii) T admits a bipartite strongly graceful labelling f such that
there are integers a, 8 > 0, we have f(u;;) = 2(a + (i —
Ds+(j—1)), 1<j<s 1<i<mand f(vi;) = 2(8 +
Cm—-i)s+(j—1)—-1,1<j<s, 1<i<m.

Theorem 11. (Super growing lemma) Let T be a super {B)-tree and let
T; be osg-seeds with s; = t; = s for 1 < j < b. We have a bipartite
strongly graceful tree H obtained by adjoining wo of T to each S-heads
uge—1,1 € V{(Tpp—y) for 1 <t < [%j, and to each L-heads vor) € V(Tor)
for1<r< [%J

4 Further works

Clearly, the results, here, are suitable for constructing graceful trees or
bipartite graceful trees. Most of proofs of the results in this note are con-
structive, so that they can be transferred into algorithms for computation.
We define a k-strongly graceful labelling of a tree T with a perfect matching
M and n vertices in the following.

Definition 4. A tree T with n vertices and a perfect matching M is k-
strongly graceful if it admits a graceful labelling f such that f(u)+ f(v) >
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n—k for each edge uv € M and 1 < k < n—1, also, f is called a k-strongly
graceful labelling of T'.

Therefore, Conjecturc 2 can be restated as this: Any tree with a perfect
matching is 1-strongly graceful. Obviously, the k-strongly gracefulness is
weaker than the strongly gracefulness as if k > 2. However, determining
the k-strongly gracefulness of a tree seems to be very hard since GTC is
still open up to now.

Problem 1. A tree T with n vertices and a perfect matching M admits
a strongly graceful labelling f. For each edge uv € E(T)\ M, does both
integers f(u) + f(v) and n have the same odevity?

According to GTC our experience shows a conjecture in the following:

Conjecture 3. Any tree T" with n vertices contains a certain largest match-
ing M and o graceful labelling f such that f(u) + f(v) = n =1 for each
edge vv € M.

Note that a trec may have largest matchings morc than one, so the
Conjecture 3 is not true for any largest matching of 7'.

Problem 2. Let T be a strongly graceful trec on n > 4 vertices and let
H be a subtree of T that has a perfect matching. Is H strongly graceful?

Lemma 12. (Self-transmuted lemma) Let T be a (strongly) graceful tree
on n > 4 vertices, and let f be a graceful labelling of T. Then there are an
edge uv and a vertex w such that H =T —uv +uw or H '=T—-uwv+vw
s a graceful tree on n > 4 vertices.

Proof. In fact, it is sufficient to prove that there is vertex w such that
|h(u) — h(v)| = |h(w) = h(w)| or [h(u) — h(v)| = |k(w) — h(v)]. We, without
loss of generalization, may assume that |h(u) — h(v)] = 1. If h(u) <n -1,
we then take a vertex w with h{w) = h(u) + 1. If A(v) > 1, we have a
vertex w that holds h(w) = h(v) — 1. If h(u) = n — 1 and h(v) = 1, thus,
1 = |h(u) = h(v)] = (n — 1) — 1, it turns out n = 3, a contradiction.

We consider the trec 7' on n vertices is strongly graceful, so it contains
a perfect matching M that means n is even. For the sake of convenience,
let n = 2m. Similarly, we take an edge uv such that |k(u) — h(v)| = 1,
where h(u) > h(v). If uv ¢ M, we are done by the above proof. As
for uv € M, we have h(u) + h(v) = 2m — 1, and furthermore 2h(v) =
2m — 2 from |h(u) — h(v)] = 1, and h(u) = m. We may assume that
u is adjacent to u’ in T. 1If h(u’) < h(u) = m, we take a vertex w
which holds h(w) = m + h(u) — h(u’). Hence, H = T — uu’ + uw or
H' =T — uu' + u'w is a strongly graceful tree by which component of
T —uu’ the vertex w belongs to. If h(u’) > h(u) = m, we take a vertex w
which holds h(w) = m— (h(u) — h(x')), and furthermore we have a strongly
graceful trece H =T —un’ +uwor H' =T —uu’ +u'w. O
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Suppose that I = T — uv + uw is obtained from a graceful tree T,
where w € V(T) and ww € E(T). H is a graceful 1-neighbour of T if H is
graceful. We say that H is a graceful k-neighbour of T if H is obtained by
applying Lemma 12 & times.

Problem 3. Let T, H be graceful trees with the same number of
vertices. Is H a graceful k-neighbour of T for some integer k > 17

Problem 4. Let Fy = {T : T is a graceful tree of order n < N}.
Can any tree T € Fun be obtained by several fixed classes of trees of Fn
and some fixed operations of constructing graphs?
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