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ABSTRACT

In this paper we consider a class of recursively defined, full binary trees
called Lucas trees and investigates their basic properties. In particular, the
distribution of leaves in the trees will be carefully studied. We then go on to
show that these trees are 2-splittable, i.e. they can be partitioned into two
isomorphic subgraphs. Finally we investigate the total path length and external
path length in these trees, the Fibonacci trees, and other full m-ary trees.
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0. INTRODUCTION

The first Fibonacci "tree” was pictured in Steinhaus' Mathematical
Snapshots in 1938 [7, p. 28]. Since then, at least two distinct trees (graphs)
have come to be called "Fibonacci Trees." Both the Fibonacci trees of Donald
Knuth [6, pp. 414-15] and those of Atkins and Geist [1, pp. 334-35] have been
used in computer science for efficient searching algorithms. Those of Knuth are
the same as those in [4], [5], and [8] where they have been studied as purely
combinatorial/graph theoretical objects. It is this second type of study that
generated our interest in Fibonacci trees and in trying to develop a similar
structure based on the sequence of Lucas numbers.

Initially, the paper of Knisely, Wallis & Domke [S] in which they show that
Fibonacci trees can be split (their edge sets can be partitioned into two sets so
that the induced subtrees are isomorphic) led us to develop the definition of a
Lucas tree in Section 1 below and show that such trees are also splittable
[Section 4]. Subsequently, the paper by Ralph Grimaldi [4] in which he
investigates many combinatorial properties of Fibonacci trees caused us to look
at similar properties for our Lucas trees and that study constitutes the bulk of
this paper. Most of the results are very similar with the Lucas numbers
substituting for the Fibonacci numbers in the results. When we begin
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investigating the distribution of internal nodes [Section 3], however, the results
begin to look quite different.

The similarity of the results on total path length and external path length in
Fibonacci and Lucas trees [Section 5] led us to a similar general result for all
full (complete) binary trees [Section 6] and even more generally for full m-ary
trees [Section 7].

1. DEFINITIONS AND BASIC PROPERTIES

The Lucas trees (LT;,) are defined in a manner similar to the Fibonacci trees
(FT,). LT, is the binary tree with root, one left child, and one right child; it is
the same as FT3. LT is the tree consisting of a single vertex, the root. Then
for n > 2, LT, is the rooted, full binary tree with LT;,_, as its left subtree and
LT, 5 as its right subtree. The first six Lucas trees are shown in Figure 1.

LT, LT} LT,

.

Figure 1
We shall use the following notation for the basic features of the Lucas trees:
In Lucas tree LT, where n is any non-negative integer,
= the number of vertices (nodes),
£,, = the number of leaves,
= the number of internal (non-leaf) nodes,
= the number of edges,
h,, = the height of the tree.
Many of the properties of Lucas trees relate to the Lucas numbers and we
will often encounter variations of the recurrence relation used to define this

sequence of numbers. We take a moment now to note some of the ideas related
to the Lucas numbers.

172



The Lucas numbers are similar to the better known Fibonacci numbers.
They are defined using the same recurrence relation but different initial
conditions. Lo =2, Ly =1,andforalln > 2, L, = L,_; + L,_,. Thus the
sequence looks like 2,1, 3, 4,7, 11,18, 29,47, ... and shows up in discrete
mathematics almost as often as the Fibonacci numbers (see [3]). It is well
known that the general solution to the difference equation defining these
sequences can be written as Aa™ + BG" where a = 132@ and g = 14-2@
Imposing the initial conditions for the Lucas sequence we find that A = B=1
so that we can write L, = o™ + §". (Note: for the Fibonacci sequence,

_ 1 | - _a
A~75-andB—75-sothatFn—7-5— —\g;—.)
The basic properties of the Lucas trees are contained in our first theorem.

Theorem 1. For the Lucas tree LT, n any non-negative integer, the quantities
defined above can be expressed as follows:

() =L,

(@) ho=1,h =0,andforn>2,h,=n
@iii) v, =2L, -1,

(v) in=Lp,-1,

v) e,=2L,-2.

Proof. From the definition of these trees it is obvious that ¢, = ¢, + €, and
¢y =2 =1Ly, and ¢, = | = L;. Thus we have (i). The height of one of these
trees, from LT3 on, will be one more than the height of the taller of its two
subtrees, which will always be the previous Lucas tree. Thus h, = hp—; + 1,
hs = 2 and we have (ii).

The number of vertices will be the sum of the number of vertices in the two

preceding trees plus 1 for the new root, so to determine v, we need to solve the
TECUITENCE Uy, = Upn—1 + Un—2 + 1. Following the standard techniques for

solving such difference equations (see [3] ) we need to find a solution ('US,") ) to

the related homogeneous equation and find a particular solution (vf{’ )) to the
non-homogeneous equation. It is easy to see from inspection that a particular

solution to the non-homogeneous equation is vs,” ) = —1. The homogeneous
equation is exactly that defining the Fibonacci and Lucas numbers so we know
the solution must be given by vg‘) = Ao" + Bf" and v, = Aa" + BF" - 1.
The initial conditions give
w=3=A+B-1 and
1)1=1=Aa+Bﬂ—1.
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Solving these equations gives A = B = 2 and hence
vy = 20™ + 28" — 1 = 2L,, — 1, result (jii) of the theorem.

Now i, = vy — by = 2L, — 1 — L, = L, — 1, and part (iv) is done. Since
the number of edges in any tree is one less than the number of vertices we also
have (v) and the theorem is proved. [J

These properties are completely analogous to those for Fibonacci trees [4,
pp. 22-23]

2. DISTRIBUTION OF LEAVES IN LUCAS TREES

We next investigate how the leaves and internal (non-leaf) nodes are
distributed at the various levels in the Lucas trees. To this end we define (after
[4]) the following quantities.

Let n be any non-negative integer. Then in the Lucas tree LT,

L(n,i) = the number of leaves at level ¢,
LL(n,i) = the number of leaves at level ¢ that are left children, and
LR(n,1i) = the number of leaves at level 7 that are right children.

Since the height of LT, is n, there can be no leaves at level greater than n
so we have, for i > n, L(n,i) = LL(n,i) = LR(n,%) = 0 and most of these 0's
are not entered in the tables below. As the trees grow we will not find leaves at
the lower levels and most of these 0's are also omitted from the tables. The
exact level at which leaves begin to appear will be calculated shortly.

Because of the recursive definition of the Lucas trees, a leaf at level ¢ in the
nt* Lucas tree had to have been a leaf at level ¢ — 1 in one of the two previous
Lucas trees and vice versa. Consequently we have the following recurrence
relations for the above quantities.

In the Lucas tree LT, forn > 2and ¢ > 2,
L(n,i) =L(n-1,i-1)+L(n—-2,i-1), 2.1
LL(n,3) = LL(n—1,i-1)+ LL(n-2,i—1), (22)
LR(n,i)=LR(n—-1,i—1)+LR(n—-2,i—1). (23)
Note: recurrence (2.1) also works for z = 1.
Some of the values for these quantities are shown in Tables 1 (LL), 2 (LR), and
3 (L). The first two rows and columns were entered by inspection and the rest
of the tables generated from the above recurrence relations using an Excel/™
spreadsheet.

We begin investigating LL and LR since if we can find nice expressions
for these quantities, an expression for L will just be their sum. The
corresponding tables for Fibonacci trees [4, p. 25] contain exactly the rows of
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Pascal's Triangle, i.e. their values are exactly binomial coefficients. That is
obviously not the case for Lucas trees.

LL(n,1), the number of leaves at level 7 that are left children in LT,

i\nJ0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

0Jjo 1 0

1j1 01 0 O

210 01 110

3 012 2|10

4 013143 1 0

5 0 1|4 7 7 4 1| 0

6 01 5 11 14 11| 56 1 0

7 01 6 16 25|25 16 6 1 0

8 0 1 7 22141 50 41 22 7

9 0 1 8129 63 91 91 63
10 0 1| 9 37 92 154 182
11 0] 1 10 46 129 246
12 0 1 11 56 175
13 0 1 12 67
14 0 1 13
15 0 1

Table 1

The rows in Table 1, for LL(n, i), are at least symmetric and the following
observations motivate our result.
LL(7,6)=5=4+1= (! )+(3),
LL(8,6) =11 =6+5= (5 )+(5)
LL(9,6)=14=4+10=(3) + (3 )
LL(10,6)=11=1+10= (}) + ().
LL(11,6) =5=0+5= = (3) + (2) :

This pattern is followed in other rows as well and it appears that

LL(n,i) = (:2) + (,}71,)- Thisis easily verified by induction for
n>1i>22 Ifn=1and ¢ > 2,then1 —¢and 1 — i — 1 are both negative
while 7 — 2 and ¢ — 1 are both at least 0 making both binomial coefficients 0 and
LL(l,i) = Oforall i > 2. Whenn =2, wehave LL(2,2)=1=1+0

= () + (1) = (2) + (L) 6> 2, LLE) = (5 + (,17,) =0
since2 — ¢ and 2 — ¢ — 1 are negative making both binomial coefficients 0.
Next consider the case fori = 2 and n > 3.
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LL(3,2)=1=0+1=(7) + (3) = (577) + (525.,) and
LL(4,2)=1=0+1=(3) + (1) = (}2) + (,%1))- fn > 4then
n—-i=n-2>2=i—2andn—-i—1=n—-2-1>1=1i-1soboth
binomial coefficients are 0 making LL(n,2) =

Now we assume the relation holds true for2 < m<nand2 < j < i.
From the recurrence relation (2.2) for LL we get

LL(n,i) = LL(n—1,i—1) 4+ LL(n — 2,5 — 1)
= (;—j) (n—z— ) (n:il) + (n-—z 2)
=D+ G5 +GEL) +(52)

= (n:2z) + (":11 :

We would also like to know at what levels we actually find leaves that are
left children. LL(n,%) # 0 as long as either of the binomial coefficients in the
above expression is nonzero, i.c. aslongas0 <n—7<i—2or
0<n—i—1<i~1. Thesereducetoi <n < 2iandso [3] <i < n. There
will be left-child leaves at the n — [ ] -+ 1 consecutive levels [ ], f 2.|+l, e

LR(n,1), the number of leaves at level ¢ that are right childrenin LT;,

i\nfO0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

ojo 0o o

111 0 0 1 0

210 01 0 1 1})0

3 01112 10

4 0121233 1 0

5 0 1/3 45 6 411 0

6 011 4 7 9 11|10 &5 1 0

7 01 5 11 16(20 21 15 6 1

8 01 6 16|27 36 41 36 21

9 0 1 7122 43 63 77 17
10 0 1| 8 29 65 106 140
11 01 9 37 94 171
12 0 1 10 46 131
13 0 1 11 56
14 0 1 12
15 0 1

Table 2
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The pattern in Table 2 is less obvious. If we consider the fifth row as an
example, it reads 1, 3,4, 5,6, 4, 1. From the left it starts out like the binomial
coefficients for the third power and from the right it looks like those for the
fourth power. If we write these two rows of binomial coefficients, shifted two
places, above one another and add we get the row in this table.

1 3 3 1
1 4 6 4 1
1 3 4 5 6 4 1

A bit more checking shows that this pattern seems to hold for all rows in
the table. Thus it appears that LR(n,d) = (}2) + (,52,) forn > 1,i > 2.
Again the induction follows easily from the recurrence relation (2.3) for LR and
the basic identity for binomial coefficients (with the messiest part being the
verification of the base cases) and we omit the details.

Now LR(n,%) # 0 as long as either of the binomial coefficients is nonzero.
Thismeans0 <n—i<i—2o0r0 <n-—i—2<z— 1 which simplify to
i<n<2+1. Fora pamcularn this gives %5~ 1 <4 < nand we will have
right-child leaves at the n — [251] + 1 consecutive levels from [251] up to n.

The total numbers of leaves at each level are shown in Table 3 Since these
values are just the sums of the two preceding values, we do not need to analyze
them on their own.

L(n, ), the number of leaves at level iin LT,

i\n]JO0 1 2 3 456 7 8 9 10 11 12 13 14 15

oo 1 o

112 01 10

210 0 2 1 2 1]0

3 0 2333 1 0

4 0 256 6 4 1 0

5 0 2|7 11 12 10 5| 1 0

6 012 9 18 23 22(15 6 1 0

7 0 2 11 27 41|45 37 21 7 1

8 0 2 13 38|68 8 82 58 28

9 0 2 15|51 106 154 168 140
10 0 2|17 66 157 260 322
11 0] 2 19 83 223 417
12 0 2 21 102 306
13 0 2 23 123
14 0 2 25
15 0 2

Table 3
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We have
L(n,i) = LL(n,i) + LR(n,i) = 2(i'2) + (n_::_l) forn>1,i>2.

n—i
The range of levels where we find right-child leaves includes that for left-child
leaves, so the levels where any leaves occur is the same as that for LR. We
summarize these results in the next theorem.

Theorem 2. For the Lucas tree LT, if » > 1 and 7 > 2, then there are
() LL(n,3) = (i) + (,17%,) leaves at level 4, for

n—i —i-1

[2] < i < n, that are left children,

() LR(n,é) = () + (,;3L,) leaves at level 4, for

n-i n—i-2

[252] < i < n,that are right children,

@iy L(n,3) =2(}2) + (,_,) leaves at level 4, for
i <i<n

If we consider the total number of leaves in LT, that are left children or
that are right children, we discover another interesting pattern. Summing the
columns of Tables I and 2, beginning with n = 2, we get the sequences
2,2,4,6,10,16,...and 1,2,3,5,8,13. Letting LL(n) and LR(n) be the total
number of leaves in LT, that are left or right children, respectively, we have
that LL(n) = 2 F,,—, and LR(n) = F, for n > 2. These results follow
immediately from the observation that LL(n) and LR(n) obey the same
recurrence as the Fibonacci and Lucas numbers. Combining these with the
result from Theorem 1 that the total number of leaves in LT, is the n'* Lucas
number gives the familiar identity L, = F, + 2 F,,_1.

Next we consider the total number of leaves appearing at level 7 over all
Lucas trees for left-child leaves, right-child leaves, and all leaves. Thus,

TLG) = S LL(n,3), TR() = 3 LR(n, ), and T(i) = foL(n, i). The
n=0 n=0 n=

values we observe in the tables suggest that TL(i) = TR(i) = 3 - 2-2 and so
T(i) = 3- 2i-1. The fact that T L(i) = TR(%) is obvious since the first terms in
their formulas from Theorem 2, parts (i) and (i), are exactly the same and the
second terms contribute the same nonzero values to the total since the upper
number of the binomial coefficient is the same and the bottom numbers range
from some negative value to values beyond the top number. Thus, if we
establish that T'L(i) = 3 - 21=2, we will have all the results. Fori > 2,
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o0
TL(i+1) =Y LL(n,i+1) = Y LL(n,i+1)
n=0 n=3

o) . .
=r§_3[(n:~2-1) + (nz—ii2) + (n—t—Z) + (n-z—J)]
by recurrence 2.2 and Theorem 2 (i),

= SIGE) + (] + SIS + (55)]
= I + G+ R + (5]

=TL(i)+ TL() =2TL(i) fori> 2.

Therefore TL(i) = ¢ 2* for some constant c. TL(2) =3 =c22soc = 3 and
TL(t) = 3- 22 as claimed. We summarize these results on the total
numbers of leaves in the following theorem.

Theorem 3. (a) For the Lucas tree LT;,, n > 2, the total number of
(¢) lefi-child leaves is LL(n) = 2 F,_,,
(i) right-child leaves is LR(n) = F,
(iii) leavesis b, = Fp, +2F,_; = L,.
(b) Summing over all Lucas trees, for i > 2, the total number of

(9) left- or right-child leaves at level 7 is
TL(i) =TR(i)) =3-22

(ii) leaves atlevel is T'(3) = 3. 21,

The recurrence relations (2.1-2.3) for LL(n, 1), LR(n, 1), and L(n, i)
presented at the beginning of this section indicate that each element in any of
these tables is the sum of two consecutive elements from the row above. This
also means that each element in a row contributes the same amount to the value
of two neighboring elements in the row below. Thus, if we add up every other
element in a row, the sum we get will be exactly the sum of all the elements in
the row above. Since the recurrences only hold for n > 2, the result of this
paragraph only works for rows 3 and beyond.

Theorem 4. For the Lucas Trees LT, if ¢ > 3, then

@ > LL(n,?) = Z: LL(n,i) = ELL(n i—1)

neven
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G) Y LR(n,i)=Y LR(n,i)=Y.LR(n,i—1)

neven nodd alln

@iy Y L(nd) =3 L{n,i) =Y L(n,i—1)
neven nodd alin
These recurrences also allow us to express the entries in the tables as a
linear combination of entries in each of the rows above with coefficients being
the binomial coefficients in several ways. For example,

L(12,9) =106
=38 + 68
= (11 +27) + (27 +41) =11 + 2(27) + 41
= (2+9) +2(9+18) + (18 + 23) = 2 + 3(9) + 3(18) + 23

= ()0 + (o+(5)o+ (Do+ (52 + ()1 + (D2 + (5)1.

Since the recurrences do not apply to the element in the (1, 2) position, we

cannot extend back above the second row of the tables. The proof of these
results is an easy (finite) induction and they are stated in general in the next
theorem (cf. [4, p. 27, (3)]).

Theorem 5. For the Lucas Tree LT5,

i
() LL(n,i) =Y (;)LL(n—t —k,i—t) for0 <t <i—2;
k=0

1
() LR(n,i) =Y ({)LR(n—t—k,i—t) for0 <t <i—2;

i
Git) L(n,d) =Y (})L(n—t—k,i—1t) for0<t<i—2.
k=0
The numbers along the diagonals from upper left to lower right, beginning
with row ¢ = 2, exhibit some nice patterns as well, though they are not
immediately obvious. One thing that is obvious is that for n > 2
LL(n,n) = LR(n,n) = 1 and this is easily verified. The next diagonal up
from this, for the left and right children, contains the non-negative integers in
order but shifted one or two places. In particular LL(n+ 1,7) =n — 1 and
LR(n +1,n) = n — 2. The entries along the next diagonal are the same for
both LL and LR but shifted from one table to the next. The entrics themselves,
1,2,4,7,11,16,..., are seen to be 1 more than the triangular numbers,
0,1,3,6,10, 15, ..., which are exactly the binomial coefficients (). This gives
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LL(n+2,n) =1+ (";'), LR(n+2,n) =1+ (";?), and so
L(n+2,n) =2+ (";') + (";2). These can, again, be verified by an easy
induction.

From here on, the numbers appearing in the tables follow unfamiliar
patterns, but we can write and solve recurrences that will enable us to write
down expressions for the elements. Our basic recurrence (2.2) tells us
LL(n+3,n) = LL(n+2,n—1)+ LL(n + 1,n — 1). This looks nicer if we
shift the index up one and writeitas LL(n + 4,n+ 1) — LL(n + 3,n)

= LL(n +2,n). This is now A (LL(n + 3,n)) = 21=3142 by Theorem 2.
While we could solve this non-homogeneous difference equation directly, it is
easier to solve if we notice that the right hand side can be expressed as a sum of
factor polynomials n®). 2=3nt2 — 1p(@ _ (1) 1 9 where
n® =nn—-1)(n-2). - - (n—k+1). (See[2, p.52).) This difference
equation can then be solved by summation (the discrete analog of integration)
and gives LL(n + 3,n) = in® — 1n® 4+ 2nM 4 ¢ for some arbitrary
constant ¢. The initial value forces ¢ = —3. A similar process applied to the
right child leaves gives LR(n + 3,n) = :n® — n® + 4n(!) — 5 and adding
these two gives L(n + 3,n) = in® — 3n® 4 6n() — 8. The diagonals
beyond this can be dealt with in a similar fashion but the patterns in the
coefficients become more cumbersome. The expressions we are getting for the
factor polynomials are, in fact, exactly binomial coefficients. For example,
§n® = (3) and 1n® = (7). If we go back and write the expressions for the
previous diagonal elements in these same terms as well as the results for the
next diagonal, we can see a very nice general pattern appear.

() LL(n,n)=LR(n,n)=1=(3);

() LL(n+1,n)=n-1=(]) - (3):
LR(n+1,m)=n-2= () —2(2);

@ LL(n+2,m) =1+ (%) = (3) - (1) +2(3),
LR(n+2,n) =1+ ("3%) = (3) —2(1) +4(3);

@) LLn+3m) = (3) - (3) +2(7) ~3(3),
LR(a+3,7) = (5) - 2(3) +4(3) - 5(3);

) LL(n+4,n)=(3) - (3) +2(3) = 3(7) +4(}),
LR(+4,m) = (3) = 2(3) +4(2) - 5(3) +6(3).

This pattern does continue throughout the tables which is our next result.

181



Theorem 6. For the Lucas Trees LT,, withn > 2and k > 0

O L+ k) = (2) - () + 5175 (),
j=2
(i) LR(n+k,n) = () —2(,%,) +j=2k)2(—1)1’ (G+2) (k’_'j),
i) Lin+kn) =2(}) —3(,") +§(—1)" i +2)(,;)

n k i (o
= (1) +2 (-1 G+ (i)

Proof. We prove (i) by induction on n. The proof of (if) is similar and (iii)
follows by addition. When n = 2, we see from Table 1 that

1 ifk=0,1,2
LL(2+k,2) = {0 ifk>3

(2)=1fork=0,and (?) — (3) =1fork=1. Whenk = 2 we get

(3) - (2) +2(2) = Land when k =3, (2) = (3) +2(2) = 3(2) = 0. For
all values of k > 4, the first two binomial coefficients are 0 as are all the terms
in the sum except for the last three, when the lower numbers are 2, 1, and 0.
Thus the right hand side reduces to

(=% k(3) + (1F 1 (k- 1)(3) + (-1)F 2 (k- 2)(3)
=(-1)*2k-(k-1)2+(k-2)]=0.

Now assuming the equation holds true for » and all k we get
LL(n+1+k,n+1)=LL(n+k,n)+ LL(n+k—1,n)

= (Z) - (kzl) +j_z§(—1)jj (kzj) + (1:1) - (k22) +:=Z—:;(_1)jj (k—'l‘—j)

. The right hand side of (i) reduces to

= (") = () 4 2 175 (1) + (1R (3).
j=2

But (5) = ("¢7), so this last term can be incorporated into the sum giving the
desired result. The case in the induction step for £ = 0 gives LL(n + 1,n + 1),
which is 1 and the right hand side reduces to ("3') = 1 and the proof is
complete. O

For our final result on the distribution of leaves we note that these same
diagonal elements in Table 3 can also be expressed nicely as sums of squares
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(though not as nicely as those for Fibonacci trees in [4, pp. 27-28]). Looking
first at the diagonal elements L(n + 4,n) we find

L(7,3) =1=1?,

L(8,4) =4 =0(1%) + 22,

L(9,5) = 10 = 1(1%) + 0(2%) + 32,

L(10,6) = 22 = 2(12) + 1(22) + 0(3?) + 42,

L(11,7) = 45 = 3(12) + 2(2?) + 1(3?%) + 0(4?) + 5%

Thus,
n-3

Lin+4,n) =X (n—-3-1)i®+ (n—2)?

= n-3 n-3
=(n-3)2 -2 d+(n-2)02
i=1

i=1

_. {(n—2)(n*-10n?+45n—60)

= 12

=2(3) -3(5) +6(3) - 8(7) +10().
the expression obtained in Theorem 6 for L(n + 4, n).

Investigating the next diagonal we find
L(9,4) =1=12,
L(10,5) =5 =12 + 22,
L(11,6) = 15 = 2(1%) + 22 + 32,
L(12,7) = 37 = 4(1%) + 2(2?) + 3% + 42,
L(13,8) = 82 = 7(1%) + 4(2?%) + 2(3%) + 4% + 52,
Except for the last square in each sum, the coefficients are exactly consecutive

n—4
triangular numbers plus one. So L(n + 5,n) =Y (t4-4-; + 1) 5% + (n — 3)?,
i=1

where ¢; is the j** triangular number, and this is easily verified by evaluating
this and the expression from Theorem 6 as polynomials in n. If we express the
elements along the next diagonal as sums of squares we discover that the
coefficients involve sums of triangular numbers. Letting s; = ¢, + --- +t;, the

7t tetrahedral number, we can write
n-5

L(n+6,n) =3 (sn—s-i + (n —4=1) +1)i2 4+ (n — 4)2

i=1

To discover the overriding pattern, however, we notice that using the
recursion for LL, each element along one of these diagonals is the sum of the
elements in the previous diagonal that lie above the current line. This means
that the coefficient of 42 in the new diagonal will be the sum of the coefficients
from the previous diagonal. Thus, in going from LL(n + 5, n) to
LL(n + 6,n), adding up the £,_4_; gives the s,_4_;, adding up 1 gives
n — 4 — i, and each of the final squares provides the + 1. The coefficients in
the next diagonal are a sum of s;'s (a fourth dimensional figurate number), a t;
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(from the n — 4 — i), n — 5 — 1 (from the 1), and 1 (from (n — 4)?). In order to
generalize, we need to realize that we do not need to invent new notation for
triangular, tetrahedral, or fourth dimensional figurate numbers. They are all just
binomial coefficients: 1 = (/5!), = ({), t; = (%3'), s; = (%),

J .
s = (71?), etc. We summarize all of this (without proof) in our final result
i=1

of this section.
Theorem 7. For the Lucas Trees LT, withk > 4andn > k —2

n—k+1
Lin+kn)=Y Cii®+ (n—k+2)? where
=1

k=3 n—ktj—i+1 n—3—i
Cz'=j2=%( j )+(k—3 )-

3. DISTRIBUTION OF INTERNAL NODES IN LUCAS TREES

We now turn our attention briefly to the distribution of the internal nodes in
the Lucas Trees following along the same lines as [4, pp. 30-32] and motivated
by the patterns appearing in Table 4. In this table, I(n, ©) represents the number
of internal nodes at level ¢ in Lucas Tree LT, and satisfies the recurrence
relation I(n,4) = I(n — 1,i — 1) + I(n — 2,7 — 1). We state the results
without proof and leave the reader to discover more relationships.

Theorem 8. For the Lucas Trees LT, with I(n, %) internal nodes at level ¢ we
have the following.

(?) Let E, and O, be the total number of internal nodes in LT,
appearing at even levels and odd levels respectively. Then:

E,=0, ifn=1,2mod3 and
E,=0,+1 if n=0mod3.

(i) Considering the diagonals that run from upper left to lower right we
haveforn > 1:

In+k+1,n)

® -2 (et) | (k-0) 2if ki
=4+ 2[(’2-2)! + =ty Tt {Zr:ifklsise:l?i]

= (2) + 2[(k22) + (k':4) +--+ { lrzi{f’;ei?se:::]
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I(n, i), the number of internal nodes at level iin LT},

i\n 0 1 2 3 45 6 7 8 9 10 11 12 13 14 15| 16 17
ofr 0or 11 1J11 1 1 1|1 1 1 1 1] 1 1
1Jo o112 2|22 2 2 2{2 2 2 2 2| 2 2
2 0 01 2 3(44 4 4 414 4 4 4 4| 4 4
3 0 01 3|5 7 8 8 818 8 8 8 8 8 8
4 0 0 1(4 8 12 15 16|16 16 16 16 16| 16 16
5 0 0|1 5 12 20 27|31 32 32 32 32| 32 32
6 00 1T 6 17 3247 58 63 64 64| 64 64
7 00 1 7 23|49 79 105 121 127|128 128
8 0 0 1 8|30 72 128 184 226|248 255
9 0 O 1] 9 38 102 200 312|410 474
10 0 0| 1 10 47 140 302|512 722
11 0] 0 1 11 57 187442 814
12 0 0 1 12 68244 629
Table 4

4. LUCAS TREES ARE 2-SPLITTABLE

We say that a graph is 2-splittable (or just splittable) if it can be
partitioned into two isomorphic subgraphs. Earlier terminology for this concept
included determining isomorphic factorizations of a graph and called the graph
bisectable. This is commonly described in terms of coloring the edges of the
graph red and green so that the red subgraph is isomorphic to the green
subgraph.

It has already been shown [5] that the Fibonacci trees can be 2-split. The
Lucas trees also have this property as shown in the following theorem. This
theorem is actually a special case of a more general result on recursively
generated trees [8], but the proof here, restricted to just Lucas trees, is more
direct.

Theorem 9. Let LT, be the n*® Lucas tree. Then LT}, is 2-splittable and if
n = 1 or 2 mod 3, then the coloring can be performed in such a way that the
edges incident with the root are colored the same.

Proof. The base cases are easily handled and are shown below. For LT} the
isomorphic subgraphs are each a P,, a path on 2 vertices. For LT each is just
the single vertex and all edges incident with the root are colored the same. For
LT, each subgraph is a P, a path on 3 vertices, and the two root edges are
colored the same. In LT3 the subgraphs consist of a P, and a P; and since

3 # 1 or 2mod 3 we do not need to worry about the coloring of the root edges.
(The splitting of LT} is also shown but it is not needed for the induction step.)
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LTO LT1 LT,

For the induction step we assume that the result is true for all LT, withn < 3
and proceed with two cases. First consider n = 0 mod 3, which is shown
schematically below. Sincen —1 = 2med3 and n — 2 = 1 mod 3, each of the
subtrees A and B can be split with the root edges colored the same. Split A
with both root edges colored green and B with both root edges colored red.
Color the root edges of the main tree red and green as shown below.

We have now partitioned the entire tree into a red P, and a green P, the red
subgraph of A, which is isomorphic to the green subgraph of A, and the
isomorphic red and green subgraphs of B. The P,'s at the top do not interfere
with the subgraphs of A and B because of the coloring of the root edges in
those two subtrees.

Next consider the case of n = 1 or 2mod 3. In this case we redraw LT;,_; in
terms of its subtrees as shown below.
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Color the entire subtree C red and all of the subtree A green. We now have two
copies of LT,_; with a P; attached to the root, one entirely red and one entirely
green. Since n =1 or 2mod 3 so is n — 3 and by induction LT},_; may be split
with both of its root edges colored the same. Split B this way with both edges
incident with the root colored red. This accomplishes the splitting of LT}, with
both root edges colored the same. The induction step is finished and the proof is
complete. O

S. PATH LENGTH IN FIBONACCI AND LUCAS TREES

Let T(V, E,r) be a tree with root » and let p(v) be the length of the unique
path from the root r to the vertex v. The total path length of T= Y p(v). If L
veV
is the set of leaves of T then the external path length of T = Y_ p(£). In this
¢l

section and those that follow, we investigate the relationship between these two
parameters.

Grimaldi [4, Theorem 2, p. 24] has calculated the total path length ¢,, and
external path length z,, for the n‘® Fibonacci tree and finds

— —36—16!{?5 n, [ =36+16\/5 | on 2(a+1) ) n_ [ _2B+1) ) n
tn (5(5+\/E )a +(5 5—/5 )ﬁ ~i'(75(a+2) ne (75(ﬂ+2) nf" +
2
and
_ {-52-12/5 —-52+12¢/5 {a+1 _ 8+1 )
Tn = (1oo+2o§75 )an + (100-2075 )ﬂ" + (;75(a+2))n°‘" (:75(ﬁ+2) ng" .

Rationalizing the denominators and simplifying the coefficients involving o
and £ allows us to write these formulas as

tn = (-1- g )om+ (<14 )6+ (5 + 1)nen
- (5 -1)nor+2
=—(a" + B")—lsl(""'s") + 2(a"+ 4 +n(°7‘5£’1) +2

= (5";")F,. + (%)Ln +2 and

zn = %(—1 -~ Wls')"‘" + %(—1 + ﬁ;)ﬁ" + %(7‘0- + %)na"
.-
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= ~Lom + 67~ () + flon + 8 + 3 ()
= (554 Fa + (550 La

Noticing that the coefficients in £, are nearly twice those of z,, we compute
tn — 2z, = 2 — 2F,. This gives us the following result.

Corollary (to Grimaldi's Theorem 2 [4, p. 24]). In the Fibonacci tree F'T;,,
having total path length ¢, and external path length x,,, we find that

O tn = (M)Fn+ ("_5)Ln+2a
@) o = (B3Pt (52) L,
and (i) t, =2z,—-2F,+2.

We now make similar calculations for Lucas trees. Since each node in LT,
(except for the root) is one unit farther from the root than it had been in its
respective subtree, we can write a recurrence relation for ¢, as

tp=tp1+lh2+vp—1

where v, is the number of vertices in LT,,. We showed earlier that
v, = 2L, — 1 and the recurrence becomes

tp =tp-1 +ia-2+ 2Ln —2=ty 1 +tr2+ 2(an + .Bn) -2
or tn —taol — tho = 20" + 20" — 2.

The homogeneous difference equation is the same as that satisfied by the
Fibonacci and Lucas numbers so we know the basic solutions are o” and 8".
The non-homogeneous term consists of three pieces and we can use the method
of undetermined coefficients to find a solution for each piece. Observation
suffices to see that ¢, = 2 is a solution for the —2 portion. Since a” (or ™) is a
solution to the homogeneous case, we assume that t, = Ana™ (or Bn3") and
substituting into £, — t,—) — ta—2 = 20" (or 23") gives

Ana®™ — A(n — 1)a™! — A(n — 2)a""? = 2a™,
An(a" — o™ ! — 0" ?) + Ao + 240772 = 207,
Ao + 2402 = 20" .

Solvmg, wefind A = 2% = 2% _ 2at))  gimilarly, we find
+2a a+? a+2

= ﬂi_:;-l The complete solution to the difference equation can now be
written as
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— o n, 2at+l) o 28+1) .
t,=Cia" + Cy8" + o na® + 572 nf" + 2

where C) and C; are constants, which will be determined by the total path
lengths of the first two Lucas trees, namely ¢y = 2 and ¢; = 0. Plugging in
these values and solving the resulting system gives

-2 2a+1 20+1 —4
=1 = —
G \/§< a+2+ﬂ+2) s
2 2a+1 2041 4

G, \/§(+a+2+ﬁ+2) 5

We can now write
—4 4 1 1
th=—70"+—=0"4+ |1+ —=|na"+ |1 - —= |nf" +2
" E TR ( ﬁ) ( 5)
=(n-4)F,+nL,+2.

To calculate the external path length for a Lucas tree, we note that each leaf
will be one unit farther from the root than it was in its subtree so we obtain the
recurrence

Tp =Tnel + T2+l = Tp_1 + Tn-2+ Ly

where £, is the number of leaves in LT, which we know is the n* Lucas
number. The homogeneous difference equation is the same as before. The
method of undetermined coefficients leads to the particular solution of the non-
homogeneous equation:

(@+1) ., (B+1)

at+2 512

Applying the initial conditions zp = 2, z; = 0 produces the complete solution
o = (1= g+ (14 )0

+ %(1 + Vlg)na" + %(1 - Vlg)nﬂ"
=i(n—4)F + i(n+2)L,.
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Just as with the Fibonacci trees, this appears to be close to one-half the total
path length. Subtracting twice the external path length from the total path
length leads to the relation ¢, = 2z, — 2L, + 2 and we summarize these results
for Lucas Trees in the following theorem.

Theorem 10. In the Lucas tree LT}, having total path length ¢,, and external
path length z,,, we find that

@O th =(n—-4HF+nl,+2,
(i) zo =i(n—-4)F +}j(n+2)L,,
and (i) t, =2z,—2L,+2.

6. PATH LENGTH IN FULL BINARY TREES

The two relationships between t,, and z,, [parts (iii) in the Corollary and
Theorem 10) are enticingly similar. They become even more so when we
realize that F), is the number of leaves in a Fibonacci tree and L, is the number
of leaves in a Lucas tree. Thus both equations can be written as
tn = 2z, — 2¢, + 2, where £, is the number of leaves in the tree.

Is this relationship the result of these two classes of trees being recursively
generated by basically the same procedure or is there something even more
general going on? The answer is the latter. This relationship (without the
subscripts) will hold in any full binary tree. We use full to mean that every non-
leaf has exactly two children. It should be noted that some authors use the term
complete instead of full for this condition. We can easily prove the general
result by induction without having to find individual formulas for the total or the
external path length.

Theorem 11. In a full binary tree having £ leaves, the total path length ¢ and the
external path length z satisfy t = 2z — 20 + 2.

Proof. We induct on the number of nodes in the tree. If there is a single node,
t=0,z=0,¢=1,and 0 = 2(0) — 2(1) + 2. If there are 3 nodes (K 2), then
t=2,z=2,0=2,and 2 = 2(2) — 2(2) + 2. Assuming the relation holds
true for all full binary trees with n or fewer nodes, we consider a tree with n 4- 2
nodes. This tree must have two sibling nodes. Remove them and the edges
back to their parent. Let this new tree have total path length ¢, external path
length 2, and £ leaves. By our induction hypothesis we know

t' = 22’ — 2¢ + 2 and we can relate these values to those in the larger tree.
Removing the two leaf nodes converted their parent into a leaf so £ = £ — 1.
To see how this action affected the path lengths, assume the parent of the
removed leaves was at level h. Then each leaf contributed h + 1 to the total
path length and to the external path length. In the new tree, their parent still
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contributes A to the total path length but now contributes an additional A to the
external path length. Thus,t' =¢—2(h+1)=¢—2h —2and

z' =z —2(h+1) + h = z — h — 2. Substituting these values in the equation
from the induction hypothesis produces

t—2h—-2=2(-h-2)-2(¢(-1)+2,
which simplifies to ¢t = 2z — 2¢ +2. 0

7. PATH LENGTH IN FULL M-ARY TREES

Does this relation generalize to full m-ary trees? If we try the same
relationship with ternary trees we find immediately that it does not work with
K,3. What does work for K 3 is to replace each 2 with 3. (This also works in
the single node case.) If we consider the next largest ternary tree with 7 nodes
and¢{ =9, z = 8, £ = 5, however, this relationship does not work.

Assuming that there is some relationship that will hold in general for full m-
ary trees, we suppose that £ = az — bf + c and try to determine values for a, b,
and c. Applying this relation to the three simplest such trees we get a system of
equations whose solution givesa = 2y andb=c = (m—’fli; This solution
does in fact work for all cases and this is easily proved in a manner similar to
the last theorem.

Theorem 12. In a full m-ary tree having ¢ leaves, total path length £, and
external path length z, we find that t = "z — (m—'flsyl’ + e

Proof. We again induct on the number of nodes in the tree. If there is a single
node,t =0,z=0,¢{=1,and 0 = ;2;(0) - iz (1) + Gy If there are
m + 1 nodes (K} ), then t = m,z = m, £ = m, and

mo1(m) - 52w (m) + oy = mﬂzz',—n"_‘_—'l"yi"'—' = m. Assuming the relation
holds true for all full m-ary trees with n or fewer nodes, we consider a tree with
n + m nodes. This tree must have a set of m sibling nodes. Remove them and
the edges back to their parent. Let this new tree have total path length ¢/,
external path length z’, and ¢ leaves. By our induction hypothesis we know

t =g — (m—’j‘me’ + sy - Removing the m leaf nodes converted their
parent into a leaf so ¢ = £ — m + 1. Assume the parent of the removed leaves
was at level h. Then each leaf contributed & + 1 to the total path length and to
the external path length in the original tree. In the new tree, their parent makes
the same contribution to the total path length but now contributes an additional
h to the external path length. Thus,t’ =t — m(h + 1) =t — mh — m and

z' =z -m(h+ 1) + h = z — (m — 1)h — m. Substituting these values in the
equation from the induction hypothesis produces
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tomh=m = gy (= (m = Dh = m) - -+

2
= o — gt + e~ mh = 2+ oy
=;”_‘—lw—ﬁie+(—m'f—l)7—mh—m,

sothatt = Tox — (7'_’_‘—1)52 + z’ﬁf as desired. O
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