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Abstract

Vertex colorings of Steiner systems S(,t + 1,v) are considered in
which each block contains at least two vertices of the same color.
Necessary conditions for the existence of such colorings with given
parameters are determined, and an upper bound of the order O(ln v)
is found for the maximum number of colors. This bound remains
valid for nearly complete partial Steiner systems, too. In striking
contrast, systems S(t, k,v) with & > t 4+ 2 always admit colorings
with at least ¢ - v* colors, for some positive constants ¢ and «, as
v = 00.
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1 Introduction

In 1993, V. Voloshin introduced a new kind of vertex coloring for hyper-
graphs where the edges of one specified type contain at least two vertices
of the same color and the edges of the other type contain at least two ver-
tices of different colors. The new concepts of strict coloring, upper and
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lower chromatic number, chromatic spectrum and uncolorable hypergraph
(11, 12] were introduced for these colorings.

In 1997, the present authors [6] studied these vertex colorings in Steiner
Triple and Quadruple Systems: for STSs a general upper bound for the
upper chromatic number was established and proved to be best possible.
Further results were subsequently obtained by different authors; these have
been surveyed in [8]. Some more restrictive types of colorings for Steiner
systems have been studied in [9].

The aim of the present note is to extend the earlier estimates to Steiner
systems with general parameters, and also to partial Steiner systems when
possible. As it turns out by comparing the two types of our new results,
substantial change occurs in the behavior of the maximum number of colors
when block size exceeds intersection size by more than 2.

1.1 Mixed hypergraphs

A mized hypergraph H is defined by the 3-tuple (X, C, D) where X is a
finite set of vertices — its cardinality will be denoted by v throughout this
paper — and C and D are two families of subsets of X whose elements are
called C-edges and D-edges, respectively.

A strict coloring P of H, which uses precisely h colors, is defined by
partitioning the vertex set X into h nonempty subsets X; C X, called color
classes, under the following condition: each element of C must contain at
least two vertices colored with the same color, while each element of D must
contain at least two vertices colored with two different colors. We shall use
the notation n; = | X;| for 1 <4 < h. The set {1,2,...,h} is usually called
the color set.

Assuming that a mixed hypergraph H admits at least one coloring,
the upper (lower) chromatic number, denoted by X(H) ( x(H) ) is the
maximum (minimum) k for which there exists a strict coloring of H. The
feasible set of H is the set Q(H) = {¢ € N | 3 strict coloring of H with
i colors}, and the chromatic spectrum is the sequence (ri)1<i<v Where 7;
denotes the number of strict i-colorings for ¢ = 1,...,v [11, 12].

The existence of C-edges and D-edges and “interaction” between them
mean that some mixed hypergraphs admit no colorings at all [12], while
others may have a broken spectrum; i.e., the integers i — 1 and j for some
4 > i belong to Q(H) but the integer ¢ does not [5].

It is easy to see that the chromatic spectrum of a mixed hypergraph
containing only C-cdges cannot be broken. The first hypergraph with bro-
ken spectrum was found in [5], where also the smallest possible number of
vertices in such examples was determined under various conditions. On the
other hand, it is still a open problem to find a Steiner system with broken
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spectrum. In fact, the only block designs which are known to have a broken
spectrum are Ps-designs, see [2].

1.2  Steiner systems and strict colorings

For three integers v > k > t > 2, a Steiner system S(t, k,v) is defined by
the pair (X, B), where X is a finite set of vertices, with | X| = v, and B is
a family of subsets of X called blocks respecting two conditions:

1. any t distinct vertices are contained in one and only one block;

2. each block contains exactly k vertices.

If £ = 2 and k = 3, such a system is called a Steiner Triple System and is
denoted by STS(v); and if ¢ = 3 and k = 4, it is called a Steiner Quadruple
System and is denoted by SQS(v). A Steiner system with |X| = v is said
to be of order v.

In this paper we mostly deal with Steiner systems where k = £+ 1, that
is S(t,t + 1,v). As in [6], we will treat these systems as two distinct types
of mixed hypergraph:

1. C-S(t,t + 1,v), where each block is a C-edge — in this case, strict
coloring means that each block contains at least two vertices of the same
color. Since all the vertices are allowed to be colored with a single color,
such systems always are colorable, and in their colorings some monochro-
matic blocks may occur.

2. B-S(t,t + 1, v), where each block is at the same time a C-edge and a
D-edge — so it must contain at least two vertices of the same color, and
also a pair of vertices colored with different colors. Therefore, in these
strict colorings there cannot occur any monochromatic blocks.

In [6], the following result was proved for C-S(2,3,v) and B-S(2,3,v)
systems.

Theorem 1 ([6]) If P is a strict coloring of a C-S(2,3,v) or a B-S(2,3,v)
system, using h colors, then n; > 2¢=! for all 1 < i < h. As a consequence,
if v< 2" —1, then x < h. This upper bound is tight for all h > 2. ]

Theorem 1 provides necessary conditions for the existence of strict color-
ings and for the cardinalities of color classes in C-S(2,3,v) and B-5(2, 3,v),
as well as an upper bound for their upper chromatic number. There are
also some known necessary conditions for the existence of strict colorings
of C-5(3,4,v) and B-S(3,4,v) systems [8], but an upper bound for their
upper chromatic number has not been determined.

In Section 2 we will obtain conditions for the existence of strict colorings
for C-S(t,t + 1,v) and B-S(t,t + 1,v) systems and necessary conditions
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regarding the cardinalities of their color classes. In Section 3 we derive an
upper bound of logarithmic growth for the upper chromatic number, and
also some necessary conditions for the lower chromatic number.

If the block size k exceeds t + 1, then the logarithmic upper bound is
not valid any longer. This fact will be proved in the last section. We note
that the contrast between k = t + 1 and k > ¢ + 2 is even larger when
the mazimum value of ¥ is considered over the classes of those Steiner
systems. For some k& > t + 1 there are constructions where ¥ grows as a
linear function of the order v. More explicitly, such S(2, 4, v) systems whose
largest arcs attain the extremal size can be found in [4] for every v = 4
(mod 12). Viewing all blocks as C-edges, their upper chromatic number
is linear in v. But currently no detailed information is known about the
chromatic spectrum of general systems of the type S(t, k, v).

2 Strict colorings for S(¢,t + 1,v)

Let P be a strict coloring of a C-S(¢,t+1, v) or B-S(t,t+1, v) system, which
uses h colors; X; C X is the set of vertices colored with color i in P, while
n; is its cardinality. For the sake of convenience we will order the labels of
X; and n;, with 1 < i < h, in increasing order of size; i.e., we shall assume

n<ng< - <Ny

The letter I will stand for an arbitrary subset of the color set {1,2,...,h}.
The following inequality generalizes those in [6, 7).

Proposition 1 Let P be a strict coloring of a C-S(t,t + 1,v) or a B-
S(t,t + 1,v) system which uses h colors, and let Sy = Ujel X, be the
union of k = |I| color classes of P with respective cardinalities | X;| = n;
for every j € I. Denoting sy = |Sk|, the inequality

t+1
setse =15 (13 1) Sy - 1) @
jel
holds and, as a consequence,
t+1
H S ®
jel
is valid, too, for every 2 < |I| < h.

Proof. We consider the family 7}, of t-element subset of S, and the family
B, of blocks meeting Sy in ¢ or £ + 1 vertices. Clearly,

= (7)= s (152) ®
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Each T € 7} is contained in exactly one block B; € By, therefore 7; can
be partitioned into singletons and (¢t + 1)-tuples, depending on whether
|B; N S| =t or B; C Sk. Let us write Ty = T'U---UT™, where m = |By|
and the 7 are indexed with the blocks B; € By.

Each B; (1 £ ¢ < m) must contain at least two vertices colored with
the same color contained in [: if this were not so, there would be a block
multicolored inside Si, and its single possible vertex outside Sy would have
a color not in I, hence P would not be a strict coloring. We can choose
the monochromatic pair inside Sy in ) (") ways, and each pair can be
completed to a t-tuple in (%" '2) ways. If B; C S) then the monochromatic
pair in B; has been counted for ¢ — 1 distinct elements of 7°, and if |B; N
Sk| = t then the pair has been counted for the single ¢-tuple of 7¢. It
follows that in each 7 at least = +1 proportion of {-tuples has been counted
for the monochromatic pairs. (In fact, it may be even more, since a t-tuple
may contain more than one monochromatic pair.) Thus,

D)

> > kl - (2)
T ( 2 J\t-2)=t¥1

The comparison of (1) and (2) yields the inequalities (a) for every k and

every set I of k colors. Moreover, considering that s; = Z;e 1 4, the
inequalities (a) yield the inequalities (b), thus proving the proposition. O

Over the entire range of k = 1,2,..., h we shall use the following nota-
tional convenience from now on. Assuming that I represents the k smallest
color classes, that is S, = X; U---U X}, the inequalities of type (b) will be
referred to as

k
si<K an (k)
i=1
where K = K(t) is meant to be a constant independent of k. The number-
ing (k) of the inequality represents the number of terms in the summation.
For this type of inequalities, we prove the following lemma. that will be very
useful concerning estimates on the upper chromatic number.

Lemma 1 Let ny,ns,...,n, be a non-decreasing sequence of positive in-
tegers, and write s, = ) ._,n; for all 1 < k < h. If there is a constant
K and a threshold value ko such that the inequalities (k) are valid for all
k > ko, then niy 45 > 2n; holds for all kg < i< h —4K.

Proof. Let us assume for a contradiction that n,+4 K < 2n; for some value
i. Introduce the notation z = n;, y = s;, L = s?, ;, and R=K Z’MK n3.
We are going to prove that R < L, and this w1ll contradict the 1nequahty

(k) with k =1 + 4K.
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Since s;+4x > y + 4Kz, we have
L > y? + 8Ky + 16K%z2.

Moreover, n2 < 422 holds for all ¢ < £ < i + 4K, and 21—1 2 < zy, so
that
R < Kzy + (4K)%z? < y* + 8Kzy + 16K2%z2 < L.

This contradiction proves n;+4x = 2n;. m]

Theorem 2 If P is a strict coloring for a C-S(t,t + 1,v) or a B-S(t,t +
1,v) system which uses h colors, then, with the notation K = ('H) we
have nipax > 2n; and n; > ab® for all 1 < i < h, for some a > 1/2 and
b> 1. Here b is independent of P, it only depends on t.

Proof. We have seen in Proposition 1 that the conditions of Lemma 1 are
satisfied for all k > 1, and consequently n;,4x = 2n; holds for all feasible
values of i. In order to derive an explicit lower bound on the n;, let us

choose n:
_ ol/4K - mi i
b=2 and o=, miny (i)

We estimate n; as follows. If i < 4K, then n; > ab® is true by the choice
of a and b. For i larger, let us write ¢ in the form ¢ = j + 4nK where
1 < j < 4K. Let us assume by induction on n that ny > ab®’ for all
1< <j+4(n—-1)K. Then

N = NjpanK = 2Njp4(n-1)K = 2abTTAn—DK — gpitinK = gpf,

Finally, the lower bound a > 1/2 follows from the fact that nqx > 1
trivially holds. ]

Theorem 2 describes some necessary conditions, involving the cardi-
nalities of the color classes, for the existence of a strict coloring of a C-
S(t,t + 1,v) or a B-S(t,t + 1,v) system. The first condition, n;y4x > 2n;,
is independent of the type of coloring P, while the second one, n; > ab?,
depends on the type of P. Nevertheless, a universal lower bound has been
established for the value of a, in fact a > 1/2 always holds. Moreover, since
the choice of b = 2'/4X is independent of the actual coloring, we always
obtain n; > 23k ~! for every i in every coloring P.

In Theorem 1, similar — and even stronger — conditions have been
found for S(2, 3,v) systems: in them the cardinality of cach color class has
to meet the condition n; > 2¢~! for 1 < i < h, and these conditions are
independent of the coloring P. The inequalitics (a) and (b) in Proposition 1
hold with K = 3 in S(2,3,v), whereas an explicit lower bound (other than
the one in Theorem 2) has not yet been determined for the cardinality
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of the color classes of S(t,t + 1,v) with values of ¢ > 4. Some estimates
for S(3,4,v) are available by means of particular constructions (doubling
constructions) (8].

Let us recall that in C-S(¢,t+ 1, v) a strict coloring P is allowed to have
monochromatic blocks; i.e., blocks colored with a single color. The next
observation shows that such blocks are unavoidable under some conditions.

Proposition 2 If P is a strict coloring for a C-S(t,t+1,v) system, where
t is odd, and there exists a color class X; with n; > %2, then there are
monochromatic blocks in P.

Proof. Let us denote by (X,B) the C-S(t,t + 1,v) system under con-
sideration, with a strict coloring P and a color class X; of carcinality
|Xi| = n; > 2. Then one can define the following two subfamilies of
blocks:

T(X:) = {b€B|bC X},

and
T(X\X;)={beB|bC X\X;}.

It has been proved in Lemma 3.3 of [3] that the quantity
IT(X3)| = IT(X \ X3)| = f(t,v,n:)

is greater than zero for n; > v/2. So T'(X;) # 0, what means that there
arc monochromatic blocks colored with color i. ]

A related result in [1, p. 341, Theorem 18.28] states that if a B-S(2, 3, v)
system has independence number at most v/3, then it is uncolorable. From
this, we see that every C-S(2,3,v) with so small independence number
necessarily contains some monochromatic blocks in every strict coloring.

3 Upper chromatic number for S(¢,¢ + 1,v)

In this section we will prove a logarithmic upper bound for the upper
chromatic number, and obtain a result on the lower chromatic number for
both C-S(¢,t+1,v) and B-S(¢,t+1,v) systems. Theorem 1 involves systems
just with ¢ = 2. When ¢t = 3, similar results have only been achieved in
particular systems of a certain order v: no general estimates have yet been
obtained with ¢ > 2,

For the proof of the next result, let us recall the definition of b = 21/4K
from the proof of Theorem 2.
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Theorem 3 For every t > 2 there ezists a constant C = C(t) with the
following property. If a C-S(t,t + 1,v) or a B-S(t,t + 1,v) system H is
colorable, then

%*(H)<Clnv.

Proof. Let us consider any coloring with the maximum number of colors.
Then the largest color class has ny vertices, and by the results of the
previous section we have

v > ng > abX > 2%X/1K) 2,

Rearrangement yields

_ 4K
X < mln%.

Here K depends on t only. This fact completes the proof of the theorem.
(]

As regards the lower chromatic number of any C-S(t,t 4+ 1,v) system,
it is obvious that x = 1, hence these systems are all colorable. The uncol-
orability of B-S(t,t + 1,v) systems with ¢ > 3 remains an open issue. For
these systems the following result is obtained.

Proposition 3 If a B-S(t,t + 1,v) system has x = 2, then t must be odd.
If t is even, then x = 3.

Proof. The assertion follows from the fact that if a blocking set exists,
then t is odd; see Theorem 3.4 in (3]. o

4 Partial systems PS(¢,t + 1,0)

In partial Steiner systems PS(t, ¢+ 1,v), the first condition defining S(¢,¢ +
1,v) is relaxed to the following:

1. any t distinct vertices are contained in at most one block.

The existence of asymptotically optimal PS(t,t + 1,v) systems, as v —
00, follows from the more general result of R6dl [10] where the analogous
assertion is proved for any fixed block size k.

In order to state our results on partial Steiner systems, we need to
introduce some notions.

Definition 1 Let H be any PS(t,t + 1, v) system. Let us call a t-clement
subset of the vertex set an uncovered t-tuple if it is not contained in any
block of H; and call it covered otherwise.
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We first observe here that a large number of uncovered t-tuples may
result in an upper chromatic number that grows faster than O(lnv).

Remark 1 If there exists an S(t,t+1,v) system with an embedded S(t,t+
1,u) subsystem, then there exists a PS(t,t+1,v) system with precisely (%)
uncovered t-tuples and upper chromatic number greater than u. Indeed,
omitting the blocks of the subsystem we can assign u different colors to its
vertices and o new distinct color to all of the remaining v — u vertices.

This observation yields that if we wish to ensure ¥ = O(Inv) then in
general we cannot allow more than O( ('"t")) uncovered t-tuples, what means

that the system should have at least (H_Ll -0 (('"T”)t)) (%) blocks. We
will prove that this estimate is asymptotically tight, namely this number of
blocks is already sufficient to ensure ¥ = O(Inv). Some further definitions

will be needed.

Definition 2 Let H be a PS(¢,t+1, v) system, and ¢ any fixed real number
in the range 0 < ¢ < 1. We call a vertex subset Y in a PS(t,¢+1,v) system

c-dense if at least c(“t/') of its t-subsets are covered.

Definition 3 With the notation H and c of the previous definition, and
for a given coloring of H, we consider the largest s; such that the inequality
(k) is not valid with K = 1(*!). The maximum of this value s) taken
over all strict colorings is called the c-density threshold of H and will be
denoted by 7(H, ¢).

Remark 2 The proof of Proposition 1 implies that if every Y C X with
Y| > u is c-dense, then 7(H,c) < u.

Theorem 4 Let § be an infinite family of PS(t,t + 1,v) systems, and c
any fized real number, 0 < ¢ < 1. If 7(H,c) = O(Ilnv) for all H € H as
v — o0, then x(H) = O(Inv) for all H € 5.

Proof. On applying Lemma 1, we see that if i > k where k is the index
associated with the c-density threshold, then the inequality n;1 45 > 2n; is
valid. If the inequality holds for ¢ = k, too, then this implies

x(H) <d(Inv —Insg) + sx

for some constant ¢/, what means ¥ = O(Inv) by the assumption on k.
Otherwise, if ngyax < 2ng, then si and siy; are at most a small mul-
tiplicative constant apart, and therefore the analogous inequality ¥(H) <
c(Inv — Insgy1) + skq1 yields x = O(Inv). =]

From this result we can derive that sufficiently many blocks always
guarantee ¥ = O(lnwv).
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Theorem 5 Assume that t > 2 is fized and v — co. If H is a PS(t,t +
1,v) system with as many as

blocks, then x(H) = O(Inv).

Proof. Let f = f(v) denote the number of uncovered t-tuples. We write
f in the form f = 3(%). Note that z = O(Inv), by the assumption on |H]|.
Moreover, if s; > z, then at least half of the ¢-tuples must be covered in
the union of the first & color classes. It follows that the inequality (k) is
valid with K < t? + t. Therefore, the 3-density threshold of H is as small
as O(Inv), and hence x(H) = O(Inv) follows by Theorem 4. |

Remark 1 indicates that the number of blocks given in the theorem
cannot be expected to be smaller, since the bound is tight whenever an
embedded Steiner system exists.

5 S(t,k,v) with k>t+2

Finally, we observe that the logarithmic upper bound on ¥ does not remain
valid in Steiner systems S(t, k, v) with k& > t+2. Such a result can be proved
by various methods; here we do not aim at optimizing the lower bound, just
show that the growth speed is strictly larger than in the case of S(t,t+1,v)
systems.

Theorem 6 If H is an S(t,k,v) system with k >t + 2 and t > 2, then
X(H) 2 (1-0(1)) (k—t —1)(2)"* as v — oo.

Proof. Let Y be any maximal set meeting each block of H in at most
k — 2 vertices. Then x(H) > |Y'| because a strict coloring is obtained if we
assign color 1 to all vertices of X \ 'Y and a dedicated color to each vertex
of Y. Hence, it will suffice to show that Y is fairly large.

By the maximality of Y, every z € X \ Y is incident with a block B
such that |[BNY| =k —2 > t. The number of such blocks cannot exceed

(™1 7 (*7?), and each of them covers only two vertices outside Y. Thus,

2(™1y / (*7%) > v — |Y| is valid, and from this inequality the lower bound
on %(H) follows. D
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