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Abstract

In the first part of this paper we present a generalization of
complete graph factorizations obtained by labeling the graph
vertices by natural numbers. In this generalization the vertices
are labeled by elements of an arbitrary group G, in order to
achieve a, G-transitive factorization of the graph.

In the second part of the paper we apply this generalization
to obtain a G-transitive factorization of the regular graph on
n vertices with degree n — 2. We discuss also 'Ringel-type’
problems on G-transitive factorization of this graph into trees.

AMS subject classification: 05C25, 05C78

1 Introduction

Let n > 3 be an integer. By K,,, K} we denote the complete graph on
n vertices, and the complete directed graph on n vertices, respectively
(every ordered pair of vertices in K7} is connected by one arc (directed
edge)). For an even integer n, denote by K, — I the (n — 2)-regular
graph on n vertices. Observe that K, — I is isomorphic to the graph
which results from K, by deleting any complete matching. Similarly,
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we denote the (n — 2)-regular directed graph on n vertices by (K, —
In*.

The problem of obtaining factorizations of the complete graph
into a given subgraph by labeling the vertices of the subgraph with
natural numbers is well known. The labeling of the vertices of the cor-
responding subgraph by elements of some abelian groups (especially
cyclic) has also been treated. However, a comprehensive discussion
of the above problem for arbitrary finite groups has not appeared
in the literature. The objective of this paper is twofold: First, for
any finite group G, to give a general treatment for the connection
between G-transitive factorization of K, and the problem of labeling
the vertices of a subgraph by the elements of G. Second, to apply the
above treatment in order to obtain some G-transitive facorizations.

At the beginning of this paper we study the connection between
the labeling of the vertices of a directed graph F' by the elements
of a group G, and the decomposition of K}; into isomorphic copies
of F on which G acts regularly. Such a labeling will be called a G-
graceful labeling (see Definition 1.2 below). We will show that the
existence of such a labeling ensures the existence of a corresponding
decomposition and vice versa (Theorems 3.1 and 3.2). This extends
results on the relation between cycle factorization of K, and group
sequencing treated in [12]. Then (in Section 4), it is shown that cor-
responding results for the undirected case follow from the directed
case. In particular, our results generalize known results like a re-
sult of Rosa on B-valuations (see Corollary 4.3), etc. Furthermore,
in Section 5 we apply this generalization to obtain G-regular factor-
izations of K,, — I. We discuss also a 'Ringel-type’ conjecture on
G-regular factorization of this graph into trees and finally consider
the factorization of directed regular graphs.

The basic definitions are presented in the current section. In
order to make the paper almost self contained, we devote Section 2
to a brief reminder from group theory contents which are relevant to
our paper.

We present now some essential notation and definitions for this
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paper.

Notation 1.1 Let F' be a directed graph on n vertices. The problem
of determining whether or not the edge set of K can be partitioned
into arc disjoint subgraphs isomorphic to F' will be denoted by P*(F).
If a solution to P*(F) exists, we shall say that there exists a decom-
position of K, into arc disjoint subgraphs isomorphic to F, and we
shall denote this fact by F|K}. Each isomorphic copy of F in the
decomposition will be called a factor of the decomposition.

For the following definition, recall the definition of a regular ac-
tion of a group (see Section 2).

Definition 1.1 Let F be a directed graph on n vertices. We shall
say that K} admits a regqular decomposition (G-regular decomposition
) into factors isomorphic to F if there exists a decomposition of K}
into subgraphs isomorphic to F, and a permutation group G of order
n — 1 acting on the vertices of K}, such that G acts regularly on the
factors of the decomposition. In this case we shall say that G acts
regularly on the decomposition F|K}.

Notation 1.2 The problem of determining whether or not K} ad-
mits a regular decomposition into factors isomorphic to F will be
denoted by RP*(F). The problem of determining whether or not K}
admits a regular decomposition into factors isomorphic to F' with a
corresponding group G will be denoted by RP*(G; F).

When dealing with the above regular decompositions, two funda-
mental problems arise:

1. For which subgraphs F' of K} does there exist a solution to
RP*(F).

2. Given a graph H such that |E(H)| divides n(n — 1), classify all
the groups G for which RP*(G; F) has a solution.
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Definition 1.2 Let G be a group of order n. Let H be a (not
necessarily connected) directed graph such that |[E(H)| < n — 1.
We shall say that H is G-graceful if there exists an injective func-
tion f : V(H) — G such that all the elements in the multiset
{f(@)f(u)™1 | (u,v) € E(H)} are distinct.

Bloom and Hsu [4] dealt with the problem of graceful digraphs
in which G = Z,,, while in [3] H was a cycle (or a directed cycle) and
the connection to sequencing, in that case, was discussed. For other
related papers one may see [1], [5], [10], [14], [17].

2 Preliminaries and notation

Throughout this paper all groups are finite. Let G be a group. In
general, we shall consider G as a multiplicative group (with identity
element 1). In some cases, where G is an abelian group, we shall
consider G as an additive group (with identity element 0). The order
of G will be denoted by |G|. For z € G, we denote by (z) the
(cyclic) group generated by z. An elementary abelian group is a
group of order p*, p a prime, k > 1, which is the direct product of k
subgroups of order p. The centre of a group G is denoted by Z(G).
An involution in a group G is an element of order 2.

Let G be a group which acts on a set S. We shall always assume
that G acts faithfully on S, i.e., that only the identity of G fixes all
the elements of S. This means that G is in fact a permutation group
on S. We shall also assume that G acts on S on the right. G is
transitive on S if for every z,y € S there is g € G such that zg = y.
G is regular on S if for every z,y € S, there is a unique element
g € G such that zg = y. In particular, G is regular on S if and only
if G is transitive on S and only the identity fixes an element of S.
Clearly, if G is regular on S, then |G| = |S]|.

Let G act transitively on S, S = {z1,%2,...,2,}, and let z € S.
Then the action of G on S is equivalent to the action of G on the right
cosets of the stabilizer H = Stg(z) = {9 € G|zg = =} of z, i.e., there
is one to one mapping z; « g; between S and a set {g1,92,...,9n} Of
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right coset representatives of H in G such that z;g = z; if and only if
Hgig = Hg;. In particular, if G is regular on S, then the action of G
on S is equivalent to the action of G on itself by right multiplication,
i.e., we may order the elements of G, G = {g1,92,...,9n}, such that
for every g € G, z;g = z; if and only if gig = g;.

All graphs in this paper will be simple, i.e., without loops or
multiple edges (arcs). The graphs considered are not necessarily
connected, but we assume that all graphs have no isolated vertices.
Given vertices u,v of an undirected graph, the corresponding edge
will be denoted by {u, v}, and for the directed case, the correspond-
ing arc will be denoted by (u,v). Given a graph (directed graph)
H, V(H) denotes the set of vertices of H, and E(H) denotes the
edge (arc) set of H. Let H be a graph (directed graph) and let A
be a subset of V(H). We shall denote by H — A the graph (directed
graph) which results from H by the deletion of all the vertices of
A and all the edges (arcs) which are adjacent to a vertex from A.
An isolated vertex of a graph (directed graph) is a vertex with no
adjacent edges (arcs). A cycle of length & in a directed graph, which
contains the arcs (v, va), (v2,v3), ..., (Vk—1,vk), (vk,v1) will be de-
noted by (v1,vs,...,vx). This notation will be used also for a cycle
in an undirected graph.

3 Regular decomposition of K}

In this section we show that the existence of a solution to RP*(G; F)
is equivalent to the existence of a corresponding G-graceful labeling
of F (if |G| =n —1) or of F — {v} (if |G| = n) for an appropriate
vertex vg (see Theorem 3.1 and 3.2 below). The results of this section
extend results on cycle factorizations treated in [12] and [13]. First,
we need some preliminary results.

Proposition 3.1 Let Cy be a subgraph of K} and let G be a per-
mutation group on the vertices of K, with G = {g1 =1,g2,...,9k},
C = {C1,C192,...,C19k} =dges {C1,Cs,...,Ci}. Suppose that k di-

229



videsn(n—1). ThenC is a decomposition of K, on which G acts reg-
ularly if and only if for every 1 # g € G we have E(C1)NE(Cig) = ¢.

Proof. Assume first that E(C1)NE(C1g) = ¢ forevery 1 # g € G,
and let 7, j be any integers satisfying 1 < i, < n. We have to show
that E(C;) N E(Cj) = ¢ for i # j and that there is a unique g € G
such that Cijg = C;. Since C; = Cig; and C; = Cg;, we have that
Cig; 'g; = C;. Furthermore, since |G| = k = |C|, there is a unique
g € G such that C;g = C;. Thus we have E(C;) N E(C;gi!) = ¢
whenever 7 # j. Hence, by acting with g; on both sides of the latter
equality, we have E(C;)NE(C;) = ¢, as required. Since the converse
direction of the proposition is obvious, the proof is completed. O

Proposition 3.2 Let F be a directed graph such that |E(F)| = n,
and let G be a group of order n — 1 which acts regularly on a decom-
position F|K. Then G fizes one vertez of K}, and acts regularly on
the remaining n — 1 vertices.

Proof. The proof is similar to that of Lemma 3.1 in [12]. O

Proposition 3.3 Let F' be a directed graph such that |E(F)| =n—1,
and let G be a group of order n which acts regularly on a decomposi-
tion F|K}. Then G acts regularly on V(K3}).

Proof. Assume that there is a vertex vy which is fixed by some
non-identity element of G, say go. Then the action of G on V(K3) in-
duces an action of H = Stg(vg) on the n—1 arcs, say, e1, e,...,en—1,
which are adjacent to vp and which are directed into vp. For every
1 <4 < n -1 the arc e; is not fixed by any element 1 # g € H.
For otherwise, if C' is the (unique) factor which contains e;, and
if g # 1 fixes e;, we have e; € E(C) N E(Cyg), a contradiction.
Hence the action of H on the set {ej,e2,...,en—1} is fixed point
free, which is impossible since |H| does not divide n — 1. Hence we
conclude that the action of G on V(K3}) is fixed point free, and since
n = |V(K}))| = |G|, it is regular. O
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Theorem 3.1 Let F be o directed graph such that |E(F)| = n and
let G be a group of order n — 1. Then RP*(G; F) has a solution if
and only if there is a vertez vo € V(F) such that dy(v) = d_(v) =
1 (where dy(vo) and d_(vp) are the indegree and outdegree of vo,
respectively), and F' — {vo} is G-graceful.

Proof. Assume first that RP*(G; F) has a solution. This means
that there is a regular decomposition F|K} with a corresponding
group G. Then, by Proposition 3.2, there is a vertex, say vg, which is
fixed by all the elements of G. Since G acts regularly on V(K;)—{vo}
by Proposition 3.2, G acts regularly on E, (v9) and on E_(vg), where
E4(vg) (E-(vo)) denotes the n— 1 arcs which are adjacent to vp and
directed inward (outward, respectively) vp. Then, since G fixes vg
and transforms any arc of F' to an arc outside F', we have that for the
factor F, dy(v) < 1 and d_(vp) < 1. However, if d4(v) = 01in F,
then no arc of F' is transformed by G to an arc of K} which is incident
to vp and directed inward vp, which is impossible. Hence d (vp) = 1
in F. By similar arguments we conclude also that d_(vp) = 1in F.

We shall show now that F'—{vg} is G-graceful. Since the action of
G on V(F)— {v} is regular, we can label the vertices in V(F)—{vo}
by the elements of G, such that for any two vertices a,b € V(F)—{vg}
and any g € G, a is sent to b by g if and only if ag = b in G. Assume
on the contrary that there are different arcs (a,b) and (c,d) of F
such that ba~! = dc~!. Denote £ = a~!lc, and observe that by the
previous identity, z = b~1d. If z = 1, then @ = c and b = d, which is
impossible since the arcs (a,b) and (¢, d) are different. Hence z # 1.
We have az = ¢ and br = d, and so the non-identity element z
of G moves the arc (a,b) of F to a different arc (c,d) of F. This
contradicts the fact that the decomposition F|K}; is regular with a
corresponding group G. Hence F' — {vg} is G-graceful.

Assume now that there is a vertex vp of F such that d(v) =
d_(vo) = 1 and F—{uvg} is G-graceful. We shall show that RP*(G; F)
has a solution. Given the graceful labeling of F, we claim that
{Fg | g € G} is a regular decomposition of K} (note that in this
case, vp is fixed by all the elements of G). By proposition 3.1, it
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suffices to show that the factors F' and Fz have no common arc for
every non-identity element = € G. Assume, on the contrary, that
there is a non-identity element z € G such that F' and Fz have a
common arc, say (c,d). Then, since G fixes vp and does not fix any
vertex of V(F') — {vo}, and since d4(vo) = d_(vo) = 1 in F, we have
that vg # ¢ and vg # d. Thus there is an arc (a,b) of F such that
az = c and bz = d (where clearly, a # vp and b # vg). Then we have
ba~! = dc™!, which contradicts the fact that F'— {vg} is G-graceful.
Hence {Fg | g € G} is a regular decomposition of K}, as required.
O

Theorem 3.2 below is the analog of Theorem 3.1 in the case
|G| = n and E(F) = n— 1. The proof of this theorem is based
on considerations similar to those used in the proof of Theorem 3.1.
Thus, we omit the proof.

Theorem 3.2 Let F' be a directed graph such that |[E(F)|=n -1,
and let G be a group of order n. Then RP*(G,; F) has a solution if
and only if F is G-graceful. O

4 Some connections to other combinatorial
problems

In this section we derive some corollaries of the theorems of the pre-
vious section. These corollaries show that the results of section 3 are
generalizations of some known results on the decomposition of the
undirected complete graph. We also note on the connection of these
results to some well known combinatorial problems, such as prob-
lems on (v, k, A)-quotient sets, group sequencing and Oberwolfach
factorization.

First, we introduce some notation. The graph 2K, is an undi-
rected graph on n vertices in which each pair of vertices is connected
by two edges. The notions of decomposition and labeling presented in
the previous sections are naturally extended to the undirected graphs
K, and 2K,,. A decomposition F|K, (or F|2K,) is G-regular if G is
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a permutation group on V(K,,) (V(2K,,)) which permutes the factors
of the decomposition regularly.

The first two corollaries are straightforward. They follow from
Theorems 3.1 and 3.2.

Corollary 4.1 Let F be an undirected graph with |E(F)| = n, and
let G be a group of order n—1. Then there is a G-regular decomposi-
tion F|2K, if and only if there is a vertez vo of degree 2 in F and an
orientation of the subgraph F — {vg}, such that d4(vp) = d—(vp) = 1
in the above orientation, and such that the resulting directed graph
is G-graceful. O

Corollary 4.2 Let F be an undirected graph such that |E(F)| =
n—1, and let G be a group of oder n. Then there is a G-regular
decomposition F|2K,, if and only if there is an orientation of F' such
that the resulting directed graph is G-graceful. O

In Corollary 4.3 below we show that the result of Theorem 3.2
is actually a generalization of a result of Rosa on B-valuations. The
notion of B-valuation was established by Rosa in [16], and was called
graceful labeling by Golomb [7]. Its definition is as follows.

Definition 4.1 Let H be an undirected graph. An injective function
f : V(H) - {0,1,...,|E(H)|} is called a B-valuation (graceful
labeling ) if |f(z) — f(y)| are distinct for all {z,y} € E(H). A graph
which admits a S-valuation will be called a graceful graph.

A comprehensive review of the subject may be found in [6]. Rosa
introduced this notion as a tool for decomposing the complete graph
into isomorphic subgraphs. In particular, 8-valuation originated as
a tool for attacking a conjecture of Ringel [18] which says:

Conjecture 4.1 Let T be any tree on n+1 vertices. Then T|Kopy:.

It holds that if T is a tree on n + 1 vertices which admits a 8-
valuation, then T|K3,4+1. In the next corollary we show that the
above result is a consequence of Theorem 3.2. First, we introduce
the following notation and definition.
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Notation 4.1 Let F be a graph on n vertices and let G be a group
of order m. The problem of determining whether or not K, ad-
mits a regular decomposition F|K,, with a corresponding group G
is denoted by RP(G; F).

Definition 4.2 Let H be a graph with n edges and let G be a group
of order 2n + 1. Then H admits a G-extended B-valuation if there
exists an injective function f : V(H) — G such that G — {1g} =

{f@)f@)™! | {v,v} € E(H)}

Corollary 4.3 Let H be a graph with n edges and let G be a group
of order 2n+ 1. Then

(i) RP(G; H) has a solution if and only if H admits a G-extended
B-valuation. In particular, we have:

(ii) if H admits a B-valuation, then H|Kopy,.

Proof. Let H; be a directed graph with the same edge set as H,
and arc set E(H;) = {(u,v) | {u,v} € E(H)} (actually, H; results
from H by replacing every edge by two arcs of opposite direction).
Then, by Theorem 3.2, RP*(G; K) has a solution if and only if K
is G-graceful. Since for any two distinct vertices u,v € V(K), with
corresponding labels g., g, € G, it holds that g,g7' = (gug;!)~L, it
follows that K is G-graceful if and only if H admits a G-extended
B-valuation. It holds also that RP*(G; K) has a solution if and
only if RP(G; H) has a solution. Hence (i) follows. Furthermore, if
H admits a (-valuation, then it is easily observed that H admits a
Con+1-extended B-valuation, where Co, 41 is the cyclic group of order
2n + 1. Indeed, given a bijective function f : V(H) — {0,1,...,n =
|E(H)|}, then |f(z) — f(y)| are distinct for all {z,y} € E(H) if
and only if the set {f(z) — f(y) | {z,y} € E(H)} is equal to the set
{-n,—-(n-1),...—1,1,...n}, and one easily observes that the above
is equivalent to the existence of Ca,41-extended F-valuation for H.
It follows that if H admits a B-valuation, then H|Kgn41, completing
the proof. O

An unpublished result of Erdés says that most graphs are not
graceful (cf. [8] ). Sheppard [19] has shown that there are exactly
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e! graceful graphs with e edges. In particular, Rosa [16] has shown
that if every vertex has an even degree and the number of edges is
congruent to 1 or 2 (mod 4) then the graph is not graceful. A natural
question which arise is whether the above non-graceful graphs have
a G-extended (-valuation ( a positive answer will show that such
graphs, though not graceful, decompose Ks,41). The discussion of
this problem is beyond the scope of this paper. We only pose the
following problem:

Problem 4.1 Find examples of non-graceful graphs which admit a
G-extended (-valuation for some group G.

A (v, k, X)-quotient set in a group G of order v is a k-subset
D C G such that each ¢ € G occurs exactly A times in the list
(zy™! | z,y € D). When G is abelian the quotient set is called
a difference set (see [20], pp. 330-331). It is well known that the
existence of a (v, k, A)-quotient set in G is equivalent to the existence
of a symmetric (v, k, A)-design that admits G as a regular group of
automorphisms ([20], Theorem 27.2). We claim now that for A = 1,
the above result is a particular case of Theorem 3.2. Indeed, Let
a (v, k,1)-symmetric design D be given, i.e., D = (V,B), where
V = {v1,v9,...,vs} is a set of points, B = {By,Bs,...,B,} is a
set of n k-subsets of V' called blocks, such that every pair {v;,v;} of
points is contained in exactly one block. It holds that v—1 = k(k —
1) ([20], p. 196). Furthermore, assume that there exists a regular
permutation group G on D. Then one may easily verify that the
existence of such a symmetric design D (with the permutation group
G) is equivalent to the existence of a G-regular decomposition K| K,,
and the existence of this decomposition is equivalent to the existence
of a G-regular decomposition Kj|K;. However, the existence of the
later decomposition is equivalent, by Theorem 3.2, to the existence of
a G-graceful labeling of K. Then, since the existence of a G-graceful
labeling of K} is equivalent to the existence of a (v, k, 1)-quotient set
in G, our claim follows.

We conclude this section by pointing out the connection between
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G-graceful labeling of cycles and group sequencing. Given a group
G of order n, a sequencing of G is a sequence a1, ag, ..., a, of all the
(distinct) elements of G such that the partial products

ai,aias,a1a203,...,01a2 - - - @, are all distinct. In this case we say
that the group G is sequenceable . The classification of all the se-
quenceable groups is a well known problem which is still unsolved (see
[11] for a survey). However, various infinite families of sequenceable
groups are known. It was shown in [12] that a group G of order
n is sequenceable if and only if there is a G-regular factorization
of K into hamiltonian (directed) cycles. It follows that there is a
G-graceful labeling of the directed cycle of size n, C}, if and only
if the group G is sequenceable. A discussion on the connection be-
tween various generalizations of group sequencings and Oberwolfach
factorizations of K} and K, is given in [12]. The existence of those
sequencings (and factorizations) is equivalent to the existence of cor-
responding G-graceful labeling of factors which are a union of distinct
cycles. We also mention the connection between the existence of R-
sequencing of a group G of order n and the factorization of K, into
(n = 1)-cycles, as discussed in [13] (an R-sequencing of a group G
of order n is a sequence ap = 1,a,az,...,a,—1 of all the (distinct)
elements of G such that aga; ---an—1 = 1 and so that the partial
products ag, apa1,apaias, . . -aoa1 -+ - an—1 are all distinct). The ex-
istence of an R-sequencing of a group G of order n is equivalent to
the existence of a G-graceful labeling of the cycle Cj;_;.

5 Regular decomposition of K, — I

Let n be an even integer. In this section we show that results simi-
lar to those of the previous sections hold for the graphs (K, — I)*,
2(K, — I) and K, — I (where (K, — I)* and 2(K, — I) are the
analogs of K and 2K, for the graph K, — I). The corresponding
regular decomposition problem for (K, — I)*, 2(K, —I) and K, — I
will be denoted by RP}(G; F), RP;(G; F) and RP(G; F), respec-
tively. Similarly to the previous sections, we shall use the notation
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F|(K, — I)*, etc. We shall discuss some analogs to the Ringel con-
jecture for these graphs. Then we shall apply our results to obtain
solutions to some decomposition problems which are related to the
above conjectures.

The following results are proved by arguments similar to those
used in the proofs in Section 3. Thus, we omit their proofs.

Proposition 5.1 Let n be an even integer, let F be a directed graph
such that |E(F)| =n—2, and let G be a group of order n which acts
regularly on a decomposition F|(K, —I)*. Then G acts regularly on
V((Kn = 1))

Theorem 5.1 Letn be an even integer, and let F' be a directed graph
such that |E(F)| = n — 2, and let G be a group of order n. Then
RP}(G; F) has a solution if and only if F' is G-graceful.

Remark 5.1 We note that in proving the ”if” direction of the the-
orem, we construct a G-graceful labeling of V(F'). Then the orbit of
E(F) under the action of G results in an (n — 2)-regular graph on
n vertices which is decomposed by F. Since every (n — 2)-regular
graph on n vertices is isomorphic to K,, — I, the result follows.

Corollary 5.1 Let F' be an undirected graph such that |E(F)| =
n—2 and let G be a group of even order n. Then RPyi(G; F) has
a solution if and only if there is an orientation of F such that the
resulting graph is G-graceful.

We apply now our results to the decomposition of the (undi-
rected) graph K, — I. First, we introduce the following extension of
Definition 4.2.

Definition 5.1 Let H be a graph with n — 1 edges and let G be a
group of order 2n having a unique involution u. Then H admits a G-
extended (B-valuation if there exists an injective function f : V(H) —

G such that G — {lg,u} = {f(v)f(w) " |{w,v} € E(H)}.
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The proof of the following corollary is similar to that of Corollary
43.

Corollary 5.2 Let H be a graph with n—1 edges and let G be a group
of order 2n having a unique involution. Then there is a G-regular
decomposition H|(Ka, — I) if and only if H admits a G-extended
B-valuation.

The above results lead us to the following 'Ringel-type’ conjec-
ture.

Conjecture 5.1 Let T be a tree on n — 1 vertices, n even. Then
T|2(K, — I).

We pose also the following conjecture, which is a special case of
a conjecture of Haggkvist [9] :

Conjecture 5.2 Let T be a tree on n vertices. Then T|(Kon — I).

In the following, we use our results to solve particular cases of the
above conjectures. First we apply Corollary 5.1 to solve Conjecture
5.1.1 for a special family of trees.

Theorem 5.2 Let T be. the binary balanced tree onn —1 = 2F — 1
vertices, k > 2. Then T|2(K, —I).

Proof. Let T* be the directed tree which results by orienting each
edge of T in the direction from the root to the leaves. By Corollary
5.1, it suffices to show that T*|K}. Let G be the elementary abelian
group of order n = 2. By Theorem 5.1, it suffices to show that
T* is G-graceful. Denote the root of T' by vp, and denote G =
{0,u1,...,un—1} (Since G is abelian, we shall use additive notation
in G). We shall describe now how to obtain, recursively, a G-graceful
labeling of T*, such that {f(v)|v € V(T)} = G - {0}.

Assume first that k = 2, and denote V (T™*) = {vg, v1,v2}. Label-
ing T* by f(vo) = u1, f(v1) = ug, f(ve) = us results in the required
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labeling. We note that in this labeling, {f(v;) — f(v;)|(vi,v;) €
ET*}=G-{0,u1}.

Assume now that £ = 3. Then we may write V(T*) = {vg, vy, ...,
vg }, where the subtrees 71,73 on the vertices {v1, v2, v3} and {v4, vs, vs},
respectively, are binary directed balanced subtrees on 2¥~1 —1 = 3
vertices, with roots v; and vy, respectively. Let H = {0, u;, u2,u3}
be a subgroup of G of index 2. Then we have a disjoint union
G = HU (H + z) for some z € G — H. Now, we use the label-
ing of the case k£ = 2 in order to obtain a labeling of T*. For each
level I; of the tree on 3 vertices (¢ = 1,2), we label the vertices of
level i + 1 in T™* by corresponding elements from H and H + z as
follows. In level !; of T* let f(v1) = w; and f(v4) = w3 + z, and
in level Iy of T* let f(ve) = wg, f(v3) = uz + z, f(vs) = us and
f(vs) = uz + . Then we have: {f(vi)|vi € V(T*)} = G—{0,z} and
{f(v) = f(vj)l(vi, v;) € B(T*),%,5 # 0} = G—{0,u1,u1 +z}. Then,
setting f(vp) = 0, results in a G-graceful labeling of T*. Since the
element z of G was not used in the above labeling, we may add z to
all the labels used for T* to obtain a G-graceful labeling for T* such
that {f(vi)|vi € V(T*)} = G — {0}, as required.

For k > 3 we use the procedure described in the previous para-
graph to obtain the required G-graceful labeling using the labeling
for the binary balanced tree on 2¢~1 — 1 vertices. O

In the following, we deal with the ’simplest case’ of Conjecture
5.1, namely, when 7 is a simple path. On the other hand, we shall
deal with the 'harder’ problem of this case: the classification of all the
groups G for which the corresponding G-regular decomposition exists
(see the second basic problem in the introduction). Partial solutions
to this problem are given in the following propositions. Recall the
notions of sequenceable and R-sequenceable groups mentioned at the
end of Section 4.

Proposition 5.2 Let n be an even integer, and let T be a simple
path on n — 1 vertices. Let G be a group of order n which is either
sequenceable or R-sequenceable. Then there is a G-regular decompo-
sition T|2(K, — I). In particular, there is such a decomposition for
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the following groups:

(i) All solvable groups with a unique involution, except the quater-
nion group Q4. In particular, all cyclic groups of even order.

(ii) All the Dihedral groups, except D3.

(iii) All the dicyclic groups, ezcept the quaternion group.

Proof. Suppose first that G is sequenceable. Then it is easy
to show (see, for example, [12], Corollary 3.1) that there exists a
sequence gi,go, - - -, g» Of all the elements of G, such that the differ-
ences of the sequence gagy 1 asgst,... ,gng;_fl are all distinct. Now,
by considering the given path T as a directed path, and by label-
ing the vertices g1, g2, -..,gn—1 according to this direction, we ob-
tain a G-graceful labeling. Hence there is a G-regular decomposition
T|2(K, — I) by Corollary 5.1.

Next, suppose that G is R-sequenceable. Then it is easy to show
(see [13], Lemma 4.1) that there exists a sequence g1, 92,...,gn-1 Of
distinct elements of G, such that the differences of the sequence are
distinct. Similar to the above, we obtain the result also in this case.

The families (i),(ii),(iii) satisfy the stated property, since all the
groups mentioned are sequenceable by [11], except Dy, which is R-
sequenceable. O

Proposition 5.3 Let T be a simple path on n vertices, and let G be a
solvable group of order 2n with a unique involution. Assume G is not

the quaternion group Q4. Then there is a G-reqular decomposition
T|(Kon — I).

Proof. By [2], G has a symmetric sequencing, i.e., a sequencing
ap = 1,a1,as,...,a9,_1, such that a, = u, the unique involution of
G, and (@n4i)™! = ap_; for 1 < i < n— 1. Define go = (ag)~! =
1,91 = (aga1)™Y, g2 = (@oa1a2)™, ..., gn—1 = (a0@1...an—1)"1. We
obtain a sequence go, g1, - - . , gn—1 such that the differences of the se-
quence are all distinct. Furthermore, for each h € G — {1, u}, exactly
one element from the set {h, h~'} is a difference of the sequence. It
follows that by considering the given path T as a directed path, and
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by labeling the vertices go, g1,-..,9n—1 according to this direction,
we obtain that T admits a G-extended B-valuation. This completes
the proof. O

Remark 5.2 By the odd order theorem of Feit and Thompson, it
follows that for an odd n, Proposition 5.3 holds for any group of
order 2n with a unique involution.

We end this section by considering the factorization of k-regular
directed graphs for £ < n — 2 (a k-regular directed graph results
from a k-regular graph by replacing each edge by two opposite di-
rected arcs). Since in such cases, the family of k-regular graphs
(2 < k < n—2) contains various non-isomorphic graphs (where some
of them may not be vertex transitive), the result of Theorem 5.1
(and its corollaries) cannot be directly extended to every k-regular
graph (see also Remark 5.1). However, the existence of a k-regular
graph with the required factorization may be obtained, as stated in
Proposition 5.4 below (the proof of this proposition is omitted since
it uses arguments which have been used previously). We include first
a definition.

Definition 5.2 Let F be a directed graph with |E(F)| = k, let H be
a k-regular directed graph and let G be a group of order n. We shall
say that H admits a G-regular decomposition into factors isomorphic
to F if there exists a decomposition of H into subgraphs isomorphic
to F such that G acts regularly on the factors of the decomposition.
In this case we shall say that the problem RP*(F, H, G) has a solution

Proposition 5.4 Let G be a group of order n and let F' be a directed
graph such that |E(F)| = k, where 1 < k < n. Then the following
holds:

1. If F is G-graceful, then there ezists a k-regular directed graph
H such that RP*(F, H,G) has a solution.

2. If H is a k-regular directed graph such that RP*(F,H,G) has
a solution, then F' is G-graceful.
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