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ABSTRACT An edge-magic total labeling on a graph with p vertices and g edges
is defined as a one-to-one map taking the vertices and edges onto the integers 1,2,

... , p+ g with the property that the sum of the labels on an edge and of its
endpoints is constant, independent of the choice of edge. The magic strength of a
graph G, denoted by e m ¢ (G) is defined as the minimum of all constants over all
edge-magic total labelings of G. The maximum magic strength of a graph G, denoted
by eMt(G) is defined as the maximum constant over all edge-magic total labelings
of G. A graph G is called weak magic if e M t(G)-em t(G)> p. In this paper we
study some classes of weak magic graphs.
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1. Intreduction

All graphs in this paper are finite and have no loops or multiple edges. In
gencral we follow the graph theoretic-terminology and notation of [2] unless
otherwise specified.

The subject of edge-magic labelings of graphs had its origin in the work of
Kotzig and Rosa [4, 5] on what they called magic valuations of graphs. They define
a magic labeling to be a total labeling in which the labels are the integers from 1, 2,
3, ..., p +q. The sum of the labels on an edge and its two endpoints is constant.
These labelings are currently referred to as either edge-magic total labelings or
edge-magic labelings. These terms were coined by Ringel and Llado[6], and Wallis[7]
respectively.

Let G be a graph with p vertices and ¢ edges. A bijection f from
MG)U E(G)to{ 1,2, 3,..., p+q }is called an edge-magic total labeling of G if
there exists a constant (/) ( called the magic constant or magic number or magic
sumof [ ) such that f(u) +/(v) +f(uv) = k(f) for any edge uv of G. In such a case,
G is said to be edge-magic total.
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Avadayappan et al. [1] introduced the notion of magic strength of a graph.
We know that for any edge-magic total labeling fof G, there is a constant (/) such
that f(u) +f(v) +f (uv) = k( /) for any edge uv of G. The magic strength of G,
denoted by e m ¢ (G) is defined as the minimum of all (/) where the minimum is
taken over all edge-magic total labelings of G.

Hegde and Shetty [3] introduced the concept of maximum magic strength
of a graph. The maximum magic strength of G, denoted by e Mt (G) is defined as
the maximum of all (/") where the maximum is taken over all edge-magic total
labelings of G. They also calleda graph G strong magic if e m ¢ (G)=eM(G); ideal
magicif 1seMt(G)- emt(G)spandweakmagicif eMt(G)-emt(G)> p. They
proved that P, isideal magic for n>2 ;K| ,, K| ; and cycles are ideal magic; X, , and
(2n+1)P,are strong magicand X, ,is weak maglc for n>3.

We note the following fact also. Let f be an edge-magic total labeling of
a graph G with magic constant k(). Then f () +/(v) +/(uv) = k(f) for every edge
uv of G. Now adding all constants obtained at each edge of G, we get

gi(f) = ue%c)f‘”)d‘”’ + EEE:(G)f(uv) 6))

We will find the following result useful ; see[3].
Lemma 1 For an edge-magic total graph G with p vertices and g edges,
eMt(G)=3(p+tg+1)-emt(G).

2. On edge-magic total graphs

If G, and G, are graphs and G, has n vertices, then the Corona of G, and
G, , denoted by G,/ G , is the graph obtamed by taking one copy of G, and n
copies of G,,and then _]oxmng the ith vertex of G, with an edge to every vertex inthe
ith copy of G In this section we consider the graphs C,/P,and C, /P, forall odd
nz3.

Theorem 2.1 For all odd n = 3, the graph C,/ P, has an edge-magic total
27n+3
2

Proof. Let n beanodd integerand n=2m+ 1= 3. Let v, v,, ..., v, be the vertices of
the cycle C,. Now C, / P, is the graph obtained by attachmg P, to each vertex of
C,.Leta, b, 1si=nbe the vertices adjacent to the rim vertioes v,of C in C /P,
The graph C / P, has 3n vertices and 4 edges. Define a labehng

VE V(Cn/P_) UEC,/P,)—>{1,2,3,..,7n } such that

labeling with magic constant k(f) =
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% if iis odd
f(vi)= 13 .
n+l—-i ...,
———— if i iseven
2
f(a‘.)=5n+i, Isisn, f(b,)== On+1
() 5n+l——i- if i iseven
fbi = .
m+2-1 it i isodd, ix1
f(v,.v“,)=i+l forlsis(n-l), f(v,,v,)=l
3n+2-0 e isodd

f (viai )=

2n+l—;;- if i iseven

f(v‘.b,.)=2n+ i forl=sisn

Bn+l-f i isodd

f (aibi )’: 2

Tn+1-i
2

if i iseven

It is easily verified that for odd » = 3, f is an edge-magic total labeling of
27n+3
2

C,/ P, with magic constant k(f )=

Example. Figure 1 shows the edge-magic total labeling of C,/ P, with k(/)=69.
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29 9,

Figure 1

Theorem 2.2 Forall odd n =3, the graph C,/ P, has an edge-magic total

39n+3
labeling with magic constant k(f)= r;+ .

Proof. Let C, be an odd cycle withn=2m + 1 > 3 vertices. Let v|,v,,...,v, be
the vertices of the cycle C,. Let P, be a path on three vertices. Now C, /P, is

the graph obtained by attaching P, to each vertex of C, and it has 4n vertices

and 6n edges. Define a labeling f: V(C,/P,)UE(C,/P)—{1,2,3,...,10n}
such that

@i’;l__' if i isodd
f(vi)= .

O9n+1-i ... .

—— if i iseven

Let us label the 3n vertices outside the rim of C, in C,/ P, asfollows. Let
uy,u,, ..., u,be the vertices of degree two outside the rim, adjacent to the rim

197-3 19n+1 19n+5
2 7 2 7 o2 T

vertices whose f~values are ,(10n-1)
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respectively. Again let «,,, ,4,,2, ---- s 4,,, be the remaining vertices of degree
two, adjacent to the rim vertices whose f-values are
19n-3 19n+1 19n+5
2 7 2 72
the vertices of degree two outside the rim, adjacent to the rim vertices whose
J-values are 9n + 1, 9n +3,9n + 5, ..., 10n respectively. Also let

s e »(10n-1) respectively. Let u,,,,,Up,zs-s 4, be

Upemey s Unamezs -+ » U, be the remaining vertices of degree two outside the rim,
adjacent to the rim vertices whose f~valuesare 9n+1,9n+3,9n+5, ..., 10n
respectively. Let Uy, s Uzn42,-->U2,.ms be the vertices of degree three outside
the rim adjacent to the rim vertices whose f~valuesare 9n+1,91+3,9n+5, ..., 10n

respectively. Finally, let #2,,ms 55 #204me3+ - » U3, be the vertices of degree three

adjacent to the rim vertices whose f~valuesare 9n+2, 9n+4,9n+6, ..., 10n -1
respectively.

Now define f(u,.)=9n+1—i forlsi=3n
f(v,vi+,)=i+l forlsis(n-—l), f(vnv,)l

f(uiuj)=3n-1+(i+j)lSi$3n,
Prir2) e isodd

f("i“j)= 2. , JAsisnls js3n
2n+i+2j ., ..
—2——1f1 is even

It is easy to verify that C, /P, is an edge-magic total graph with magic constant

39n+3
k(f)= "; . when n = 3 is odd.

Example. Figure 2 shows the edge-magic total labeling of C, / P, with

k(f)=138.

249



Figure 2

3. Maximum magic strength of graphs
In this section we find the maximum magic strength of some graphs.
27n

3
2* forallodd n= 3.

Theorem 3.1. eMt(C,/P)=

Tn+3
2

edge-magic total labeling of the graph C,/ P, with magic constant k( f ) Then
using (1) with p=3rn and g = 4n we get

4nk(f)=22f(a,.)+ 22f(b;) + 42f(vi)+ Zf(e),

where a,,b,,(1 <i < n) are the vertices adjacent to the rim vertices v, of C,, in
C,/p.

2
Proof. By Theorem 2.1,eMt(C,/P,) > forallodd n = 3.Let f'bean
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Again,

wl)=| 3 rla)+ §f<b,)+ 3 16)+
[zf b)+ S £6) ]+22va
(2 st [Efa, D I6)+ 37t |+
22f(v.-)
- 2l [ S+ )+ $16) |+ 2376,

Hence,

k(f) [ﬂ'_@f_ﬂ_ {(4n+l)+(4n+2)+----+7n}+2{(6n+l)+(6n+2)+----+7n} ]

= 711-;; %ﬂ- 3"{4n+l+7n}-x~2 {6n+l+7n}]

%[7(7"—“ + % {11n+1}+ % {l3n+l}]

2
17108 +12
T4 2
27n+3
2
27 3
Thus, eM1(C,/P,) = ——— forallodd n=3.
n+3
Therefore,e Mt (C,/P,)= forallodd n=3.

3 3
Theorem 3.2 on+

40n +
seMt(C,/P) s 2 foralloddnz3.
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3
forallodd n>3.

391 +
Proof. By Theorem 2.2, eMt(C,/P,)) 2 2

Let a,(1 =i =2n)denote the vertices of degree two, b,(l s i < n) denote the
vertices of degree three and v,(1 = i = n) denote the vertices of degree five in
C,/P;.Let f bean edge-magic total labeling of the graph C,/ P; with magic
constant k(f) Then using (1) with p=4n and g = 6n we get

6nk(f )= 22 (@) + 32 ) + SZf(v,) + 316

[S e Sr)e S 30
[ an(a,»h $76)+ 3 rt) ] £33 16)

= (l+2+---+10n)+

[ 3s@re $r0)+ 3560 [+ 70053 56)

Thus,

k(f)=g‘-[1°”(m"” {Ef Ef Ef }Zf(b;)HZf(vi)]

= é M_(z)”_'*l) {6n +1)+(6n+2)+ +10n}+ 4{(9n +1)+On+2)+-- +10n}]

i

.Sn(10n+l)+% fon+1+10n}+4 % {9n+1+10n}]
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= %[S(IOn + l)+ 2(16n + l)+ 2(19n + l)]

= 1200+ 9]
6
_40n+3
2
40n+3
Hence, e Mt (C,/P,) < "; forallodd n > 3.
+3 40n

+3
forallodd n=3.

39
Therefore, L

7= eMt(C,/P) =

2
4. New classes of weak magic graphs

Theorem 4.1 The graph C,/ P, is weak magic for all odd n = 3.

27n+3
2

Proof. By Theorem 3.1,e Mt (C,/P,)= forallodd » = 3. Using

2In+3 _15n+3
2 2

2In+3 15n+3
2 2

forall odd » = 3. Therefore, C,/ P, is weak magic forallodd » > 3.

Lemma lweget, em¢(C,/P)=3(Tn+1)- for all odd

n=3.Hence, eMt(C,/P)—emt(C,/P)= =6n>3n

Theorem 4.2 The graph C,/ P, is weak magic for all odd n = 3.

3 40n+3
39"2+ s eM1(C,/P) s ="

Proof. By Theorem 3.2, forallodd = 3.

Using Lemma 1 we get,

40n +3 39n+3

3(10n +1)-

s emt(C,/P,) s 3(0n+1)-

forallodd > 3.

20n+3 2n +3
S5 emt(C,/R) s 2 forallodd = 3.

Hence, forallodd » = 3,

1L,
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39n+3 _ 2In+3
2 2

ie.,9n geMt(C,/P)-emt(C,/P) < 10n,
Thus, eMt(C,/P,)-emt(C,/P,)>4n forallodd »=3.
Therefore, C,/ P, is weak magic forallodd n=3.

40n+3 _ 20n+3
2 2

seMI(C,/P)-emt(C,/P) s
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