On Weak Magic Graphs

G. Santhosh
Department of Mathematics
Sree Narayana College
Neduvarumcode. P. O - 689508
Chengannur, Kerala, INDIA
E-mail: santhoshg@rediffmail.com

ABSTRACT An edge-magic total labeling on a graph with p vertices and q edges is defined as a one-to-one map taking the vertices and edges onto the integers 1, 2, ..., p+q with the property that the sum of the labels on an edge and of its endpoints is constant, independent of the choice of edge. The magic strength of a graph G, denoted by e m t G is defined as the minimum of all constants over all edge-magic total labelings of G. The maximum magic strength of a graph G, denoted by e M t G is defined as the maximum constant over all edge-magic total labelings of G. A graph G is called weak magic if e M t G - e m t G > e. In this paper we study some classes of weak magic graphs.

AMS Mathematics Subject Classification: 05C78

Keywords: Edge-magic total labeling, Maximum magic strength, Weak magic graphs

1. Introduction

All graphs in this paper are finite and have no loops or multiple edges. In general we follow the graph theoretic-terminology and notation of [2] unless otherwise specified.

The subject of edge-magic labelings of graphs had its origin in the work of Kotzig and Rosa [4, 5] on what they called magic valuations of graphs. They define a magic labeling to be a total labeling in which the labels are the integers from $1, 2, 3, \ldots, p+q$. The sum of the labels on an edge and its two endpoints is constant. These labelings are currently referred to as either edge-magic total labelings or edge-magic labelings. These terms were coined by Ringel and Llado[6], and Wallis[7] respectively.

Let G be a graph with p vertices and q edges. A bijection f from $V(G) \cup E(G)$ to $\{1, 2, 3, ..., p+q\}$ is called an edge-magic total labeling of G if there exists a constant k(f) (called the magic constant or magic number or magic sum of f) such that f(u)+f(v)+f(uv)=k(f) for any edge uv of G. In such a case, G is said to be edge-magic total.

Avadayappan et al. [1] introduced the notion of magic strength of a graph. We know that for any edge-magic total labeling f of G, there is a constant k(f) such that f(u) + f(v) + f(uv) = k(f) for any edge uv of G. The magic strength of G, denoted by e m t(G) is defined as the minimum of all k(f) where the minimum is taken over all edge-magic total labelings of G.

Hegde and Shetty [3] introduced the concept of maximum magic strength of a graph. The maximum magic strength of G, denoted by eMt(G) is defined as the maximum of all k(f) where the maximum is taken over all edge-magic total labelings of G. They also called a graph G strong magic if emt(G) = eMt(G); ideal magic if $1 \le eMt(G) - emt(G) \le p$ and weak magic if eMt(G) - emt(G) > p. They proved that P_n is ideal magic for n > 2; $K_{1,2}$, $K_{1,3}$ and cycles are ideal magic; $K_{1,1}$ and $(2n+1)P_n$ are strong magic and $K_{1,n}$ is weak magic for n > 3.

We note the following fact also. Let f be an edge-magic total labeling of a graph G with magic constant k(f). Then f(u) + f(v) + f(uv) = k(f) for every edge uv of G. Now adding all constants obtained at each edge of G, we get

$$qk(f) = \sum_{u \in V(G)} f(u)d(u) + \sum_{uv \in E(G)} f(uv)$$
 (1)

We will find the following result useful; see[3]. **Lemma 1** For an edge-magic total graph G with p vertices and q edges, eMt(G) = 3(p+q+1) - emt(G).

2. On edge-magic total graphs

If G_1 and G_2 are graphs and G_1 has n vertices, then the Corona of G_1 and G_2 , denoted by G_1 / G_2 , is the graph obtained by taking one copy of G_1 and n copies of G_2 , and then joining the ith vertex of G_1 with an edge to every vertex in the ith copy of G_2 . In this section we consider the graphs C_n / P_2 and C_n / P_3 for all odd $n \ge 3$.

Theorem 2.1 For all odd $n \ge 3$, the graph C_n/P_2 has an edge-magic total labeling with magic constant $k(f) = \frac{27n+3}{2}$

Proof. Let n be an odd integer and $n=2m+1\ge 3$. Let v_1, v_2, \ldots, v_n be the vertices of the cycle C_n . Now C_n/P_2 is the graph obtained by attaching P_2 to each vertex of C_n . Let $a_i, b_i, 1\le i\le n$ be the vertices adjacent to the rim vertices v_i of C_n in C_n/P_2 . The graph C_n/P_2 has 3n vertices and 4n edges. Define a labeling

$$f: V(C_n/P_1) \cup E(C_n/P_2) \rightarrow \{1, 2, 3, ..., 7n\}$$
 such that

$$f(v_i) = \begin{cases} \frac{14n+1-i}{2} & \text{if } i \text{ is odd} \\ \frac{13n+1-i}{2} & \text{if } i \text{ is even} \end{cases}$$

$$f(a_i) = 5n + i, \ 1 \le i \le n , \qquad f(b_1) = \frac{9n + 1}{2}$$

$$f(b_i) = \begin{cases} 5n + 1 - \frac{i}{2} & \text{if } i \text{ is even} \\ \frac{9n + 2 - i}{2} & \text{if } i \text{ is odd, } i \ne 1 \end{cases}$$

$$f(v_i v_{i+1}) = i+1 \text{ for } 1 \le i \le (n-1),$$
 $f(v_n v_1) = 1$

$$f(v_i a_i) = \begin{cases} \frac{3n+2-i}{2} & \text{if } i \text{ is odd} \\ 2n+1-\frac{i}{2} & \text{if } i \text{ is even} \end{cases}$$
$$f(v_i b_i) = 2n+i \quad \text{for } 1 \le i \le n$$

$$f(a_ib_i) = \begin{cases} \frac{8n+1-i}{2} & \text{if } i \text{ is odd} \\ \frac{7n+1-i}{2} & \text{if } i \text{ is even} \end{cases}$$

It is easily verified that for odd $n \ge 3$, f is an edge-magic total labeling of C_n/P_2 with magic constant $k(f) = \frac{27n+3}{2}$.

Example. Figure 1 shows the edge-magic total labeling of C_5/P_2 with k(f) = 69.

Figure 1

Theorem 2.2 For all odd $n \ge 3$, the graph C_n/P_3 has an edge-magic total labeling with magic constant $k(f) = \frac{39n+3}{2}$.

Proof. Let C_n be an odd cycle with $n=2m+1\geq 3$ vertices. Let $v_1, v_2, ..., v_n$ be the vertices of the cycle C_n . Let P_3 be a path on three vertices. Now C_n/P_3 is the graph obtained by attaching P_3 to each vertex of C_n and it has 4n vertices and 6n edges. Define a labeling $f: V(C_n/P_3) \cup E(C_n/P_3) \rightarrow \{1, 2, 3, ..., 10n\}$ such that

$$f(v_i) = \begin{cases} \frac{20n+1-i}{2} & \text{if } i \text{ is odd} \\ \frac{19n+1-i}{2} & \text{if } i \text{ is even} \end{cases}$$

Let us label the 3n vertices outside the rim of C_n in C_n/P_3 as follows. Let u_1, u_2, \dots, u_m be the vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are $\frac{19n-3}{2}$, $\frac{19n+1}{2}$, $\frac{19n+5}{2}$, ..., (10n-1)

respectively. Again let $u_{n+1}, u_{n+2}, \dots, u_{n+m}$ be the remaining vertices of degree two, adjacent to the rim vertices whose f-values are $\frac{19n-3}{2}, \frac{19n+1}{2}, \frac{19n+5}{2}, \dots$, (10n-1) respectively. Let $u_{m+1}, u_{m+2}, \dots, u_n$ be the vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are 9n+1, 9n+3, 9n+5, ..., 10n respectively. Also let $u_{n+m+1}, u_{n+m+2}, \dots, u_{2n}$ be the remaining vertices of degree two outside the rim, adjacent to the rim vertices whose f-values are 9n+1, 9n+3, 9n+5, ..., 10n respectively. Let $u_{2n+1}, u_{2n+2}, \dots, u_{2n+m+1}$ be the vertices of degree three outside the rim adjacent to the rim vertices whose f-values are 9n+1, 9n+3, 9n+5, ..., 10n respectively. Finally, let $u_{2n+m+2}, u_{2n+m+3}, \dots, u_{3n}$ be the vertices of degree three adjacent to the rim vertices whose f-values are 9n+2, 9n+4, 9n+6, ..., 10n-1

Now define
$$f(u_i) = 9n + 1 - i$$
 for $1 \le i \le 3n$.
 $f(v_i v_{i+1}) = i + 1$ for $1 \le i \le (n-1)$, $f(v_n v_1) = 1$

respectively.

$$f(u_i u_j) = \frac{3n-1}{2} + (i+j), \ 1 \le i \le 3n,$$

$$f(v_i u_j) = \begin{cases} \frac{n+i+2j}{2} & \text{if } i \text{ is odd} \\ \frac{2n+i+2j}{2} & \text{if } i \text{ is even} \end{cases}, 1 \le i \le n, 1 \le j \le 3n$$

It is easy to verify that C_n/P_3 is an edge-magic total graph with magic constant

$$k(f) = \frac{39n+3}{2}$$
, when $n \ge 3$ is odd.

Example. Figure 2 shows the edge-magic total labeling of C_7/P_3 with k(f) = 138.

Figure 2

3. Maximum magic strength of graphs

In this section we find the maximum magic strength of some graphs.

Theorem 3.1.
$$eMt(C_n/P_2) = \frac{27n+3}{2}$$
 for all odd $n \ge 3$.

Proof. By Theorem 2.1, $eMt(C_n/P_2) \ge \frac{27n+3}{2}$ for all odd $n \ge 3$. Let f be an edge-magic total labeling of the graph C_n/P_2 with magic constant k(f). Then using (1) with p = 3n and q = 4n we get

$$4nk(f) = 2\sum_{i=1}^{n} f(a_i) + 2\sum_{i=1}^{n} f(b_i) + 4\sum_{i=1}^{n} f(v_i) + \sum_{e \in E} f(e),$$

where $a_i, b_i, (1 \le i \le n)$ are the vertices adjacent to the rim vertices v_i of C_n in C_n/P_2 .

Again,

$$4nk(f) = \left[\sum_{i=1}^{n} f(a_{i}) + \sum_{i=1}^{n} f(b_{i}) + \sum_{i=1}^{n} f(v_{i}) + \sum_{e \in E} f(e) \right] +$$

$$\left[\sum_{i=1}^{n} f(a_{i}) + \sum_{i=1}^{n} f(b_{i}) + \sum_{i=1}^{n} f(v_{i}) \right] + 2 \sum_{i=1}^{n} f(v_{i})$$

$$= (1 + 2 + \dots + 7n) + \left[\sum_{i=1}^{n} f(a_{i}) + \sum_{i=1}^{n} f(b_{i}) + \sum_{i=1}^{n} f(v_{i}) \right] +$$

$$2 \sum_{i=1}^{n} f(v_{i})$$

$$= \frac{7n(7n+1)}{2} + \left[\sum_{i=1}^{n} f(a_{i}) + \sum_{i=1}^{n} f(b_{i}) + \sum_{i=1}^{n} f(v_{i}) \right] + 2 \sum_{i=1}^{n} f(v_{i}).$$

Hence.

$$k(f) \le \frac{1}{4n} \left[\frac{7n(7n+1)}{2} + \{(4n+1) + (4n+2) + \dots + 7n\} + 2 \{(6n+1) + (6n+2) + \dots + 7n\} \right]$$

$$= \frac{1}{4n} \left[\frac{7n(7n+1)}{2} + \frac{3n}{2} \{4n+1+7n\} + 2 \frac{n}{2} \{6n+1+7n\} \right]$$

$$= \frac{1}{4} \left[\frac{7(7n+1)}{2} + \frac{3}{2} \{11n+1\} + \frac{2}{2} \{13n+1\} \right]$$

$$= \frac{1}{4} \left[\frac{108n+12}{2} \right]$$

$$= \frac{27n+3}{2}$$

Thus, $eMt(C_n/P_2) \le \frac{27n+3}{2}$ for all odd $n \ge 3$.

Therefore, $eMt(C_n/P_2) = \frac{27n+3}{2}$ for all odd $n \ge 3$.

Theorem 3.2 $\frac{39n+3}{2} \le eMt(C_n/P_3) \le \frac{40n+3}{2}$ for all odd $n \ge 3$.

Proof. By Theorem 2.2, $eMt(C_n/P_3) \ge \frac{39n+3}{2}$ for all odd $n \ge 3$.

Let $a_i (1 \le i \le 2n)$ denote the vertices of degree two, $b_i (1 \le i \le n)$ denote the vertices of degree three and $v_i (1 \le i \le n)$ denote the vertices of degree five in C_n/P_3 . Let f be an edge-magic total labeling of the graph C_n/P_3 with magic constant k(f). Then using (1) with p = 4n and q = 6n we get

$$6nk(f) = 2\sum_{i=1}^{2n} f(a_i) + 3\sum_{i=1}^{n} f(b_i) + 5\sum_{i=1}^{n} f(v_i) + \sum_{e \in E} f(e)$$

$$= \left[\sum_{i=1}^{2n} f(a_i) + \sum_{i=1}^{n} f(b_i) + \sum_{i=1}^{n} f(v_i) + \sum_{e \in E} f(e) \right] + \left[\sum_{i=1}^{2n} f(a_i) + \sum_{i=1}^{n} f(b_i) + \sum_{i=1}^{n} f(v_i) \right] + \sum_{i=1}^{n} f(b_i) + 3\sum_{i=1}^{n} f(v_i)$$

$$= (1 + 2 + \dots + 10n) + \left[\sum_{i=1}^{2n} f(a_i) + \sum_{i=1}^{n} f(b_i) + \sum_{i=1}^{n} f(v_i) \right] + \sum_{i=1}^{n} f(b_i) + 3\sum_{i=1}^{n} f(v_i)$$

Thus,

$$k(f) = \frac{1}{6n} \left[\frac{10n(10n+1)}{2} + \left\{ \sum_{i=1}^{2n} f(a_i) + \sum_{i=1}^{n} f(b_i) + \sum_{i=1}^{n} f(v_i) \right\} + \sum_{i=1}^{n} f(b_i) + 3\sum_{i=1}^{n} f(v_i) \right]$$

$$\leq \frac{1}{6n} \left[\frac{10n(10n+1)}{2} + \left\{ (6n+1) + (6n+2) + \dots + 10n \right\} + 4\left\{ (9n+1) + (9n+2) + \dots + 10n \right\} \right]$$

$$= \frac{1}{6n} \left[5n(10n+1) + \frac{4n}{2} \left\{ (6n+1) + 10n \right\} + 4\left\{ \frac{n}{2} \left\{ (9n+1) + 10n \right\} \right\} \right]$$

$$= \frac{1}{6} [5(10n+1)+2(16n+1)+2(19n+1)]$$

$$= \frac{1}{6} [120n+9]$$

$$= \frac{40n+3}{2}$$

Hence, $eMt(C_n/P_3) \le \frac{40n+3}{2}$ for all odd $n \ge 3$.

Therefore, $\frac{39n+3}{2} \le eMt(C_n/P_3) \le \frac{40n+3}{2}$ for all odd $n \ge 3$.

4. New classes of weak magic graphs

Theorem 4.1 The graph C_n/P_2 is weak magic for all odd $n \ge 3$.

Proof. By Theorem 3.1, $eMt(C_n/P_2) = \frac{27n+3}{2}$ for all odd $n \ge 3$. Using

Lemma 1 we get, $e m t (C_n/P_2) = 3 (7n+1) - \frac{27n+3}{2} = \frac{15n+3}{2}$ for all odd

$$n \ge 3$$
. Hence, $eMt(C_n/P_2) - emt(C_n/P_2) = \frac{27n+3}{2} - \frac{15n+3}{2} = 6n > 3n$

for all odd $n \ge 3$. Therefore, C_n/P_2 is weak magic for all odd $n \ge 3$.

Theorem 4.2 The graph C_n/P_3 is weak magic for all odd $n \ge 3$.

Proof. By Theorem 3.2, $\frac{39n+3}{2} \le eMt(C_n/P_3) \le \frac{40n+3}{2}$ for all odd $n \ge 3$.

Using Lemma 1 we get,

$$3(10n+1) - \frac{40n+3}{2} \le e m t (C_n/P_3) \le 3(10n+1) - \frac{39n+3}{2}$$
 for all odd $n \ge 3$.

i.e.,
$$\frac{20n+3}{2} \le e m t (C_n/P_3) \le \frac{21n+3}{2}$$
 for all odd $n \ge 3$.

Hence, for all odd $n \ge 3$,

$$\frac{39n+3}{2} - \frac{21n+3}{2} \leq eMt(C_n/P_3) - emt(C_n/P_3) \leq \frac{40n+3}{2} - \frac{20n+3}{2}$$

i.e., $9n \le eMt(C_n/P_3) - emt(C_n/P_3) \le 10n$.

Thus, $eMt(C_n/P_3) - emt(C_n/P_3) > 4n$ for all odd $n \ge 3$.

Therefore, C_n/P_3 is weak magic for all odd $n \ge 3$.

References

- [1] S. Avadayappan, P. Jeyanthi and R. Vasuki, Magic strength of a graph, Indian J. of Pure and Appl. Math. 31 (2000), 873-883.
- [2] F. Harary, Graph Theory, Addison Wesley, Reading, MA, 1969.
- [3] S.M. Hegde and S. Shetty, On Magic Graphs, Australesian J. of Comb. 27 (2003), 277-284.
- [4] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13(1970), 451-461.
- [5] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Center de Recharches Mathematiques, Universite de Montreal, (1972), CRM-175.
- [6] G. Ringel and A. Llado, Another tree conjecture, Bull. Inst. Combin. Appl., 18(1996), 83-85.
- [7] W.D. Wallis, Magic Graphs, Birkhauser, Boston, 2001.