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Abstract

We consider some partitions where even parts appear twice and
some where evens do not repeat. Further, we offer a new partition
theoretic interpretation of two mock theta functions of order 8.
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1. Introduction and Main Results

Recently [4] Andrews related the partition function

An) = ) (~1)"6(m,n),

m2>0

where d(m,n) is the number of DE-partitions (partitions with distinct
evens) of n with DE-rank m, to the arithmetic of Q(v/2). In [11] we showed
some partitions where evens do not repeat are in fact lacunary, and can be
expressed in in terms of indefinite quadratic forms. Also, in [6] we find a
g-series that generates a partition where evens do not repeat:

=~ ¢ (=1 (1+ g3 (1 + g% - (1+¢*)
T-9(-¢) -+

(1)

n=0

which is similar to one of McIntosh’s 2nd order mock theta functions with
an additional weight.

In this paper we consider some partition functions where even parts
appear twice, and that assume the value of 0 for almost all natural n.
We also consider some partitions with negative parts that do not repeat.
Furthermore, we offer a new partition theoretic interpretation of two mock
theta functions of order 8, and show that the series

i (=1)"g* (1 - ¢?)(1 ~ ¢*) - (1 = ¢*")
(14+q)(1+¢%)--- (14 ¢2n+1) '

n=0
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is related to the arithmetic of Q(v/2) by establishing a relation to (1).

Throughout we assume the notation (8]

(@;q)n :=(1—a)(1 —ag)---(1—ag"™"),

<]
lim (@;0)s = (a; @)oo == [ (1 —ag™).
n=0

Theorem 1.1. Let ®.(n) (resp. ®,(n)) be the number of partitions of
n in which even parts appear either 0 or two times, largest part odd, and
2E-rank even (resp. odd). Then

(W) -B(m)= P L @
>0
1<2r
n:31‘2+61'+1—j(j+3)/2

Furthermore, we have that ®.(n) > ®,(n) for all natural n.

Theorem 1.2. Let U(n) be the number of partition of n where if 2k is the
largest even part, then positive evens less than or equal to 2k appear exactly
twice, odd parts may repeat with largest odd part < 2k + 1, and negative
parts are even, do not repeat, and < 2k. Let V. (n) (resp. U,(n)) be the
number of partitions counted by ¥(n) with an even (resp. odd) number of
negative parts. Then U,(n) — U,(n) is equal to the number of inequivalent
solutions of x2 — 2y® = k with norm 8k — 1, where z+4y = 3 or 5 (mod 8).

A natural corollary concerning the lacunarity of ¥.(n)— ¥,(n) is given
in the following:

Corollary 1.3. For every positive integer n we have U.(n) > U, (n).
Furthermore, we have that ¥.(n) = ¥,(n) infinitely often.

The next theorem, while probably less elegant than our previous results, is
a companion to the partition function given in Theorem 1.2.

Theorem 1.4. Let )(n) be the number of partitions of n with largest part
2k + 2 which appears once, all positive evens less than 2k +2 appear ezactly
twice, odd parts may repeat with largest odd part < 2k + 1, and negative
parts are even, do not repeat, and < 2k. Let .(n) (resp. 1,(n)) be the
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number of partitions counted by y(n) with an even (resp. odd) number of
negative parts. Then

Pe(n) — bo(n) = > 1+ 3 1. (3)
j20 j20
iger i<2r
n=4r2 4 7r42—-5(54+3)/2 ‘n.—-4r2+9r+4—](1+3) /2

Further, for all natural n we have ¥e(n) > o(n).

Of course, this theorem also has a relation to Q(v/2), which we do not
mention here.

2. Proof of Theorems

First we recall [5] that a "signed” partition may be viewed as a partition
pair o = (g, A) where the partition p consists of parts that appear with a
"+,” and A consists of parts that appear with a ”—.” For a detailed ac-
count of these partitions we refer the reader to [5]. We shall also require
the following lemma {1, 3, 12]:

Lemma 2.1. If (o, B,) form o Bailey pair with respect to a then

S ) () (aa /20" B — (39/2)00(38/V)0o = (2)n(¥)n(0a/29)"tn
D_(DDn(hn(aa/29)"n = T E SRy S BTN (@)

n=0 n=0

Here we say a pair of sequences (ay,, ;) forms a Bailey pair with re-
spect to a if

(5)

Z (ag; Q)n+r(Qa Qn—r

r=0

Proof of Theorem 1.1: By [1, p.120, eq. (5.5)] with a = ¢, b = ¢!/?
and then g replaced by g2, we have that (a,, £,) forms a Bailey pair with
respect to g* (where g has been replaced with ¢ in the definition) with

( l)n n(3n+4)(1 - q4n+4)
1—g¢4

n
(L+ 30 q @91 + it
j=1

Qp =

and
1

Pn = (2:6%)n41”
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Using the fact that

n 2n
Zq-j(2j+3)(1 + q2j+1) = Z q—j(j+3)/2’
7=1 J=1

we obtain
( l)n n(3n+4)(1_ 4n+4

= ~§(+3)/2
a, = g Zoq 3(+3)/
=

Now inserting this pair in (4) with z = ¢, and y = —g? gives

[e =]
(¢* 2N -
Z (q q2)n+1 Zq3" * Zq R, ©)

n=0 n=0 j=0

NOte that’ 2 1 242 444 2n+2:
@1+ ¢**2) (1 + ¢*t) - (1 + ¢*H2")

(1-9)(1-g%)--(1- g

generates a partition where even parts appear cither 0 or two times, largest
part < 2n + 1. For the weight in (6), we shall consider a modified form
of Andrews’ DE-rank [4], which we call the 2E-rank. The only difference
being that we are keeping track of the number of evens that appear zero
or two times and not distinct evens. The desired result follows after multi-
plying both sides of (6) by g, and noting that the right hand side cnsures
the partition function generated by the left sum is strictly positive.

Proof of Theorem 1.2: We shall require the pair (a,8,) [1] with respect
to ¢ (with ¢ replaced by ¢? in the definition)

~1)rgnr(3n42)(] 4 g2n+1) 20
_ ( ) q ( q )Zq J(]+1)/2’

n =

and
1

(#9%)n+1
Insterting this pair in (4), letting y = ¢2, and z — oo gives

Bn =

® 1)( 2. 52 asd 2n
Z (“l)nqﬂ(n+ )(q g )n = an(4n+3)(1 +q2n+l)Zq—j(j+l)/2 (7)

= (29} a+1 = =
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We now refer the reader to [6] where it was shown that

(=@n(-g"/)" & n, n?+3n/2 b1y N —3(41)/2
Z —Z(—l) q (1+gq )Zq . (3

1/2.
n=0 (q/ q) +1 n=0 3=0

Also, it was clearly outlined that

[>)

z (_I)nq(4n-1)2-2(2j+1)=(1+q16n)
n>0
—-n<jsn—1

is the excess of the number of the inequivalent solutions to z2 — 2y = k
with norm 8k — 1 in which z + 4y = 3 or 5 (mod 8), over the number in
which z + 4y =1 or 7 (mod 8). Comparing this with the right hand side of
(7) shows that replacing ¢ by ¢', and multiplying by 1/q in the series

oo 2n
Z qn(4n+3)(1 + q2n+1) Zq-j(ﬂl)/?,
n=0 j=0

glvcs the generating function for the number of inequivalent solutions of
x? — 2y% = k with norm 8k — 1 in which z + 4y =3 or 5 (mod 8).

Now consider the sum on the left hand side of (7). The component

g2t tan

(49841’

generates a partition where if 2k is the largest even part, then all evens less
than or equal to 2k appear exactly once, largest odd part is < 2k + 1. Note
that

(1" ) | P - 1)1 = 1/g) - (1= /)
Z (%6 n+1 =2 (4;4®)n+1 '

n=0 n=0

The sum on the right hand side now generates a partition of n where if
2k is the largest even part, then all positive evens less than or equal to 2k
appear twice, odd parts may repeat with largest odd part < 2k + 1, and
negative parts are even, do not repeat, and < 2k. To see the "all evens
less than 2k appear twice” part, note that ¢>M(n+1) = g2+2+4+4+-+2n42n

Lastly the nega.tlve distinct evens are weighted by —1 raised to the number
of parts.

Proof of Theorem 1.4: First we employ the pair given in the proof of
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Theorem 1.1 in Lemma 2.1 with z = ¢2, y — oo, and multiplying by ¢? to
get

oo 2n
i (=1)ngrD(n+2) (g2; g2),, _ Z gHAntTH2(] | g2nt2) Zq—j(j+3)/2

= (4:9%)n+1 s ot

(9)

We can write the sum on the left hand side as

i (—l)"q("+1)("+2)(q2; q2) i q_n(n+l)+2n+2(1 _ l/q2)(l _ l/q"‘) 1 - l/q2")
= (6 ¢%)n+1 oy (:4%)n+1 )
This generates a partition similar to that of Theorem 1.2 but with a key
difference because of the extra factor ¢**2, The sum on the right hand
side generates a partition of n with largest part 2k +2 which appears once,
all evens less than 2k + 2 appear twice, odd parts may repeat with largest
odd part < 2k + 1, and negative parts are even, do not repeat, and < 2k.

3. Related Partition Theorems

While seeking out partition theoretic interpretations of mock theta func-
tions was not the main motivation of this paper, it is worth offering some
related results. In this section we give some partition theorems that follow
directly from our work in the previous section. In particular, the following
proposition considers two mock theta functions of order 8 (with ¢ replaced
by —q) found by Gordon and McIntosh [9].

Proposition 3.1. Let ¥(n), and ¥(n) be as in Theorem 1.2 and 1.4.

Then "
Y U(n)q® =Ti(~q) = Zq

n=0 n=0

n(n+l) )n

(ql 11+1

and ) o (n4+1)(n+2)(_ 2. 2
n+1){(n+ —n2.
Y bin)g" =To(-q) = Y2 LR

o = (4:9%)n+1

Since the proof is almost identical to the proofs given in Theorems 1.2 and
1.4 we omit the details. Lastly, we offer an interesting identity that follows
naturally from this study.

Theorem 3.2. We have

(-2 qz)nq (=% ¢*)n (9" (-1)"q
Z( —4;0%)ns1 Z (q, Z

n=0 n=0 "+1 n=0

2n(n+l)(q q)
(q q n+l
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Proof. Replace g by ¢2 in (8), and add the sum on the right hand side to
itself when ¢ is replaced by —q. That is,

oo n co n
Z(_l)nq2n2+3n(1+q2n+2) Z q—j(j+1)+Z q2n2+3n(1+q2u+2) Z q—j(j-*-l)
n=0 Jj=0 n=0 j=0

oo 2n
=9 Z q8n2+6n(1 + q4n+2) Z q—j(j+l),

n=0 i=0
which is just the right side of (7) with g replaced by ¢ with an additional
factor of 2. a
The series

)

2 n+1
Z( q2 g )nq

( q; qz)n+l

n=0
has an interesting partition interpretation we mention in closing.
The component g"*+! generates ones, so we can say this series generates
a partition of n where all parts are less than twice the number of ones, and
evens do not repeat. Here the weight is —1 raised to the number of odd
parts.
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