On the Arrangement of Cliques in Chordal Graphs
with respect to the Cuts *
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Abstract. A cut (A, B) (where B =V — A)inagraph G = (V,E) is
called internal if and only if there exists a vertex z in A that is not adjacent
to any vertex in B and there exists a vertex y € B such that it is not
adjacent to any vertex in A. In this paper, we present a theorem regarding
the arrangement of cliques in a chordal graph with respect to its internal
cuts. Our main result is that given any internal cut (A, B) in a chordal
graph G, there exists a cligue with £(G) + 1 vertices (where x(G) is the
vertex connectivity of G) such that it is (approximately) bisected by the cut
(A, B). In fact we give a stronger result: For any internal cut (4, B) of a
chordal graph, and for each 2, 0 < ¢ < k(G) + 1, there exists a clique K;
such that |Ki| = k(G) + 1,|JANK;| =iand [BN K;| = k(G) + 1 —i.

An immediate corollary of the above result is that the number of edges in
any internal cut (of a chordal graph) should be §2(k?), where x(G) = k.
Prompted by this observation, we investigate the size of internal cuts in
terms of the vertex connectivity of the chordal graphs. As a corollary, we
show that in chordal graphs, if the edge connectivity is strictly less than
the minimum degree, then the size of the mincut is at least M'Z—GM,
where £(G) denotes the vertex connectivity. In contrast, in a general graph
the size of the mincut can be equal to (G). This result is tight,

1 Introduction

Let C be a cycle in a graph G. A chord of C is an edge of G joining two vertices
of C that are not consecutive. A graph G is called a chordal graph if and only if
every cycle in G of length 4 or more has a chord.

Let G = (V, E) be a simple connected undirected graph. Throughout this
paper we will use V' for the set of vertices of G and E for the set of edges. |V| will
be denoted by n. N (v) will denote the set of neighbours of v, thatis N (v) = {u €

* A preliminary version of this paper appeared in the proceedings of the tenth International
Computing and Combinatorics Conference (COCGON) 2004
** (Corresponding Author.) Computer Science and Automation Department, Indian In-
stitute of Science, Bangalore-560012, India. Email : sunil@csa.iisc.ernet. in
Alternate email id: sunil.cl@gmail.com Phone: +91-802932368 Fax: +91-80-3600683
*** Department of Computer Science and Engineering, Indian Institute of Technology,
Chennai-600 036, India. Email: swamy@shiva.iitm.ernet.in

ARS COMBINATORIA 92(2009), pp. 11-19



V : (u,v) € E}. For A C V, we use N(A) to denote the set | J,¢ 4 N(v) — A.
The subgraph of G induced by the vertices in A will be denoted by G[A].

The vertex connectivity k(G) of an undirected graph is defined to be the mini-
mum number of vertices whose removal results in a disconnected graph or a trivial
graph (i.e. single vertex). A subset S C V is called a separator if G[V — S] has
at least two components. Then, £(G) is the cardinality of the minimum separator.
Note that the complete graph K, has no separator and its (vertex) connectivity is
by definition » — 1.

Acut (A,V — A) where @ # A C V is defined as the set of edges with exactly
one end point in A. Thatis, (4,V —A) = {(v,v) € E:u€ A and v € V- A}.
In this paper we always use (4, B) instead of (4, V — A) for notational ease, i.e.
B always means V — A.

Definition 1. A vertex z € A is called a hidden vertex with respect to B (or with
respect to the cut (A, B)) ifand only if = ¢ N(B).

Definition 2. A cut (A, B) is called an internal cut of G if and only if there exists
a hidden vertex x € A and a hidden vertex y € B. Equivalently, a cut (A, B) is
internal if and only if N(A) # B and N(B) # A, i.e. N(A) is a proper subset of
B and N(B) is a proper subset of A.

Note that if z is a hidden vertex in A, then {z} U N(z) C A. In fact, the only
condition for (A, B) to be an internal cut is that there should exist a vertex z € A
and y € B such that N(z) C A and N(y) € B. Thus if we can find two non
adjacent vertices z and y, such that N(z) N N(y) = 0, then there exist internal
cuts in the graph : we just have to include {z} U N(z) in A and {y} U N(y) in
B and divide the remaining vertices arbitrarily. The reader can easily verify that
this can be done in 27~ H{=IUN @)~ I{s}UN W)l ways. Thus in general, the number
of internal cuts in a graph can be exponential.

1.1 Our Main Result

We present a structural theorem about internal cuts in chordal graphs. Let (4, B)
be an internal cut in a chordal graph G with connectivity x(G) = k. Let 7 be an
integer such that 0 < ¢ < k + 1. Then we prove that there exists a clique K; in G,
such that |K;| = k + 1, |K; N A| = iand |K; N B| = k+ 1 — . (Theorem 2).
An interesting special case of the above result is when ¢ = [&‘2'—1-_| . Then, the
theorem states that, irrespective of which internal cut (A, B) we consider, it is
always possible to find a clique of size k + 1, such that it is bisected by (4, B).
As of now, we are unable to present any specific applications for our theo-
rem. But we would like to point out that the chordal completions of graphs are of
great interest from the point of view of two important optimisation problems: the
treewidth and the fill-in problem. Given a graph G, the treewidth problem is to
find a chordal completion of G, so as to minimise the clique number. The fill-in
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problem seeks to find a chordal completion of G, that minimises the number of
edges added. Also note that, properties such as connectivity are monotonic, i.e. as
new edges are added, the property never decreases. Thus, the value of the prop-
erty in the chordal completion will be at least as much as in the original graph.
Structural understanding of chordal graphs, with respect to such properties turn
out to be useful, in making apriori inferences about the optimal chordal comple-
tions. (For example, see [3], where a lower bound for treewidth is derived in terms
of a generalised connectivity property.)

Moreover, chordal graphs are well-studied from various perspectives. For ex-
ample, the vertex separators in chordal graphs are well understood. But the corre-
sponding concept of edge separator, namely the cut (due to some reason) is very
little studied. In this paper, we attempt to understand chordal graphs, from the
perspective of edge cuts.

1.2 Another Result inspired by the Main Result

An immediate consequence of the result (Theorem 2) is that the size of every
internal cut has to be §2(x(G)?). This is because for i = [@J the internal
cut would be approximately “bisecting” a clique with x(G) + 1 vertices. After
observing this, we investigated whether a better result is possible. In Theorem
3 we prove a lower bound for the size of internal cuts in chordal graphs, namely
ﬂ%éw, which is better than what can be immediately infered from Theorem
2. We also show that this result is tight in the sense that there exist chordal graphs
with vertex connectivity «(G) and having internal cuts with exactly ﬂg’ﬂ%ﬁﬂ
edges.

The edge connectivity M\(G) of a graph G is defined to be the minimum num-
ber of edges whose removal results in a disconnected graph or a trivial graph. A
minimum cut or mincut is a cut consisting of A(G) edges.

It is well known that the following inequality (due to Whitney) holds in a
general undirected graph:

#(G) £ NMG) £ 46(G)

where 6(G) is the minimum degree of the graph. For a discussion of this inequality
and for related work see the chapter on connectivity in [6]. In [4], Chartrand and
Harary show that for all integers a, b, ¢, such that 0 < @ < b < ¢, there exists a
graph G with k(G) = a, \(G) = band §(G) =c.

We study this inequality when restricted to the class of chordal graphs. We
observe that when A(G) < &(G), every mincut in G is also an internal cut. Thus,
as a corollary of our result on internal cuts in chordal graphs, we show that there is
a “gap” between A(G) and x(G) in chordal graphs provided A(G) # 6(G). More
specifically, if A(G) # §(G), then A(G) > 1(2&%2&1_) This improves the result
in [1] which shows that \(G) > 2x(G) — 1, when A\(G) < §(G). And the lower
bound we obtain here is tight.

13



1.3 Preliminaries

Theorem 1. [See [6] for a proof.] Menger’s theorem : The minimum number
of vertices separating two nonadjacent vertices s and t is equal to the maximum
number of internally vertex disjoint s — t paths.

A bijection f : V — {1,2,--,n} is called an ordering of the vertices of G.
Then f(v) is referred to as the number associated with the vertex v, or simply the
number of v with respect to the ordering f. Given an ordering f of a graph G, we
define the following terms: Let A C V. The highest(A) is defined to be the vertex
with the highest number in A. Also lowest(A), second-lowest(A) etc. are defined
in a similar way. A path P = (w;,ws, ---,wg) in G is called an increasing path
if and only if f(w1) < f(ws) < -+ < f(ws). It is called a decreasing path if
and only if f(w;) > f(w2) > --- > f(wz). A single vertex can be considered as
either increasing or decreasing. A vertex u € N(v) is called a higher neighbour
of vif and only if f(u) > f(v). The set of higher neighbours of v will be denoted
by Np(v), i.e. Np(v) = {u € N(v) : f(u) > f(v)}.

An ordering f of G is called a perfect elimination ordering (PEO) if and only
if for each v € V, G{{v} U Np(v)] is a complete subgraph (clique) of G. Then
f(v) will be called the PEO number of v. It is well-known that an undirected
graph G is chordal if and only if there exists a PEO for G. (See[5].) A vertex v is
called simplicial if and only if N (v) induces a clique. Dirac observed that in every
chordal graph that is not a complete graph, there exist at least two non-adjacent
simplicial vertices. (In a complete graph, every vertex is simplicial). From this
observation, it is easy to infer the following: Suppose v is any vertex in a chordal
graph G. Then there exists a PEO f for G such that f(v) = n. (See [5], page
84). In fact more can be inferred from Dirac’s observation. (See also [7], page 8).
Let K be a clique in a chordal graph G. Then if V(G) — K # 0, there should
be a simplicial vertex z; € V(G) — K. Let f(z;) = 1. Now remove z; from G.
Clearly, the induced subgraph on the remaining vertices (say G') is also chordal
and thus the observation of Dirac is applicable to G’ also. Then we can find a
vertex o € V(G') — K, that is simplicial (as long as V(G') — K is nonempty).
Let f(z2) = 2. By repeating this procedure, one can get a PEO f for G such that
the vertices of K get the highest numbers, namely the numbers from » — | K| + 1
to n. We state this useful observation as a lemma.

Lemma 1. Let K be any clique in a chordal graph G. Then there exists a PEO f
of G such that the highest | K| numbers are assigned to the vertices of K. In other
words, n — | K|+ 1 < f(z) < n, for each vertex z € K.

Another well known characterisation of chordal graphs is in terms of minimal
separators. (A separator S of two vertices z and y is said to be a minimal separator
if no proper subset of S can separate z from y. Note that every separator of = and
y will contain a minimal separator of z and y).
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Lemma 2. A graph G is a chordal graph if and only if every minimal separator
of G induces a complete subgraph.

A chordless path from u to v is defined to be a path from u to v in G such that
no two non-consecutive vertices of the path are adjacent. The reader can easily
verify that if there is a path between u and v then there is a chordless path also.
For example, the shortest path between u and v has to be a chordless path. The
following observations from [2] are useful tools.

Lemma 3. (2] Let P = (w1, w2, -+, w) be a chordless path in a chordal graph
G and let w; = highest(P) with respect to a PEO f. Then (w1, w2, -, w;) is
an increasing path while (w;, w;11,- - - ,wy) is a decreasing path with respect to

Corollary 1. Let P = (w;,wa, - -, wk) be a chordless path and wy, = highest(P)
with respect to a PEO f. Then P is an increasing path with respect to f.

2 Internal Cuts in Chordal Graphs

Theorem 2. Let (A, B) be an internal cut of a chordal graph G with x(G) = k.
Then for eachi, 0 < i < (k + 1), there exists a clique K; such that |K;| = k + 1,
|JANK;|=tand |BNK;|=k+1—i. ‘

Proof:Letz € A and y € B be hidden vertices with respect to the cut (4, B).
(Since (A, B) is an internal cut, such vertices exists in A and B). Clearly z and y
are non-adjacent. Then by Menger’s Theorem (Theorem 1), there exist x(G) = k
internally vertex disjoint paths from z to y. If there are k internally vertex disjoint
paths, then there are k internally vertex disjoint chordless paths also. Let these
internally vertex disjoint chordless paths be Py, Py, - -, Pi.

Clearly, N(A) separates z from y. Thus there exists a minimal separator M C
N(A) C B that separates  fromy. By Lemma 2, M is a clique. Then by Lemma
1, there exists a PEO such that the highest numbers are assigned to the vertices of
M . Let f be such a PEO. Note that each path P/,1 < i <k, should pass through
M, since M is a separator of = and y. Let 2; be the first vertex at which P! meets
M. Let P; be the partial path from z to 2; of P;. Clearly, z; = highest(P;) (with
respect to the PEO f), since z; is the only vertex in P;, that belongs to M, and the
PEO f was selected such that the vertices in M got the highest numbers. Thus by
Corollary 1, P; is an increasing path.

Now we define a series of k+1 element subsets of V(G), namely Fo, Fy, - - -, F.
as follows. Let Fo = {z,y1,y2,---,yx} Where y; is the first vertex in P; af-
ter z. Note that each y; € A, since z is a hidden vertex in A. Clearly each y;
has a higher PEO number than that of «, since P; is an increasing path. Thus
{y1,92," -, yx} € Np(z). Thus Fp = {z,91, ¥, -+, ¥k} induces a clique of
size k + 1, that is completely in A.
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Now we will describe how to define F;,; from F;, for0 < ¢ < r. Letv; =
lowest(F;). Define F! = F; — {v;}. Suppose that the subset F; satisfies the
following properties.

1. |[Fil=k+1.

2. The vertices of F; induces a clique.

3. F; C ‘kP Moreover, |F’ N P;| = 1 for each path P;, 1 < j < k. (That
is, in F” there is exactly one “representative” vertex from each path P;).

Now let u; = lowest(F!) = second-lowest(F;). Suppose that u; is on path
P;. Now we define Fi; from F; as follows.

If u; = z;, the last vertex on path P;, then let F; = F,. That is, F; will be
the last subset in the series, in that case. Otherwise, consider the vertex w;, that is
placed just after u; on the path P;. Since P; is an increasing path (with respect to
), F(w;) > f(us). Also note that w; ¢ F;. To see this, note that w; ¢ Fj, since
|F{ N P;| = 1,and u; is already there in (F; N P;). Also, w; # v; = lowest(F}),
since f(w;) > f(ui) > f(v;). Thus w; is a vertex on P; that is not already in F;.
We define F;1; as follows.

Fip1 = Fi — {vi} U {w;}

Note that F},1 is obtained by replacing the vertex v;, the lowest numbered ver-
tex in F; with a new vertex w;. Thus |Fi41| = k+ 1. Clearly lowest(Fi41) = u;.
Also it is clear that since F; was assumed to induce a clique and w; is a (higher)
neighbour of u;, (Fi41 — {ui}) C Nh(u,) with respect to f. Thus Fj4, in-
duces a clique also. Clearly Fi4; C U’_1 P;.Note that Fj,, = Fi4y — {ui} =

F] — {4;} U {w;}. In other words, F,_,_1 is obtamed by replacing u; in F} by w;.
Remember that |F{ N P;| = 1, for each 5. Since we are just replacing the ‘repre-
sentative” vertex u; of Pj (in F}) by another vertex wi (that is also on the same
path P;), to obtain the new set F ¥+1, it follows that |[F},, N P;| = 1, for each P;,
1 < j < k. Thus the three conditions satisfied by F; are satisfied by F; . also.

From the inductive argument above, together with the fact that Fp satisfies all
the 3 properties stated above, it follows that each subset F; in the sequence defined
above satisfies those 3 properties.

Now we look at the last subset F;. in this sequence. Let u,, = lowest(Fy).
By definition of the sequence, u, = z,-, (i.e. the last vertex of P;), for some path
P;. We claim that F] = {21,22,"" zk} Suppose not. Then, since F;. should
contain exactly k vertices, and F. C U"'__l P;, there should be a vertex z,. € FJ,
that is on some path P, but not an end vertex of P, i.e. z, # 2. Since we had
selected 2; to be the first vertex at which P, meets M, z; ¢ M. But the PEO f
was selected such that the vertices of M got the highest numbers. It follows that
f(z1) < f(z;), contradicting the assumption that z; = lowest(Fy). Thus we infer
that F! = {21, 29, -, 2k}
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Clearly |Fo N A| = k + 1, and |F. N B} > k, since F! = {z1,22,-- 2} C
M C N(A) C B. Noting that at each step, we were replacing one vertex in F;
with a new one to get Fj,, it follows that for each value 7, 1 < i < k + 1, there
should be a F};, such that |F;; N A| = ¢, and [Fj, N B| = k+1 — . Let K; be the
clique induced by Fj;. Clearly K;; has the desired property. Now, to see that there
exists a clique Ko such that | Ko| = k+1, [KoNA| = 0and |KoNB| = k+1, just
interchange the role of = and y and observe that just as there is a clique induced by
Fy, comprising of z and its (higher) neigbours {y;, s, - - -, Yr }, that is completely
in A, there exists a clique that is completely in B comprising of v and its higher
neighbours. Hence the proof. B

As our next result we show that the number of edges in an internal cut of a
chordal graph is at least ﬁ)ﬁéﬁﬂl

Theorem 3. Let (A, B) be an internal cut of a chordal graph G with k(G) = k.
Then |(A, B)| > Xh).

Proof : For x(G) = 1, the lemma is trivially true because the graph is con-
nected and any cut will have at least one edge in it. So we consider the case when
&(G) > 2. Let (A, B) be an internal cut of G. By the definition of internal cuts,
there exist hidden vertices z € A and y € B. Since G is a k-connected graph,
by Menger’s theorem (Theorem 1) there are k internally vertex disjoint paths be-
tween z and y. Let P, ..., P denote these paths. For each P!, 1 < i < k, there is
a chordless path between z and y whose vertices are a subset of the vertices of P.
As z and y are hidden vertices, it follows that each chordless path has at least 4
vertices in it. Let these chordless paths be Py, ..., Py. Clearly, these are internally
vertex disjoint paths.

Let (u1,v1),...,(ux,vx) be the edges from P, ..., Py, respectively, such
thatfor 1 <7 < k, u; € A and v; € B. An edge is said to cross a cut if its end
points are not on the same side of the cut. The theorem is proved by showing that
for every pair of paths {P;, P;},1 < i # j < k, there is an edge e;; crossing the
cut (4, B), one of whose end points is on P; —{z, y}, and the other on P; —{z, y}.
As Py, ..., P are internally vertex disjoint paths between z and y, an edge cannot
be associated with two distinct pairs of paths. This counts (’;) edges crossing the
cut, which when considered along with the edges {u;,v;},1 < i < k, yields
(A, B)| > k(k2+1) - n(G)(nz(G)+1).

Let P;, P; be two distinct paths from the set { P}, .. ., P, }. We claim that there
is an edge e;; crossing the cut (A, B), one of whose end points is on P; — {z, y},
and the other on P; — {z,y}. Let us assume the contrary and prove our claim by
arriving at a contradiction. Let w; be the last vertex in A on P; that has an edgeto
a vertex on P;. (Note that w; # z, since the vertex appearing just after z, on P;,
itself has a neighbour on P;, namely ). By our assumption that no edge starting
from a vertex on P; and ending at a vertex on P; crosses the cut, N (wi1)NP; C A
In P;, on the path from w; to y, let wo be the first vertex in B that has an edge
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to a vertex on P;. Clearly, wy # y and by our assumption, N{(w2) N P; C B.
Let w, and w3 be the pair of vertices on P; that are closest to each other such
that wy € N(w;) N P; and wz € N(wg) N P;. Clearly, the portion of the path
P; from w3 to wy will not contain any other vertices of N (w1) or N(wz). Now,
the path from w, to we, the edge (w2, w3), the path from w3 to wy, and the edge
(w4, w;) form an induced cycle of length at least 4. (This easily follows from
the construction and the assumption that P; and P; are chordless paths). This is
clearly a contradiction since G is a chordal graph. Therefore, our assumption is
wrong and there exists an edge e;; that crosses the cut (4, B), with one end point
on P; and the other end point on P;. Finally, such an edge cannot have z or y as
one of its end points, since that would violate the assumption that P; and P; are
chordless. Hence the theorem. B

The above lower bound for the size of an internal cut of a chordal graph can
be tight. Consider the following graph for instance.

Example 1: Construct a graph G as follows. Let A be a clique of N; ver-
tices and B a clique of No vertices. Let uy,uz, -, ux be k vertices in A and
v1,v2,- -, Uk be k vertices in B. Add an edge from v; (1 < 4 < k), to each ver-
tex in the set {u;, %11, - -, ux}. Thus, v is connected to {u1, ug, -, ur}, vz is
connected to {ug, us, -+, uk} etc.

To verify that the above graph is a chordal graph, we describe a PEO f for
this graph. Let the last N3 numbers (i.e., the numbers from N2 + 1 to Ny + Np)
be given to the vertices of A in some order. Now let f(v;) = N2 — ¢ + 1, for
1 < i < k. Let the remaining vertices in B get the numbers from 1 to No — k
in any order. It is easy to verify that this ordering is a PEO. It follows that G is a
chordal graph.

Suppose that Ny, No > k. Then it is easy to verify that £(G) = k. (4, B)
is an internal cut since A contains vertices that are not adjacent to any vertex
in B and B contains vertices that are not adjacent to any vertex in A. Clearly
(A,B)|=k+k—1+---+1=50 u

3 Edge connectivity vs Vertex connectivity in Chordal graphs

In this section we show that if for a chordal graph G, A(G) < §(G), then A(G) >
H%l, where k(G) = k. The following fact is well-known.

Lemma 4. Let (A, B) be a mincut of a connected undirected graph G. Then G| 4]
and G|[B] are connected.

Lemma 5. Let (A, B) be a mincut of G, and let \(G) = |(A, B)| < 6(G). Then

there exists a vertex © € A, such that = ¢ N(B). Similarly Jy € B such that
y & N(A). That is (A, B) is an internal cut.
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Proof : Suppose that every vertex in A is adjacent to some vertex in B. Let u
be a vertex in A. Let F' = (A, B), be the mininum cut. We have

d() = [N(u) N B+ [N(u) 0 A| < [N(u) N B| + |4] - 1

But
|Fl =" [N(z)NB| 2 IN(u) N B| + 4] - 1
z€A

since each term in the sum should be at least 1 by the assumption that every vertex

-in A is adjacent to at least one vertex in B. It follows that d(u) < |F|. But by
assumption, d(u) > §(G) > |F|. Thus we have a contradiction and we conclude
that there is a vertex € A such that z ¢ N(B). By similar arguments, 3y € B
suchthaty ¢ N(A).m

Theorem 4. Fora chordal graph G, if N(G) # §(G), then M(G) > (_PESEM;(Q)-F_I)

Proof: By Lemma 5, when A\(G) < §(G), the mincut will be an internal cut. Then
the result follows from Theorem 3 W
The above theorem is tight. Consider the graph G in Example 1. If Ny, N, >

MEFL) 4 1, then it is clear that §(G) > M) = |(4, B)| > A(G). In this case it
is easy to verify that (A, B) is in fact the mincut. Thus A\(G) = HONx(G)+1) "20 1) for
this graph.
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