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Abstract. For a graph G, let D(G) be the set of all strong orientations of G.
Define the orientation number of G, d(G) = min{d(D)|D e D(G)}, where
d(D) denotes the diameter of the digraph D. In this paper, it has been shown that
J(G x H) = d(G), where x denotes the tensor product of graphs, /{ is a special type
of circulant graph and the diameter, d(G), of G is at least 4. Some interesting results
have been obtained using this result. Further, it is shown that J(P,- x K,) =d(P;) for
suitable r and s. Moreover, it is proved that J(C.- x K,) =d(C,) for appropriate r
and s.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For
v € V(G), the eccentricity, denoted by eg(v), of v is defined as eg(v)=
max {dg(v,z) |z € V(G)}, where dg(v,z) denotes the distance from v to
z in G. The diameter of G, denoted by d(G), is defined as d(G)= max
{ec(v) lve V(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which has
neither loops nor multiple arcs (that is, arcs with same tail and same head).
For v € V(D), the notions ep(v) and d(D) are defined as in the undirected
graph. For v € V(D), Nj(v) and Ng(v) denote the set of out-neighbours
and in-neighbours of v, respectively, in D. We call a digraph D to be k-
regular il d}(v) = dp(v) = k for every v € V(D). For z,y € V(D),
we write z —» y or y «— 2z il (z,y) € A(D). Forsets X, Y C V(D)
X — Y denotes {(z,y) € A(D): z€ X and y € Y}. For distinct vertices
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V1,V2,...,Uk, U} — Uz — ... — v represents the directed path in D with
arcs vy — v, Vo — U3, ..., Ug—1 — Ug. For subsets Vi, Va,..., Vi of V, we
write Vi = Vo — ... — V. for the set of all directed paths of length k¥ — 1
whose ith vertex isin V;, 1 <i < k. For z € V(D) and V' C V(D), by
dp(z,V’) < k, we mean dp(z,v’) <k, forall v’ € V"

For graphs G and H, the tensor product, G x H, of G and
H is the graph with vertex set V(G) x V(H) and E(G x H) =
{(u,v)(z,y) : uz € E(G) and vy € E(H)}. If G and H are connected and
nontrivial, then G x H is connected if and only if at least one of G and H
is nonbipartite. Clearly, the tensor product is commutative. For z € V(G),
the H-layer, denoted by H,, is the subset {(x,y):y € V(H)} of vertices of
G x H, and similarly, for y € V(H), the G-layer, denoted by G, of G x H
is {(z,y):z€V(G)}.

Let P,, Cn, K, denote the path, cycle and completc graph of order =,
respectively. Let V(P,) = V(Cr) = V(Ka) = {0,1,...,n ~ 1} and the edge
sets of P, and C, are E(P,) = {{i,i+1} : ¢ € {0,1,...,n - 2}} and
E(Cp) = E(P,) U {{n-1,0}}.

An orientation ofagraph G is adigraph D obtained from G by assigning a
direction to each of its edge. By abuse of notation, by D we mean an orientation
of G and also the digraph arising out of an orientation of G.

A vertex v is reachable from a vertex u of a digraph D if there is a directed
pathin D from u to v. Anorientation D of G is strong if any pair of vertices
in D are mutually reachablein D. Robbins’ celebrated one-way street theorem
[7) states that a connected graph G has a strong oricntation if and only if
G is 2-edge-connected. Throughout this paper, whenever an orientation of a
graph G is considered, we assume that G is 2-edge connected. For a 2-edge-
connected graph G, let D(G) denote the set of all strong orientations of G. The
orientation number of G is defined to be d(G) = min {d(D)|D e D(G)}.
In [5], d(G) — d(G) is defined as p(G).

Any orientation D in D(G) with d(D) = J(G) is called an optimal
orientation of G. The problem of evaluating the orientation number of an
arbitrary connected graph is very difficult as Chvdtal and Thomassen {2] have
shown that the problem of deciding whether a graph admits an orientation of
diameter 2 is NP-hard. Further, among other results, they have shown that
d(G) < d(2d+1) if d >3 and d(G) <6 if d = 2, where d is the diameter of
the 2-edge-connected graph G.

Goldberg [3] evaluated the extreme value of the diameter of a strong digraph
with n vertices and n + m arcs; he proved that if G is a 2-cdge-connected
graph with n vertices and n + m edges, where n > 4 and m > 1, then

dG) > ‘—3("':7_]‘1] . It is easy to see that if G is of girth g, then d(G) > g —1;

in particular, for Cj, J(C_,,) = g — 1. Again, it is casy to sce that if H isa
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spanning subgraph of G, then (T(H )2 J(G). But this kind of property is not
true for p, as p(Cy) = 1 < 2 = p(K,) and p(Cs5) = 2 > 1 = p(Ks). The
parameter cf(G) has also been studied in various particular classes ol graphs
including complete n-partite graphs and cartesian product of graphs (see the
references in [5]). In [6], we have determined the exact value of p(K, x Kj)
for (r,s) ¢ {(8,5),(3,6),(4,4),(5,3),(6,3)}. It is shown that for r < s and

(r,s) ¢ {(3,5),(3,6),(4,4)},

2 if(r,s) € {(2,3),(2,4)},
pKrx Kg)=( 1 if (r, 8) € {(3,3),(3,4)},

0 otherwise,
and for the exceptional values, (r,s) € {(3,5),(3,6),(4,4)}, p(K, x K,) < 1.
Optimal orientations have variety of applications, see [5]. For further results on
orientations of graphs, see a recent survey by Koh and Tay [5)].

Notations and terminology not defined here can be seen in [1] or [4].

Let n be a positive integer and let L be a subset of {1,2,...,|3]}. A
circulant X(n;L) is a simple graph with vertex set V(X (n; L)) = Z, and
edge set E(X(n; L)) = {{i,i+ ¢} :i € Zy,, ¢ € L}, where Z, is the set of
integers modulon.

If L ={1,2,...,[3]}, then X(n;L) is Kn. If n is even and if L =
{1,2,..., 3 — 1}, then X(n;L) is isomorphic to K, - F', where F' =
{{0, 3} {1,3+1}, ..., {3 —1,n—1}} is a I-factor of Kn

In Sections 2, 3 and 4, we focus on the orientation numbers of G x X(n; L),
for some L C {1,2,...,[-’21J}, P x K, and C, x K,, respectively. As Py x K
= K3 x Ks and P, x K, is disconnected, we assume in Section 3 that r > 3
and s > 3; againas C3x K; = K3 x Ky and as C, x Ky is either disconnected
(if r is even) or isomorphic to Cy. (if r is odd), we assume in Section 4 that
7 >4 and s > 3. One of the consequences of the main theorem of Section 2 is:
if d(G) >4, then p(G x K,) =0, forevery r=7 or r>9.

The results of Sections 3 and 4 are, respectively:

Theorem A.

1. p(Pr x Ks)=0 when r >5 and s 25, or r€ {3,4} and s>9, or r>8
and s=4.

p(Prx K5) <1 when r € {3,4} and s € {5,6,7,8), and p(P; x K;) < 1.
p(P3 x K3) = 1 = p(P3 x Ky).

. p(Prx K3) <2 when r 25, p(Psx Kq) <2 and p(Ps x K4) < 2.

5 1 < p(Psy x K4) <2 and p(P4xK3)—2

Theorem B.

L p(CrxKs) =0 whenr>4and s >9 orr>8andsce {5678},
orr >16 and s = 4, or r € {4,5} and s € {5,6,7,8}, or
(r.s) € {(4,4),(14,4),(6,7),(6,8)}.

TN
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2. p(Cr x K5) <1 when (r,s) € {(5,3),(5,4),(6,5),(6,6),(7,5),(7,6),(7,7),
(77 8)’ (8’ 4)1 (g) 4)‘ (l 1, 4)' (12)4)| (13,4)| (15) 4)}'

3. o(Cyx K3)=1.

4. p(Cr x K3) <2 when > 7 and p(C,; x K4) £2 when r € {6,7,10}.

5. p(Cs x K3) =2.

2 Optimal orientations of G x X(n; L)

In this section, we find some sufficient conditions for p(G x X(n; L)) =0

For ¢ > 3, a subset L of Z, is called an Z¢-set, if j € I, then
(n j) mod n ¢ L and every element ¢ € Z, can be written as (a1 +azx+
+a.¢)modn for some ay,az,...,a: € L; for t =2, L isan 72 - set, if
j € L, then (n—j) modn ¢ L and every element i € Zn\{O} can be
wnt.ten as (aj + ag)modn for some aj,ap € L. For an Z¢-sct L, define

={iel:0<i<B U{n-i:ie Land} <z<n}

Forz € Z, and A C Z,, wedefine z + A = {(z+a)modn : a € A}.
For a,b € Z,, [a,b] = {a,(a+1)modn,(a+2)modn,...,b}.

Lemma 2.1. If n > 12 is even, then {2,3,..., [-}] +1,3+1} isan Z3 - set
and {2,3,6,9} is an Z3;- set.

Proof. Let n > 12 be even. Observe that (3 +1)+ (3 +1)+([2,3] = [4,5),
2+2+(2,[2]+1] = [6,[3] +5]. 's+([ ]+1)+[2 [21+1] 2 [[§]+6,g+5],
3+(2+1D)+(2,[3]+1) = [3+6,[% ]+o] and ([2 ]+1 )+(3+1)+(2,[2]+1] 2

[3"]+4 3). As [4,5)ul8, [2 ]+5]u[[ 146, 2+5)U[3+6, [32] +35]u [‘"]+4,3]
= Z, and each element in [4,5]U[6, [ 1 +35]uf[2] +6,2 +5U[Z+6, (3] +
5]U[[2~] +4,3] is the sum of three elements, the result follows.

For n =10, the verification is similar. [ ]

Lemma 2.2. [f n =17 or n > 11 is odd, then {1,2,..., |2], 251} is an
Z3 - set and {2,3,4,8} is an Z3 - set.

Proof. Let n =7 or n > 11 be odd. Now the proof follows from

"5’ +25l + (1,3 = (0,2, 1+ 1+ [L[2] = B[22 2+
2]+ 1,l+Jl 2 [[=52), 23] 1424 2 = —'5— 2+ 230 +
2,125 = (B0, [37)] and {254 252 4 (3, [2£2]) 2 [[30] )

(if n211).
For n =9, the verification is similar. [ ]

Lemma 2.3. (1). If n > 12 is even, then {2,3,..., 3 -2,3+1,n—-1} is
both an Z2 - set and an Z3 - set.

(2). If n>9 is odd, then {2,3,..., 25, n — 1} is both an Z2 - set and an
Z3 - set.
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Proof of (1). As {2,3,..., [2 ]+1 241} € {23,.. 2,2+1n—1}
{2,3,. .,—-—2.2+1n l}lsanZ set byLemma?l {23 . -2, +
1,n—1} isan Z2-set,since (n—1)+(2,4] = [1,3], 2+[2,% 2] = (4,%],
(12-'—'2)+[3 5-2] [§+1 n-— 4] and ('§+1)+[7—4 -2'—2] [n—3,n—1].
Proof of (2). {2,3,...,%},n — 1} is an Z3-set, since 23! + 232 4
[2,4] = [0,2], (n-—l)+2+[24] = [3,5)], 2+2+|2 251l = 6,24%) and
243+ 2,250 o[22 ,n—l] (if n>9). Clearly, {23 ,—z—l-,n—l}
1s an Z? - set, since (n—l 24 = [1,3], 2+2,27] = [4,2§3] and

Bl 325 = (25,n-1). n

Theorem 2.1. If d(G) >4 and L is an Z3 - set, then p(G x X (n; L)) = 0.

Proof. Let d(G) = d' and let H = X(n;L). Orient G x H so that
for every edge zy of G, (z,79) — {(y,i+€) : ¢ € L}. Let D be
the resulting digraph. We shall show that d(D) < d'. This together with
d(G’ x H) > d(G x H) > d(G) = d' imply that d(G x H) = d’. To show
that d(D) < d, it is enough to show that the eccentricity ep{(z,i)) < d'
for each (z,7) in V(D). By the nature of the orientation, we consider (z,0)
instead of (z,i).

Claim 1. For z€ V(G), z#z, and i € Z,, dp((x,0),(z,1)) < d'.

As d(G) = d', there exists an (z,z)-path z = vp,vy,...,Vk—1,vk = 2 of
length k (< d') in G. Since L isan Z3-set, i = (a; + a2 + az) modn for
some aj,az, a3 € L.

Case 1. k£ > 3.

The existence of the path (z,0) — (vy,a1) — (v2,e14+a2) — (v3,1) in D
proves thal dp((z,0), Hy,) < 3. Observe that, for p < k, if dp((z,0), H, ,) <
p, then dp((z,0), Hy,,,) <p+1. Hence dD((a:,O) H;) <k, since k > 3.

Case 2. k = 1.

The existence of the path (z,0) — (vi,a1) — (z,a1+a2) — (v,%) in
D proves that dp((z,0), H,,) < 3.

Case 3. k = 2.
By Case 2, dp((z,0), H,,) < 3. Hence dp((z,0), H,,) < 4.
This completes the proof of Claim 1.

Claim 2. For i€ Z,\{0}, dp((z,0),(z,i)) <4.

Let zy € E(G). By Case 2 of Claim 1, dp((z,0),H,) < 3, and hence
dp((z,0), H;) < 4. This proves Claim 2.

Hence d(G x H)=d' and therefore p(G x H) =0. [ |
Remark. Suppose that p(G x X(n;/)) = 0 for a graph G with d(G) > 4
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and a subset L of {1,2,...,]{%]}, then, clearly, every element i € Z, can

be written as (a3 + as + az) modn for some
n—a €L, i€ {1,2,3}.

Let K.(s) denote the complete r-partite

has s vertices. Note that K,(s) is isomorphig
{12 (BN k(D < ks

where L
Kor — F', where F' is a 1-factor of Ko,.

Corollary 2.1. Let G be a graph with d(G)
L. Ifr=7o0orr2>9, then p(CG x K;)=0.
2 If r>5, then p(G x K.(2)) = 0.

3. If r>5, then p(G x K.(3)) =0.

Proof of (1). If r =7 or r > 9, then the
2.1 and 2.2. Consequently, p(G x X(r; L)) =

p(G x K;)=0.

Proof of (2). If » > 5, then L {1,2,.
Hence p(G x K(2)) =0, by Theorem 2.1.

Proof of (3). If » > 5 isodd, then L = {1,
L is an Z3,-set, and hence p(G x K(3)

iseven,then L = {1,2,...,r= 1,7+ 1,7+2,.

and hence p(G x X(3r;L)) = 0, by Theore

to K.(3)— F, where F isa 1-factor of K.(3), o(G x K,(3))=0.

a,as,a3 with either a; € L or
|

graph in which each partite set
to the circulant graph X (rs; L),
. |2]}. In particular, K.(2) &

TV

re is an Z3-set L, by Lemmas
= 0, by Theorem 2.1, and hence

e, =1}

L is an Z3, - set.

2,‘..,r—1,r+1,r+2,...,3'2"

= 0, by Theorem 2.1. If r > 6
¥ -1} = L isan Z3, - set,
2.1; as X(3r; L) is isomorphic
|

The next theorem assures that even if the diameter of G is less than 4 still
we may get optimal orientation in some special classes of graphs.

Iet GT denote the set of graphs G such that every vertex of G is in a cycle

of length 3 (also called a triangle) in G and |

such that for any pair of vertices a and b in (

an (a,b)-path oflength 3 in G.

Theorem 2.2. Let [, be an 73 - set and G
1. If d(G) = 3, then p(C x X(n; L)) =0.
2 If d(G) = 2, then p(C x X(n; L)) < 1.

3. If d(G) = 2 and there is an edge of G whi

p(G x X(n;L)) =0.

Proof. Let H = X(n; 1) and let D be the

the orientation described in Theorem 2.1. Ths

is similar to that of Theorem 2.1.
Claim 1. For ze V(G), z#z, and i € Zy,

Clearly, there exists an (z, z)-path z = vg
(€ d(G)) in G.
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Case 1. k €{1,3}.

The paths of D as in Cases 1 and 2 of Theorem 2.1 prove, respectively, that
dp((z,0), Hy,) <3 and dp((z,0), Hy,) < 3.

Case 2. k = 2.

As G € G3, there exists an (z, z)-path of length 3 in G, and hence the
proof follows by Case 1.

Claim 2. For ie Z,\{0}, dp((z,0),(z,i)) <3.

As G € @7, thereis a triangle, say, zyzz containing z in G. The existence
of the path (z,0) — (y,a1) — (2z,a1+a3) — (z,%) in D proves that
dp((z,0),H,) < 3.

By Claims 1 and 2, we have d(D) < 3 and hence p(Gx H) =0 if d(G) = 3
and p(Gx H) <1 if d(G) = 2. If d(G) = 2 and there is an edge of G which
is not in a triangle of G, then d{G x H) = 3 and hence p(G x H) =0. [ ]

There are many graphs in the class G7 N G3. For example consider the graph
G with V(C) = {wi,...,wpZ1,....T,¥1,--1Yr 21,..., 25}, PG, T and s
are at least 2 and E(G) = {wiz; :i€ {l,...,p},j € {1,...,q}}U{ziy; : i €
{1,...,q},j€{l,...,r}}U{yizj:iG {L....rhje{l,...,s}} U {ww; :i,j €
{1,....,phi# 7}V {wy; 45 €{1,...,r},i#3}. Then C € GT N G and
d(G) = 3.

For n > 3, the graph H is defined as follows: V(H) = {uy,...,un,v1,...,
va} and E(H) = {u; i€ {1,...,n}} U {wuy,viv; 0 4,5 € {1,...,n},i #
j}. In otherwords, H is the cartesian product [4] of K, and K,. Then
H € 6T n G}, d(H) = 2 and for any i € (1,...,n}, the edge wv; is
not in a triangle of H.

Theorem 2.3. Let L be both Z2 - set and Z3 - set and let G € G3.

1. If d(G) = 3, then p(G x X(n;L)) = 0.

2. If d(G) = 2, then p(G x X(n; L)) < 1.

3. If d(G) = 2 and there is an edge of G which is not in a triangle of G, then
p(G x X(n;L)) =0.

Proof. et H = X(n;L) and let D be the digraph obtained from G x H by
the orientation described in Theorem 2.1.

Claim 1. For 2€ V(C), 2# =z, and i€ Z,, dp((z,0),(z,1) <3.

Il dg(z, 2) = 2, then by hypothesis, there exists an (z, z)-path of length 3
in G. Now the proof of this claim is similar to the prool of Claim 1 of Theorem
2.2.

Claim 2. For i€ Z,\{0}, dp((z,0),(z,i)) < 2.

Let zy € E(G). Since I, is an Z2-set, i = (a; + as)modn for some
n
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aj,a2 € L. The existence of the path (z
guaranteed by the orientation, proves that
Claim 2.

Claims 1 and 2 complete the proof of d(D)

Note that, it can be verified that for n >
Z2 -set and for t > 4, the set {1,2} isan Z;

Theorem 2.4. If d(G) >t+1, Lt 24, and
AG x X(n; L)) =0.

Proof. Similar to the proof of Theorem 2.1.
As Kg—F, = X(8;{1,2,3}) and K¢ — I 3

|0) - (yral) - (Itz) in D|
Ip((x,0), Hz) < 2. This proves

< 3 and hence d(D) = 3. a
8, the set {1,2,...,[%]} is an

41 - set.

[ is an T - set, then

|
X(6;{1,2}), where F\ and F»

are 1-factors of Kg and Kjg, respectively, we have the following

Corollary 2.2. If d(G) = 5, then p(G x
d(G) > 6, then p(C x Kg) =0.

Let G be a graph and let n be a positive

{1,2,...,]3]} and p(G x X(n; L)) =0}. If L
of L contained in {1,2,...,[3]} isalsoin 4
l(he results of this section, we raise

set of minimal elements of €(G;n). In view of
the following:

Problem. Given a graph G and a positive in

3 Optimal orientations of

As the subgraph induced by any two conse
isomorphic to K ; — [o, where Fy = {(3, k)(
K, wehave

Lemma 3.1.

3,

r—1,

il r e

In this section, we determine p(P.x K) for|

2.1 and 2.2, p(P. x K;) =0 when r > 5 and

r>5and s=7,0or r>7 and s =6, or
look at the left over cases.
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r X K

utive K-layers of P x K, are
i+ 1,k) 1 k € Zs} is a 1-factor of

{2,3} and s > 3,
4 and s > 3.

r > 3 and s > 3. By Corollarics
s>9% orr>6 and s=8, or
r > 6 and s = 5. Next we shall




Lemma 3.2. If d(G) € {2,3} and G has a vertex of degree 1, then both
d(G x K3) and d(G x K;) are at least 4.

Proof. Clearly, d(Gx K3) = 3 = d(Gx K4). If possible assume that there is an
orientation D of G x K,,, n € {3,4}, sothat d(D) = 3. Let z be a vertex of
degree 1 in G and let Ng(z) = {y}. If (z,7) has exactly one out-neighbour,
say, (y,k), k € Z,\{j}, then dp((z,7),(z,k)) > 4, a contradiction. Hence
d5((z,7)) # 1. Similarly, dp((z,7)) # 1 (can be obtained by considering the
converse digraph of D). This implies that n ¢ {3,4}, a contradiction. [ |

Corollary 3.1. p(Ps x K3) = 1 = p(P3 X K4) and 1 < p(Psq x K4) < 2.

Proof. As d(P3 x K3) = d(Ps x K4) = d(Py x K4) = 3, it is enough to show
that d(Ps x K3) = 4, d(Ps x K4) = 4 and 4 < d(P; x K;) < 5.

By Lemma 3.2, ef(Ps x K3) > 4. The digraph Ds3 obtained by the
orientation (0,7) — (1,7 +1), (1,7) = {(0,5 +1), (2,7 +2)} and (2,5) —
(1,7 + 2), where j € Z3, shows that d{Ps x K3) < 4.

By Lemma 3.2, d(Ps x K;) > 4. The digraph D34 obtained by the
orientation (0,5) — {(1,7+1), (1,7 +2)}, (1,7) = {(0,7+1), (2,7+1), (2,5 +
3)} and (2,7) — (1,5 +2), where j € Z4, shows that d(P3 x K;) < 4.

By Lemma 3.2, J'(P,, x K4) 2 4. The digraph D44 obtained by the
orientation (0,5) — {(1,7 +1),(1,7 +2)}, (1,7) — {(0,7 + 1),(2,5 + 2)},
@3) = {(L3+1), (1,5 +3), (3,5 +1),(3,5 + 3)} and (3,7) — {(2.5 +2)},
where j € Z4, shows that d(Py x K4) < 5. (]

Lemma 3.3. p(P; x K3) = 2.

Proof. As d(FP; x K3) = 3, to complete the prool, it is enough to show that
J(P4 x K3) = 5. The digraph D, 3 obtained by the orientation (0,5) — (1, 5+1),
(1,7) = {(0.,5+1), (2,5+2)}, (2,7) = {(1,7+2), 3.5+ 1D}, (3.5) = (2,5+1),
for j € Z3, shows that dﬂ(P‘, x K3) < 5. Next we show that J(P4 x K3)>5. If
possible assume that there is an orientation D of Py x K3 so that d(D) < 4.
Clearly, for i € {0,3} and j € Z3, d§((i,5)) = 1 = d5((,7)).

Claim 1. For i € {1,2} and j € Z3, d}((i,5)) = 2 = dp((3,7)).

By the symmetric nature of the graph P, x K3, it is enough to verify
Claim 1 for the vertex (1,0). First we suppose that df((1,0)) = 1. If
NE((1,0)) is {(0,1)} or {(2,1)}, then dp((1,0),(0,2)) > 4, a contradiction,
and if NJ£((1,0)) is {(0,2)} or {(2,2)}, then dp((1,0),(0,1)) > 4, again
a contradiction. Hence dj((1,0)) # 1. Similarly, dj((1,0)) # 1 (can be
obtained by con51dermg the converse digraph of D) and therefore d[,((1,0)) =
2 = dp((1,0))
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Claim 2. For i € {1,2} and j € Z3, the two out-neighbours of (Z,7) are in

different Py-layers of D.

Again, by the symmetric nature of Py x
the vertex (1,0). By Claim 1, |NJ((1,0))|
in a Py-layer, then NF((1,0)) is {(0,1), (2,
loss of generality, assume that N} ((1,0)) 3

K3, we prove Claim 2 only for
= 2. If NA((1,0)) is contained
1)} or {(0,2), (2,2)}. Without
= {(0,1), (2,1)}. Consequently,

N5 ((1,0)) {(0,2), (2,2)}. We now
dp((1,0),(0,2)) > 4, a contradiction. This ¢

Claim 3. For i € {1,2} and j € Z3, thet
different K3-layers of D.

Once again, by the symmetric nature of Py

ave,
tradiction establishes the claim.

(0,1) — (1,2). Hence
o out-neighbours of (i,j) are in

x K3, we prove Claim 3 only for

the vertex (1,0). If NJ((1,0)) is contained in a Kp-layer, then N7 ((1,0)) is

{(0,1),(0,2)} or {(2,1),(2,2)}.

Case 1. If NA((1,0)) = {(0,1),(0,2)}, thg
We now have, (0,1) — (1,2) and (0,2)
(1,2) - (2,1), (1,1) = (2,2), (2,1) «
d}((3,0)) = 2, a contradiction.

Case 2. If N5((1,0)) = {(2,1),(2,2)}, the
For the converse digraph of D, Case 1 1}

n Np((1,0)) = {(2,1),(2,2)}.
— (1,1). By Claims 1 and 2,
3,0) and (2,2) — (3,0). Now

n Np((1,0)) = {(0,1),(0,2)}.
nappens and therefore again a

contradiction. Thus both the cases lead to contradictions, and hence the proof

of Claim 3 is complete.

If any one of the edges of P; x K3 is oriented, then any strong orientation

arising out of it satisfying Claims 1, 2 and
converse digraph. Note that D;3 and its

(the required isomorphism f is f((f,0)) 3
f((3,2)) = (3,1); 7 € {0,1,2,3}). But d(D4,3)
contradiction. Hence J(P,, x K3) 2 5 and this

Lemma 3.4. If s> 9, then p(P; x K,) =0.
s € {5,6,7,8}.

Proof. Orient P3 x K, so that for any j €
3

2), ..., (Li+ {2, Li+[EED) (L5 -
[£52]), (0,7 + [=5L]), (2,5 +2), (2,5 + ), ..

=z
(2,5) = {(1,7+2), (1,7 +3), ..., (1,7 + |55
even, orient (0,7) — (1,54 $) and (2,5) — (
digraph.

3 is isomorphic to D43 or its
converse digraph are isomorphic
2 ('L, 0)) f((t’l)) = (l,2) and
= 5 and this yields the required
proves J(P4 x K3) = 5. =

Furthermore, p(Ps x K;) <1 if

Zs, (0,5) —» {(1,j+1),(1L,5+
t {(0,5+1), (0,5+2), ..., (0,5 +
L, (2,7 + [‘—Q—I-J). (2,7 - 1)} and
) (1,7 = 1)}. In addition, if s is
,J+%). Let D be the resulting

We assert that if s > 9, then d() = 3. To show this, by the nature of the

orientation, it is enough to show that the ec
(1,0) and (2,0) are all equal to 3. Asitisa
the reader. Also, for s € {5,6,7,8}, it can be
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sentricitics of the vertices (0,0),
outine verification, we leave it to
verified that d(D) =4. [ ]




Lemma 3.5. [f s 29, then p(Py x K;) =0.

Proof. Orient Py x K, so that for any j € Zs, (p,7) — {{g,7 +1), (g,7 +2),
o (g3 + | 552]), (9.5 + [#5])} whenever (p,q) € {(0,1),(1,0),(2,3),(3,2)}
and (p,7) = {(9.5+2), (@3+3), ..., (¢.5+[25*]), (.5 —1)} whenever (p,q)
€ {(1,2),(2,1)}. In addition, il s is even, orient (0,7) — (1,7 + §) and (2,5)
- {(1,7 + $),(3,7+ §)}. Let D be the resulting digraph. It is easy to verify
that the eccentricities of the vertices (0,0), (1,0), (2,0) and (3,0} are all equal
to 3, and hence d(D) = 3. u

Lemma 3.6. If s€ {5,6,7,8}, then p(Py x K,) < 1.

Proof. Orient Py x K, so that for any j € Z;, (p,7) — {(¢,5+1), (¢,7 +2),
o (@d + [222]), (0.5 + [552])} whenever (p,q) € {(0,1),(1,0)}, (p,5) —
{(7+2), (g5 +3), ..., (@3 + |%5]) (¢,5 = 1)} whenever (p,q) € {(1,2),

(2.1)} and (p.3) — {(@.3 + [5]), (0.3 + [52]), ..., (g,5 — 1)} whenever
(p,9) € {(2,3),(3,2)}. In addition, if s is even, orient (0,5) — (1,5 + §) and
(2,7) = {(1,7+ %), 3,7+ §)}. Let D be the resulting digraph. It is easy to
verify that d(D) = 4. ]

Lemma 3.7. If s € {5,6,8}, then p(Ps x K;)=0.

Proof. Orient P x K;, s € {5,6,8}, so that for any j € Z,, (p,j) —
{(g.7+1), ..., (@i +[%55*])} whenever (p,q) € {(0,1),(1,0),(2,3),(3,2)} and
(p!J) - {(Q1J+2)! ] (Q1j+ls§‘,|)t (qh]_l)} whenever (P, Q) € {(1,2),(2, 1)!
(3,4),(4,3)}. In addition, if s € {6,8}, orient (0,5) — (1,57 + %), (2,5) —
{(1,7 + %),3.5+ %)} and (3,7) — (4,5 + §). It can be verified that the
resulting digraph D is of diameter 4. |

Lemma 3.8. p(Ps x Kg) = 0.

Proof. Orient Pg x Kg so that for any j € Zg, (p,7) — {(g,7+1), (g,7 +2)}
whenever (p,q) € {(0,1),(1,0),(2,3),(3,2),(4,5),(5,4)} and (p,j) — {(q,5 +
2), (g,7 + 5)} whenever (p,q) € {(1,2),(2,1),(3,4),(4,3)}. In addition, orient
(0,7) = (L7 +3), (24) = {(1.j+3).(3,7+3)}, (3,5) = (4,5 +3) and
(4,7) — (5,7 +3). It can be verified that the resulting digraph D is of diameter
5. ]

Lemma 3.9. If r > 8, then p(Pr x K4) = 0. Furthermore, p(P; x K4) <1,
p(Ps x K4) <2 and p(Ps x Kq) < 2.

Proof. Orient P, x K4 so that for any i € {1,2,...,r =2} and j € Zy, (i,7)
= (1,541, (0,7)—=(1,741), (r=1,7) = (r=2,7+1). In addition, (z,7)
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— (i£1, 5+4-2) whenever i iseven, (0,5) — (1,

whenever r is odd. Let D be the resulting
verificationof d(D) = r—1 if r > 8, d(D) 5

if r = 5.

Lemma 3.10. If r > 5, then p(Pr x K3) < 2.

Proof. Let (a,b) € {(0,1),(1,0),(2,3),(3,2),

(r—1,7=2)} ilriseven and (a,b) € {(0,1),(1

(r-8,7—-2),(r-2,r=3)} ifris odd, and let
(5,6),(6,5),...,(r=3,r=2),(r—2,r-3)} ifr
(3’ 4): (41 3)| (51 ﬁ)t (6$ 5)) LR (T—2,7‘—-1), (‘l’—l,

7+2) and (r—1,35) = (r—2,7+2)
digraph. We leave the routine
= 7 if r € {6,7} and d(D) = 6
|

4,5),(5,4),...,(r=2,7 - 1),

,0),(2,3),(3,2),(4,5),(5,4), ...,
c,d) € {(1,2),(2,1),(3,4),(4,3),
js even and (c,d) € {(1,2),(2,1),
r—2)} ifrisodd. Orient Prx K3

so that for any j € Z3, (a,j) = (b,5+ 1) and (¢, J) — (d,5 +2). Let D be

the resulting digraph. It can be verified that d(D) = r + 1.

Combining all the results of this section, we have the proof of Theorem A.

4 Optimal orientations of (

As the subgraph induced by any two conse
isomorphic to K, — Fo, where Fo = {(i,k)
K s, we have

Lemma 4.1.
2, if r =3 and s
_ 3, if (T’, S) = (3) 2)
d(Cr x K;) = |5), ifr >6 and s
T if r is odd and

In this section, we consider p(Cr x K), 1
2.1and 2.2, p(C, x K;) = 0 when r > 8 an
or r > 8 and s 7, or r > 12 and s o
Lemma 2.3 and Theorem 2.3 (3), p(Cs x K
Next we shall consider small values of r and

Lemma 4.2. d(Cox x K3) <k+2.

Proof. Orient Cqr x K3 as [ollows: for an]
{G+1,5+1), (i-1,7+2)} il 1 is even and (
if ¢ is odd. Let the resulting digraph bg

d(Dyye3) < k+2.
For k >3, d(Ca x K3) =k, so we have
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L
r X K

cutive K, -layers of C, x K are
i+ 1,k):k€Z,} isa l-factor of

Z 3‘

or r € {4,5} and s > 3,
2 3,

s = 2

>4 and s > 3. By Corollaries
ds>9 orr>10and s = 8,
6, or r > 10 and s 5. By
0 when s > 11 or s = 9.

S.

v i€ Zoy and j € Zz, (i,7) —

) =~ {G+1,5+2), G- 1,5+ 1))
Dy, 3. 1t can be verified that




Corollary 4.1. If k >3, then p(Cau x K3) < 2. [ ]
Lemma 4.3. p(C4 x K3) = 1.

Proof. As d(Cy x K3) = 3, to (,omplet.e the proof, it is enough to show that
d(C4 x K3) =4. By Lemma 4.2, d(Cy x K3) < 4.

Next we show that d(04 x K3) > 4. If possible assume that there is an
orientation 1 of C4 x K3 so that d(D) = 3.

Claim 1. d}((i,5)) = 2 = dp((5,5)) for all (i,5) € V(Ca x K3).

If there exists a vertex (i,7) such that (4, ;) has exactly one out-neighbour,
say, (i+1,5+1), then dp((i,5), (i, 5+1)) > 3, a contradiction. Hence for any
(i,3), db((i,5)) # 1. Similarly, d5((i,5)) # 1 (can be obtained by considering
the converse digraph of D) and therefore d},((i,7)) = 2 = dp((,5)).

Claim 2. For any vertex (i,7), the two out-neighbours of (i, ) are in different
Cs-layers of D.

If there exists a vertex (4, ) such that N} ((i, 7)) is contained in a single Cj,-
layer, then Nj((4,5)) is {(i+1,5+1), (1+3 _7+l)} or {(i+1,7+2), (:+3,5+2)}.
Without loss of generality, assume that N} ((3,7)) = {(i+1,5+1), (i+3,5+1)}.
But then N5 ((4,7)) = {(i+1,7+2), (i+3, 7+2)}. Consequently, dp((3, ), (i, 7+
1)) > 3, a cont.ra.dlcmon

Claim 3. For any vertex (i,7), the two out-neighbours of (i, ) are in different
K3-layers of D.

If there exists a vertex (4, 7) such that N7 ((i, 7)) is contained in a single K-
layer, then Nj((4,7)) is {(i-+1,5+1), (i+1,5+2)} or {(i+3,7+1), (i+3,5+2)}.
Without loss of generality, assume that N5 ((3,5)) = {G+1,j+1), (i+1,5+2)}.
Consequently, N;((1,7)) = {(i +3,5+1),(i +3,5+2)}.

As the vertices (4,7), (i,7+1) and (3,7 +2) are in the same partite set of
the bipartite graph Cy x K3, dp((i, 7), {(¢,5+1),(i,7+2)}) < 2, and therefore
(i+1,742) — (i,5+1) and (i+1,541) — (i,5+2). By Claims 1 and 2, we have
((+1,541) = (i42,5), (i+1,5+1) « (G+2,7+2), (i+1,7+2) = (i+2,5)
and (i+1,j+2) — (i+2,j+1). Now dp((i+1,5+1),(i+1,7+2) > 3, a
contradiction. This contradiction proves Claim 3.

If any one of the edges of €y x K3 is oriented, then any strong orientation
arising out of it s'lmfylng Claims 1, 2 and 3 is isomorphic to D,1 3 OT its converse
digraph. Note that D4 3 and its converse digraph arc isomorphic (the required
isomorphism f is f((%,7)) = (i + 1,7)). But d(D4'3) = 4. This yields the

required contradiction. Hence J(C.; x K3) >4 and this proves d(C, x K3)
=4, B

Lemma 4.4. p(Ce x K3) =
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Proof. By Corollary 4.1, p(Cs x K1) < 2.

Next we show that p(Cs x K3) 2 2 ie., d

that there is an orientation D of Cg x K3 wi

Claim 1. d},((i,7)) = 2 = dp((z,7)) for all

If there exists a vertex (i,7) such that (¢,3

say, (i-+1,5+1), then dp((i,5), (i+5,+2)) >
(i,3), db((i,5)) # 1. Similarly, dp((i,5)) #
the converse digraph of D) and therefore d},

Cs X K3) > 5. I possible assume
th d(D) < 4.

(4,7) € V(Ce x K3).
has exactly one out-neighbour,

4, a contradiction. Hence for any
1 (can be obtained by considering

(,5)) = 2 = dp((i,4)).

Claim 2. For any vertex (i,j), the two out-ngighbours of (%,7) are in different

Ce-layers of D.

If there exists a vertex (3, ) such that NJ(

1,7)) is contained in a single Cs-

layer, then N7((i,4)) is {(i-+1,5+1), (i+5,341)} or {(i+1,5+2), (i+5,5+2)}.

Without loss of generality, assume that N} ((i,
Butthen N;((3,4)) = {(i+1,5+2), (i+5,5+2
with bipartition {(k,!) : k € {0,2,4},1 €

7)) = {(i4+1,7+1), (i+5,5+1)}.
}. Note that Cgx K73 is bipartite
73}, {(k1) : k € {1,3,5},1 €

Z3} and hence il two vertices of D are in different partite sets, then they are

at distance at most 3. dp((t,7), {(i+1,7+2)
G+1L,5+1) = (i+2,5) = (i+1,j+2) a
(t+5,3+2). By Claim 1, (4,7 +2) — (i
(G,7+2) — (+1,54+1) — (142,57 +2).

Case 1. (1,j+2) — (i+1,j+1) — (i+2

We now have dp((i+ 1,7 +1), (4,7 +2)) 3
(G+3,7+2) or (i+4,7) = (i+3,7+2).

Case 1(a). (i +2,7) — (i+3,7+2).

We now have (i +2,7) « (1 +3,7+1),
3,7+ 1)) < 3 implies that (i + 3,7 + 2)
dp{(i+45,7+1),E+2,7+1)) £ 3 implies tha
(i+3,7) —- (i+2,7+1). By Claim 1, (4
by Claim 1, (4,5 +2) « (i+5,7). dp((i
(i+4,7+2) — (i+5,7). Recursively, by Clai
(243,5+1) « (i4+2,7+2), (i+2,7+2) «~ (i+4
dp((i+1,5+1),(i+4,5+1)) < 3 implies thal
Claim 1, (i+3,5+2) « (1+2,5+1). Then g
a contradiction.

Case 1(b). (i+4,5) — (i+3,7+2).

We now have (i +4,7) — (¢ +3,5+1)
3,7+ 1)) < 3 implies that (7 + 3,7 + 2)
dp{(i+ 1,7+ 1),(t+4,7+1)) £ 3 implics
(i+4,7+41). By Claim 1, (i+ 2,7+ 2) «
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,(1+5,7+2)}) < 8 implies that
nd (i457+1) — (:+4,5) —
+1,7+1) - (1+2,7+2) or

7+ 2).

¢ 3 implies that (i +2,5+2) —
) < 3 implies that (i +2,7) —

by Claim 1. dp((i +2,7),(i +
- (i+4,5) - @+3,7+1).
t (i45,7+1) = (i+4,5+2) —
+5,7+1) « (4,7 +2); again
7),(t +5,7)) < 3 implies that

m 1, (i+4,7+2) — (i+3,5+1),

3,7) and (i+3,7) — (i+4,7+1).

L (i+3,j+2) — (i+4,j+1). By
lD((t+l’J+1)v(t+21.7+])) > 3»

by Claim 1. dp((i +4,7), (i +
— (i +2,4) — (i+37+1).
hat (i14+2,7+2) — (i +3,7) —
(i + 3,7+ 1); again by Claim 1,




(+37+1) — (E+4,7+2). dp((i+2,j+2),(i+3,7+1)) < 3 implies
that (i +3,5) — (i +4,7+2). By Claim 1, (i + 3,j) ~ (1.+2]+1)
dp((i + 3,5),(4,7)) < 3 implies that (i +4,5+1) — (i+35,j+2). By
Claim 1, ({4 5,5 +2) — (i,j +1). Define a mapping f on V(Cs x K3) by
f((k,3)) = (k+2,5), f((k,j+1)) = (k+2,5+2), f((k,5+2)) = (k+2,5+1),
k € Z¢. Applying f to the vertices of Cg x K3 results in the digraph of Case
la.

Case 2. (i,j+2) « (i+1,j+1) — (i+2,7+2).

We now have dp((1,7),(i +1,7)) < 3 implies that (i, +2) — (i+1,5)
(since (i,5) — (i+1,7+1) = (4,j+2) = (i+1,5) or (i,5) — (i+5,5+1) —
(17+2) - (i+1,5). dp((5,5),(i+3,7)) < 3 implies that (i +5,5+1) —
(i+4,7+2) — (i+3,5). By Claim 1, (i+5,5+1) « (i,5 + 2); again by
Claim 1, (i,j+2) « (i+5,5). dp((i+1,7+1),(i+4,7+1)) < 3 implies that
(i+2,7) = (i+3,7+2) - (i+4,5+1). By Claim 1, (i4+2,5) « (i+3,5+1).
dp((i+2,7),(i +3,7+1)) < 3 implies that (i +3,7+2) — (i+4,j) —
(i+3,7+1). By Claim 1, (i +3,j+2) « (i+2,7+ 1). Definc a mapping
g on V(Ce x K3) by g((k,5)) = (k+4,3), g((k.5+1) = (k+4,5+2),
g((k,j+2)) = (k+4,5+1), k € Zg. Applying g to the vertices of Cs x K3
results in the digraph of Case 1.

Claim 3. For any vertex (i,j), the two out-neighbours of (i, ) are in different
Ks-layers of D.

If there exists a vertex (z,7) such that NJ((i, 7)) is contained in a Kj3-layer,
then NA((3,7)) is {(i+1,5+1),(i+1, ]+2)} or {G+5,7+1),(:+5,7+2)}.
Without loss of generality, assume that N} ((5,7)) = {(i+1,5+1), (i+1,5+2)}.
Consequently, Np((i,7)) = {(i+5,5+1), (i +5,5+2)}.

dp((5, ), {(G+ 5,7+ 1),(i+5,7+2)}) < 3 implies that (i+1,5+1) —
(Li+2) — (i+55+1) and (i+1,5+2) — (,74+1) — (i+5,7+2).
By Claims 1 and 2, we have (i +2,j+2) — (i4+1,74+1) — (i +2,) and
(+2,54+1) - (i+1,7+2) — (i+2,5). Now dp((i,7),G+3,7) > 4, a
contradiction. This contradiction proves Claim 3.

If any one of the edges of Cg x K3 is oriented, then any strong orientation
arising out of it satlsfymg Claims 1, 2 and 3 is isomorphic to DG 3 or its converse
digraph. Note that Ds .3 and its converse digraph are isomorphic (the required
mapping f is f((¢, 7)) = (i+1,7)). But d(DG 3) = 5. This yields the required
contradiction. Hence J(Cs x K3) > 5 and this proves d(CG x K3) = 5. [ ]

Lemma 4.5. If r >4 is cven and s > 7, then p(C, x K;) =0. Furthermore,
p(C4 X K(;) = 0.

Proof. Orient C; x K so that for any i € Z, and j € Z,, (i,j) —

{G+L,3+1), G+ 1,5+2), ..., G+ 1,5+ |2]), ((-1,7+2),G~-1,5+3),
, (i= l..7+|_%J), (i—l,j—l)}, if 7 isevenand (i,7) = {(: + 1,7 +2),
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(G+1,5+3), ..., (+ 1,5+ |52 G+1,5
v =174} if i isodd. Let D bg

&l
We claim that d(D) = £ if 7 > 6 and d(

P
by the nature of the orientation, it is enough
the vertices (0,0) and (1,0) are both equal tg

leave the verification to the reader.

For (r,s) = (4,6), the above orientation of
for which d(D) = 3, and hence p(Cs x Ks) =

-

Lemma 4.6. If k > 2, then d{Cok+1 X K3)

Proof. Orient Coxyy X K3 so that forA any j
whenever (p, q) € {(0,1),(1,0),(2,3),(3,2),..

(2k,0),(0,2k)} and (p,j) — (7.7 +2) whene

“4,3),...,(2k—1,2k),(2k,2k—1)}. It can be
D is of diameter < k+ 2.

Clearly, d(Cs x K3) =3 and for k>3, d

Corollary 4.2. p(Cs x K3) <1 and for k 2

Lemma 4.7. If k > 8, then (f(Cng x K

A(Corr x Ka) < k+1; and if k€ {2,3}, th

Proof. Orient Cors; x K4 so that for any j
2), (2k,j+2), (2k,j+3)} and (2k,7) — {(2k+
and for all other vertices (¢,7), (i,7) — {(z H
2),(i=1,543)} il 7 is even and (7,5) — {(
odd. It can be verified that the resulting digral
k+1 for 4<k<7 and k+2 for ke {2,3

Clearly, d(Cs x K4) =3 and for k> 3, d

Corollary 4.3. If k > 8, then p(Coxyy x K
p(CQk+1 X K4) S 1 and p(C7 X 1{4) < 2.

Lemma 4.8. For k > 7, p(Co x Kq) =0
p(Cro x Kq) <2, p(Cg x K4) <1 and p(Cs

Proof. Yor k > 3, orient Cye x K, so th
(G3) =+, +1),GE+1,5+2),G-1J
evenand (i,j) = {(i+1,7+3),(i—1,5+1)}
digraph D satisfies the requirement.
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1

]): (1' - 11] + l), (l - 11.7+ 2)1
the resulting digraph.

D} = 3 if r = 4. To show this,
o show that the eccentricities of
Fifr>6and 3if r=4. We

Cr x K, results in a digraph D
0. |

<

K k+2.

€ Z3| (pIJ) - (qn] + 1)
,(2k—2,2k—1),(2k-1,2k-2),
ver (p,q) € {(1,2),(2,1),(3,4),
verified that the resulting digraph
| |

Cak+1 X K3) = k; hence we have

3, p(Coks1 x K3) 2. u

(1) k; if 4 < k <7, then
1 d(CQk.H X Kq) < k+2

€ Z4, (0!.7) - {(1,]+ 1)1 (lr.7+
'1:]+2)|(2k_13.7+3))(Ov]+3)}1
1,5 43),(i—1,5+1)} if i is
ph D is of diameter &k for k > 8,
). n

(Cak1 x K4) = k; hence we have

1) =0; if k€ {2,4,5,6,7}, then
|

Furthermore, p(Ci2 x K3) < 1,
X Kq) < 2.

at for any i € Zo, and j € Zy,
H2),(i — 1,7+ 3)} whenever i is

whenever i is odd. The resulting
]




Lemma 4.9. p(Cy x K4) =0.

Proof. The following orientation of Cy x K4 defines a digraph D for which
d(D) = 3; define, for any j € Z,, (0,7) — {(1,741), (1,7 +2), (3,7 +2)},
(1,5) = {(0,5+1), (2,5+1), (2,5+3)}, (2.7) — {(1,54+2), (3,7+2), (3,5+3)}
and (3,5) — {(0,5+1), (0,57 +3), (2,7 +3)}. It can be verified that d(D)

= 3. |

Lemma 4.10. p(Cy x K5) = 0.

Proof. The following orientation of Cy x Kg defines a digraph D for which
d(D) = 3; define, for any j € Zs, (0,7) — {(1,5+1), (1,7 +2), 3,5+ 1),
B,i+3)} (1,5) = {(0,j+1),(0,7+2),(2,7+1), (2,7 +3)}, (2,45) =
{(L,i+1),(1,7 +3), (8,5 +3), (3,5 +4)} and (3,5) — {(2,5+3), (2,7 +4),
0,7+ 1), (0,7 + 3)}. It is not difficult to check that d(D) = 3. n

Lemma 4.11. If s > 5, then p(Cs x K;)=0.

Proof. Orient C5x K, sothat forany 7 € Z;, (p,7) = {(9.5+1),(q.7+2), ...,
(9, 5+[25t])} whenever (p,q) € {(0,1),(1,0),(3,4),(4,3)}, (p,5) — {(a,5+1),
(9.5 +2),.., (@7 + | 52]).(q,5 + [Z])} whenever (p.q) € {(1,2),(2, 1)},
(p3) = {(QJ"' [s“]) (@73 +[232]),....(q.5 = 1)} whenever (p,q) € {(2,3),

(3,2)} and (p,5) = {(g,7+2),(q.5+3), ... (@ 7+ *5]), (9.5 = 1)} whenever
(», 9) € {(0,4), (4 0)}. In addition, if s is even, orient (0 ]) - (1,7+%), (2,9)

= {(L,i+ 5,37+ %)} and (4,5) - {(3,5+%),(0,5+ £)}. It can be verified
that the resulting digraph D is of diameter 3. a

Lemma 4.12. If s > 9, then p(C; x K;) =0.

Proof. Orient C7 x K, so that for any j € Zs, (p,j) — {(q.5+2), (¢,7+3),

o (@ 3+[5H)), (a,5-1)} whenever (p,q) € {(0,1),(1,0),(2,3), (3 2),(4,9),
5,4}, (7.9) = {(g,3+1), (¢,j+2), ..., (g, J+l’23J) (¢,5+[552])} whenever
(p,q) € {(1,2),(2,1),(3,4),(4,3), (5,6), (6 5)} and (p,j) — {(q,]+2)'

(0.3+3), -, 2,3+ [52]), (@5 +[=5]), (@.5—1)} whenever (p,q) € {(0,6),
(6,0)}. Let D be the resulting digraph.

To prove that d(D) = 3, by the nature of the orientation, it is enough to
check that the eccentricities of the vertices (i,0), i € Z, are all equal to 3.
We leave the verification to the reader. [ |

Lemma 4.13. 1. If r > 8, then p(C, x K¢) = 0.
2. If (r,5) € {(8,5),(9,5),(9,8)}, then p(Crx K,) =0
3. 1If (r.5) € {(6,5),(7,5),(6,6),(7,6), (7,7),(7,8)}, then p(Cr x K;) < 1.
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Proof. Let

Aij = {((+1,5+1),GE+1,5+2),....6+ 1,5+ [§))
(-1,5+2,(-1,7+3),....60-L,i+[§])hG-17-1}

Bij = {(6+1,7+2),6+1,5+3),...,6+ 1,7+ [5F]), (1+1 j-1),
(G-1,7+1),0E-1,7+2),....(0- L, + 5]},

{(1’j+1)1(1lj+2)""’(11j+I_%J)l

(r-17+1),(r=1j+2),....,(0 = 1,5+ [5])} and

Dy = {(r=2,7+2),(r=-23+3),....(r =27+ |§]), (r = 2,5 - 1),

0,5 +1),(0,5+2)....00,5 + | 5*]))

If r is even, orient Crx K, so that forany ¢ € Z, and j € Z;, (3,7) — Aij
whenever i is even and (i,7) — B;; whenever i is odd.

Co,;

If r is odd, orient C, x K, so that for any j € Zs;, (0,7) — Co,; and
(r —1,7) = D,_, ;. For all other vertices (3,5), (i,7) — Ai; whenever ¢ is
even and (z,7) — B;; whenever i is odd.

The resulting digraphs satisfy the requirement. |
Combining all the results of this section, we have the proof of Theorem B.
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