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Abstract

The semigirth ¢ of a digraph D is a parameter related with
the number of shortest paths in D. In particular, if G is a graph
the semigirth of the associated symmetric digraph G* is ¢(G*) =
1(g(G) — 1)/2), where g(G) is the girth of the graph G. In this pa-
per some bounds for the minimum number of vertices of a k-regular
digraph D having girth g and semigirth ¢, denoted by n(k, g; £) are
obtained. Moreover we construct a family of digraphs which achieve
the lower bound for some particular values of the parameters.
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1 Introduction

Throughout this paper, we only consider finite and strict digraphs (with
neither loops nor two arcs with the same ends and the same orientation).
Unless otherwise stated we follow the book by Bondy and Murty (8] for
terminology and definitions.

Let D stand for a digraph with set of vertices V = V(D) and set of

(directed) arcs A = A(D). The converse digraph D of a digraph D is
defined by reversing the direction of the arcs of D. For any pair of vertices
u,v € V, a path from u to v (constituted by different vertices) is called a
u — v path. The distance from u to v is denoted by d(u,v) = dp(u,v),
and diam(D) = max{d(u,v) : u,v € V'} stands for the diameter of D. The
girth g = g(D) of the digraph D is the length of a shortest directed cycle.

For every z € V, N*(z) and N~(z), denote the set of out-neighbors
and in-neighbors of the vertex z, their cardinalities being d*(z) and d~ ()
respectively. Also we use the closed out-neighborhood N*([z] = {z} U
N*(z) and the closed in-neighborhood N~ [z] = {z} U N~ (z), respectively.
A digraph D is k-regular if both out-degree and in-degree of every vertex
z satisfies d*(z) = d~(z) = k.

Fébrega and Fiol introduced in [11] the so-called parameter £ of a simple
connected digraph, which, as was pointed out in the aforementioned paper
“can be thought of as a generalization of the girth of a graph”. In fact, this
parameter has recently received the name of semigirth see The Handbook
of Graph Theory [15]):

Definition 1.1 Let D be a (di)graph with diameter diam(D). The semi-
girth £ = £(D), 1 < £ < diam(D), is defined as the greatest integer so that,
for any two vertices u,v,

(a) if d(u,v) < £, the shortest w — v path is unigue and there are no
paths w — v of length d(u,v) +1;

(b) if d(u,v) = £, there is only one shortest u — v path.

Given a graph G, the associated symmetric digraph G* is obtained from
G by replacing each edge zy € E(G) with the two directed edges (z,y) and
(y,z) forming a “digon”. The close relation betwecn the girth g(G) of a
graph G and the semigirth £(G*) of the associated symmetric digraph G*
is clear because ¢(G*) = |(g(G) — 1)/2].
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The main aim of this paper is to obtain bounds for the minimum number
of vertices of a k-regular digraph D having girth g and semigirth ¢, denoted
by n(k, g;£). We do that by constructing a family of k-regular digraphs of
girth g and semigirth ¢&. We call a (k, g; £)-digraph of order n(k, g;%) a
(k,g; €)-dicage. Behzand, Chartrand and Wall [4] asked for the minimum
order n(k, g) of any (k, g)-directed graph. A (k, g)-digraph of order n(k, g)
used to be called (k, g)-dicage. It is clear that n(k, g) < n(k,g;?).

For finding bounds on n(k, g; £), the line digraph technique will be very
helpful. This technique was introduced by Harary and Norman [19], and
has proved to be very useful in the design of digraphs with ‘good properties’.
In the line digraph L(D) of a digraph D, each vertex represents an arc of
G, that is, V(L(D)) = {uv : (u,v) € A(D)}; and a vertex uv is adjacent to
a vertex wz if and only if v = w (i.e., when the arc (u,v) is adjacent to the
arc (w,2) in D). Setting L%(D) = D, for any integer h > 1 the h-iterated
line digraph, L*(D), is defined recursively by L*(D) = L(L*~'(D)). In
addition, as the vertices of L(D) represent the arcs of D, the order of L(D)
equals the size of D, that is, |V(L(D))| = |A(D)|; and their respective
maximum and minimum degrees coincide.

Aigner [1] showed that if D is connected and different from a cycle, then
L(D) is connected, the relationship between their diameters being:

diam(L(D)) = diam(D) + 1.

An important property of the semigirth is its behaviour with respect to
the line digraph technique. If D is a digraph with minimum degree § > 2
and L(D) is its line digraph, then it is proved in [11] that:

¢L(D)) = &(D) +1. 1)

It is not difficult to see that the semigirth ¢ of a digraph D and of its
converse D are equal.

Balbuena et al. [2] proved that a digraph D and its iterated line
digraph L"*(D) have the same number of cycles of length i for i <
min{2g —1,|V(D)|}. This mcans that g(D) = g(L"*(D)) = g for any h > 0,
and both D and L*(D) have the same number of cycles of length g. However
by (1) the semigirth of L*(D) increases according to £(L*(D)) = £(D) + h.

For more details about line digraphs, see, for instance, [13, 20]. Next,
in Section 2 we present our results and we provide the details of the proofs
in Section 3.
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2 Results

We start by proving a theorem which provides bounds for n(k,g;£) and
also shows some relationship between n(k, g; £) and n(k, g).

Theorem 2.1 Let D be a (k,g;¢)-dicage with £ > 1, k > 2 and g > 3 on
n(k, g; €) vertices. The following assertions hold.

1+k+k% ifg>3;
(1 + k)? ifg> 4.
(i) If € > 3, then n(k,g;€) > k® + k®.

(i) If k > g — 2, then n(k, g) = n(k, g;1) < n(k, g;£).

(i) If € > 2, then n(k,g;¢) > {

: : k¢~ In(k, g) ifk>g-2
() n(k,9;6) < { k-1((g—1k+1) ifk<g-3.

In the next theorems we improve the bounds obtained in Theorem 2.1
for the particular case k = 2 and g = 3,4.

Theorem 2.2 Let D be a (2,g;¢)-dicage on n(2,g;¢) vertices with semi-
girth £ > 2. Then

(i) n(2,3;€) > 9. (ii) n(2,4;¢) > 10.

Let i,,42,...,i € Z,. A circulant digraph 6r(i1,i2,...,ik) has for
vertex set the elements of Z., and (a,b) is an arc if and only if b = a + ;
for some i; € {i1,%2,...,ik}, where the sum is taken in Z,. Clearly a
circulant digraph 67(1, 2,...,k) where r = (g—1)k+1 is a (k, g)-digraph.
Using this digraph, in [4] was proved that n(k,g) < (¢ — 1)k + 1 and the
conjecture n(k,g) = (9 — 1)k + 1 was formulated. Caccetta and Haggkvist
(10] proposed a generalization of this conjecture, claiming that if cach vertex
of a digraph D has out-degree at least k, then the girth of G is at most

l]V(D)| /kJ . Both conjectures have been proved to be true for £k = 2 by

Behzad [5], for k = 3 first by Bermond [6] and later by Hamidoune [18], for
k = 4 and for vertex-transitive digraphs by Hamidoune [16, 17].

Based on these ideas we show a family of (k,3;¢)-digraphs for £ > 2
having k¢~2(2k® + 1) vertices. To do that we use the following known
operation. Splitting a vertez v of a digraph D consists of replacing v with
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Figure 1: A (2,3;2)-dicage.

two new vertices v’ and v”, join them by an arc (v',v”) and change every
arc (w,v) and (v, z) of D to (w,v') and to (v”, z) respectively.

Theorem 2.3 Let 6%(1,2, ..., k) be the circulant digraph where k > 2.
Let denote by SL(azk(l,Z, ..., k)) the digraph obtained from the line di-
graph L(ﬁzk(l, 2,...,k)) by performing the following operations:

(a) Split vertez (k,0) into two new vertices, X and X'.

(b) Delete the k — 1 arcs ((k +1,%), (6, k+1)),i=1,...,k—1.

(c) Add the new arcs (X, (i,k +1)) and ((k+14,i), X'),i=1,...,k—1.

Then SL(Ca(1,2,...,k)) is a (k,3;2)-digraph having 2k + 1 vertices,
thus n(k,3;2) < 2k% + 1.

Figure 1 depicts the circulant digraph 64(1, 2), its line digraph and the
digraph SL('54(1, 2)) obtained by performing in L(C (1, 2)) the operations
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indicated in Theorem 2.3. Actually, this digraph is a (2, 3; 2)-dicage, such
as it is derived in the following corollary.

Corollary 2.1 Let D be a (k,3;¢)-dicage withk > 2 and £ > 2 onn(k, 3; £)
vertices. Then

(i) the digraph SL(T 4(1,2)) is a (2,3;2)-dicage and n(2,3;2) = 9.
(ii) n(k,3; €) < k*~2(2k% + 1).

For any positive integers k, n, with k < n, the dense bipartite digraph
BD(k,n) introduced in [12] has set of vertices V =Z3 x Z, = {(o,1); ¢ €
Z,i € Z,} where Z, denotes the integers modulo » and each vertex («, %)
is adjacent to the vertices of ' (a,i) = {(1 — o, (-1)*k(i + @) + t); t =
0,1,...,k —1}. The digraphs BD(k,k™~! + k"~3) can also be obtained as
iterated line digraphs of BD(k, k% + 1), which has diameter D = 3, g = 4,
and parameter ¢ = 2 [12]. Figure 2 depicts the BD(2,5) bipartite digraph.
As a consequence of our results we obtain that BD(2, 5) is a (2, 4; 2)-dicage
as shown in the following corollary.

Figure 2: A (2,4;2)-dicage.

Corollary 2.2 Let D be a (k,4;¢)-dicage withk > 2 and £ > 2 on n(k,4; )
vertices. Then
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(i) the digraph BD(2,5) is a (2,4;2)-dicage, thus n(2,4;2) = 10.
(ii) n(k,4;€) < 2kt2(k2? +1).

3 Proofs

Before proceeding with the proofs of the main results, we state the following
useful lemma.

Lemma 3.1 Let D be a digraph with £ > 2 and g > 3. For all vertez «
the following assertions hold.

(i) The paths of length 2 are shortest paths and hence they are unique.

(i) Nt[z]n Nt(y) =0 for all y € N*[z], and N*(y) " N+(2) = 0 for
any two distinct vertices y,z € N*(x).

(iii) N~z N~ (y) =0 for ally € N~[z], and N~ (y)) "N N~(2) = 0 for
any two distinct vertices y,z € N~ ().

(iv) If N*(z)NN*(y) # 0, then = and y are mutually at distance at least
2.

Proof. (i) Let a,b,c be a path of length 2 in D. If this path was not a
shortest one, then D should contain an arc (a,c), which contradicts the
definition of semigirth ¢. Hence the paths of length 2 are shortest paths
and again by definition of ¢ they must be unique.

(i1) Let y € N*(z) be and ¢ € N*(y). Then clearly t # z because
g = 3. Thus, by () the path z,vy,t is the shortest one and hence t ¢
N*[z], hence N*[z] N N*(y) = 0. By the same argument it is clear that
N*(y)n N*(z) = 0 for any two distinct vertices y, 2z € N*t(z).

(#22) It suffices to consider the converse digraph of D and apply item
(i).
(iv) Let z € N*(z) N N*(y). If z was adjacent to y, then from z to 2

we have the path z,y, z and the arc (z, 2), contradicting (). Therefore, =
and y are mutually at distance at least 2. =

Proof of Theorem 2.1: (i) Let = be any vertex of the digraph D. As
¢ > 2 and g > 3 we can apply Lemma 3.1, obtaining that the number of
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vertices within distance 2 from z is exactly 1 + k + k2. Besides if g > 4
then
N=(z) N (N*[z] Uyen+@) N* () = 0. (2)

Therefore, the number of vertices of D is at least k+ 1+ k+ k2 = (1+ k).

(43) From item (¢) it follows that the digraph D contains the out-tree
T with root in a vertex z, first level N*(z) = {z1,22,...,2x}, and second
level consisting of the disjoint union U, N *(z;). As £ > 3 the shortest
paths of length at most 3 are unique, hence for every y € N*(z;) the set
N+(y) and V(T) can only share vertices of the set N*([z]. Therefore there
must exist at least k3 — k& — 1 vertices outside of tree T, implying that
|V(D)| = k2 + k3.

(i41) Clearly, we have n(k, g) < n(k,g;1). To prove the other inequality
let us consider a (k, g)-dicage D and let us see that £(D) = 1. Otherwise,
by applying (i) and using the hypotheses k > 2 and k > g — 2 we get

WV(D)| > 1+k+k%2>1+2k>n(k3) if g =3;
=l +k)2=1+k(k+2)>1+k(g—1) 2n(k,g) ifg=4,

which is a contradiction because |V (D)| = n(k,g). Therefore any (k, g)-
dicage D has £(D) = 1 yielding n(k, g;1) < n(k, g), then we conclude that
n(k,g) = n(k, g;1) < n(k,g; £).

(iv) Again let us consider a (k,g)-dicage D, which has £(D) = 1 if
k > g — 2. Then the iterated line digraph L*~!(G) is a (k, g; £)-digraph
having k¢~ !n(k, g) vertices. Therefore n(k,g;£) < k*~'n(k,g). If k < g—3
we consider the circulant digraph 6,(1,2, oo k) wherer = (g -1k +1
and proceed analogously by using the line digraph technique. ®

Proof of Theorem 2.2: Let D be a (2, g)-digraph on n(2, g; £) vertices
for g = 3,4 and ¢ > 2. From Theorem 2.1 it follows that the out-tree
T with root z, first level N*(z) = {z;,22}, and second level consisting
of N*(z1) = {z11,712} and N¥(z2) = {x21,Z22} is included in D. We
want to prove that |[V(D)| > 9. We reason by contradiction assuming
[V(D)| < 8, then g = 3, because of Theorem 2.1.

First, suppose |V(D)| = 7. Then we may assume that some vertex,
say )2, is an in-neighbor of z5. Therefore, 12, 2,725, j = 1,2 are paths
of length 2, thus by (i) of Lemma 3.1, they are unique shortest paths.
This means that xq;,x29 & Nt (z12), and by (ii) of Lemma 3.1, we have
z11 € N*(z12) and by (iii) of Lemma 3.1, z € N*(z12). Alsox; & N*(z12)
because g = 3, hence d*(z12) = 1 contradicting &k = 2.
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Therefore we continue the proof by assuming |V (D)| = 8, that is to say,
V(D) = V(T) U {y}, where y is a new vertex. Let us study the following
cases according to the in-neighbors of z; and z,.

Case 1: (z12,72),(z21,21) € A(D). Then the other possible out-
neighbor for both z;2 and z2; can only be vertex y, that is, z12,22; €
N~ (y). Hence z1; ¢ N*(y) because otherwise we would obtain two paths
of length 2, namely, z2,,y, 211 and 291, 21,21;, contradicting Lemma 3.1.
Similarly, 20 ¢ N*(y) and as the girth is g = 3, the only possible out-
neighbor for y is z, hence d*(y) = 1 which gives a contradiction.

Case 2: (y, 1), (212, 22) € A(D). By Lemma 3.1 we have that the other
possible out-neighbor of z;, is y, and again by using Lemma 3.1 no vertex
different from x; can be out-neighbor of y. In other words, d*(y) = 1
which gives a contradiction.

Case 3: (y,z1),(y,z2) € A(D). Then observe that (y,z) ¢ A(D) be-
cause d*(y) = 2. Moreover, by Lemma 3.1, [N*(z;)NN~(y)| =1,i=1,2.
Thus, without loss of generality we may assume N~(y) = {z12,%21}. If
z12 € N~ (y)NN~(z), then by Lemma 3.1, the only possible out-neighbors
or in-neighbors for z,, are z2;,z22, which produces a digon. This is a
contradiction with ¢ = 3. Similarly, zo;1 ¢ N~(y) N N~(z), therefore
N=(y) N N~(z) = 0. This means that the only possible out-neighbor and
in-neighbor of z,2 is the vertex xzaa which produces a digon contradicting
that g = 3.

In any case we arrive at a contradiction and hence |V(D)| > 9 if k = 2,
g=3and £> 2.

Finally, suppose £k = 2, ¢ > 4 and ¢ > 2 hence |V(D)| > 9 by
Theorem 2.1. Let us see that (V(D)| > 10. We reason for produc-
ing a contradiction assuming that |V/(D)| = 9. Therefore the root z
of the out-rooted tree T has N=(z) = {y1,y2} and from (2) it follows
Y, %2 € {z,21,22,%11, %12, T21,T22}. Furthermore, we may assume that
(z12,%2), (221, 71) € A(D), because y1,y2 € N~ (z1) U N~(z2). This im-
plies that (z12,71) € A(D) and (z21,¥2) € A(D). Moreover, notice that
(z11,721) & A(D), otherwise the directed triangle 1,211, 21, z; would be
contained in D contradicting that g > 4. Similarly, (zg2,z12) € A(D).
Consequently N*(z1,) = {yz, z22} because (z12,31) € A(D). Analogously,
N*(z23) = {y1, 211} producing the digon formed by the arcs (z1;, z22) and
(z22,711), a contradiction. Then |[V(D)|>10. m
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Proof of Theorem 2.3: (i) Let us consider the circulant digraph
Cai(1,2,...,k). Notice that this digraph has exactly the following k
digons:

(i,k+1), (k+1,4), i=0,1,...,k— L.

Then the line digraph L(62k(1,2,. .., k)) also contains exactly & digons
which are for ¢ =0,1,...,k—1:

((3, k +1), (k +14,4), ((k+14,4),(Ek+19))

Let D = SL(ﬁgk(l,2,.. ., k)) be the digraph obtained from the line
digraph L(—dzk(l, 2,...,k)) by performing the following operations:

(a) Split vertex (k,0) into two new vertices, X and X'.

(b) Delete the k — 1 arcs ((k +14,i),(¢,k+14)),i=1,...,k— 1L

(c) Add the new ares (X, (i,k +1)), ((k+4,4),X"),i=1,...,k—1.
Clearly D has order 2k2 + 1 vertices, is k-regular and by construction

D has no digons. Moreover, we have that the out and in-neighbors of the
two new vertices are

N_(X) = {(i,k):i=0,...,k—1€Z2k},

Nt (X) = {(i,k+i):i=1,...,k—1€Zx}U{X'}, 3)
N-(X) = {(k+ii)ii=1... k—1eZy}u{X}, ¢
N*(XY) = {(0,i):i=1,....k € Zog}

Then D has girth g = 3, because (0,k), X, X’,(0,k) is a triangle. Also
note that Z(L(@gk(l, 2,...,k))) = 2, then clearly ¢(D) < 2. We shall show
that D has ¢(D) = 2. In order to prove it, we say that D contains a
(1,2)-diamond between z and y if there exists two internal disjoint paths
between these vertices, one of them of length one (an arc) and the other of
length two. The vertex z is said to be the initial vertex in the diamond,
the vertex y the final vertex, an the vertex z in the path z, z,y of length 2
is the intermediate vertex. Analogously, we define a (2, 2)-diamond and its
initial, final and intermediate vertices (note that in this case we have two
intermediate vertices).

First let us see that there are no (1,2)-diamonds in D. Otherwise
vertex X or vertex X’ must be included in the (1, 2)-diamond, because

UL(Ca(1,2,...,k))) = 2.
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If X is the final vertex of some (1,2)-diamond, then the initial and
intermediate vertices are in-neighbors of X. By (3) we get that some (i, k)
is adjacent to some (j,k) with i # j. Thus (¢,k) and (j,k) with i # j,
are adjacent in L(?zk(l, 2,...,k)), which implies that j = k and hence D
would contain loops which is impossible. The reasoning is similar if X’ is
the initial vertex of some (1, 2)-diamond.

If X' is the final vertex of some (1,2)-diamond, then clearly the in-
termediate vertex must be X, and so the initial vertex must be adjacent
to both X and X’. Then N=(X) N N~(X') # @ which is contradiction
with (3). The argument is similar if X is the initial vertex and X’ is the
intermediate of some (1, 2)-diamond.

In any case we conclude that D has no (1,2)-diamonds. Next, let us
prove that there are no (2, 2)-diamonds in D.

If X is the final vertex of some (2, 2)-diamond, then the two intermediate
vertices are in-neighbors of X, say (3, 7), (4, k) with ¢ # j, which have one
common in neighbor. By (3) this means that some vertex of D is adjacent
to both vertices (¢,k) and (j, k) which is impossible because i # j. If
X is the initial vertex of some (2,2)-diamond, then the two intermediate
vertices are out-neighbors of X having one common out-neighbor. It is
easy to see that the only possibility is that the two out-neighbors of X are
(4, k+j) for some j =1,...,k —1 and vertex X', which have one common
in-neighbor (0,%) for some ¢ = 1,...,k. That is to say, some k + j = i
for certain 4,5 € {1,2,...,k — 1} which is impossible in Z;. Analogously
it is shown that X’ is neither the final vertex nor the initial vertex of
any (2,2)-diamond. Finally, if X is an intermediate vertex of some (2, 2)-
diamond, due to the adjacency rules defined by (3), the vertex (k,k + 7)
for some j € {1,...,k — 1} has to be adjacent to the vertex (i, k + i) for
some i € {1,...,k — 1}, which is impossible. An analogous contradiction
is obtained assuming X’ is an intermediate vertex.

Therefore we conclude that (D) = 2, and the result holds. =

Proof of Corollary 2.1: To prove (i) note that by Theorem 2.2 we
know that n(2,3;2) > 9 and furthermore the digraph SL(64(1,2)) is a
(2,3;2)-digraph of order 9. Finally, by observing that the iterated line
digraph L&=Y(SL(C 2(L,2, ..., k))) is a (k, 3; £)-digraph having ke=2(2k2 +
1) vertices, then n(k,3;¢) < k®~2(2k? + 1) for £ > 2, thus item (ii) is also
valid. =
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Proof of Corollary 2.2: To prove (i) note that by Theorem 2.2 we
know that n(2,4;2) > 10 and the digraph BD(2,5) is a (2, 4; 2)-digraph of
order 10. And, finally to prove (ii) observing that the iterated line digraph
L~%(BD(k,k? + 1)) is a (k,4; €)-digraph having 2k®~2(k? + 1) vertices,
then n(k, 3;€) < 2k¢~2(k% + 1) for £ > 2 and we conclude the proof. ®
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