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Abstract

Broadcast domination in graphs is a variation of domination in
which different integer weights are allowed on vertices and a vertex
with weight k dominates its distance k-neighborhood. A distribution
of weights on vertices of a graph G is called a dominating broadcast,
if every vertex is dominated by some vertex with positive weight.
The broadcast domination number v,(G) of a graph G is the mini-
mum weight (the sum of weights over all vertices) of a dominating
broadcast of G. In this paper we prove that for a connected graph G,
7(G) > [2rad(G)/3]. This general bound and a newly introduced
concept of condensed dominating broadcast are used in obtaining
sharp upper bounds for broadcast domination numbers of three stan-
dard graph products in terms of broadcast domination numbers of
factors. A lower bound for a broadcast domination number of the
Cartesian product of graphs is also determined, and graphs that at-
tain it are characterized. Finally, as an application of these results we
determine exact broadcast domination numbers of Hamming graphs
and Cartesian products of cycles.
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1 Introduction

Let G be a graph. The distance dg(u,v) (or just d(u,v) when it is under-
stood from the context that we consider graph G) between vertices u and
v of G is the length of a shortest path between u and v. Interval I(u,v) is
the set of vertices that lie on a shortest path between vertices v and v. For
a vertex v € V(G) let N[v] = {z € V(G) |d(z,v) < 1} denote its neighbor-
hood, and N(v) = N[v] \ {v} its open neighborhood. More generally, the k-
neighborhood of v where k € IN, is the set Ni[v] = {z € V(G)|d(z,v) < k}.
The eccentricity eg(zx) of the vertex z in G is maximum distance between
a vertex u € V(G) and z. The minimum (resp. maximum) eccentricity of
a vertex in the graph G is called the radius (resp. the diameter) of G and
is denoted by rad(G) (resp. diam(G)).

A function f : V(G) = {0,1,...,diam(G)} is called & dominating
broadcast on G if for every vertex v of G there exists a vertex z € V(G)
with f(z) > 0 such that d(z,v) < f(z). If f is a dominating broadcast,
then by D; we denote the set of vertices z in G with f(z) > 0, and call it
the f-dominating set. By definition we have

U Nywlul =V(G).

‘MED[

The weight w(f) of a dominating broadcast f of G is }_,cv(q) f (v). The
minimum weight of a dominating broadcast in a graph G is called the
broadcast domination number of G, and is denoted by v,(G).

Broadcast domination was introduced and studied in (3], and some fur-
ther results can be found in [2]. It presents a natural variation of domina-
tion where some dominating vertices may have larger influence than some
other. (For a systematic treatment of various domination parameters we
refer to [5].) The concept was motivated by some practical communication
network problems, such as distribution of transmitters for radio stations
etc.

It is easy to see that 7,(G) < min{rad(G),v(G)}. Interestingly we could
obtain also a lower bound for ;(G) in terms of rad(G): we prove in the next
section that v,(G) > [2rad(G)/3] for any connected graph G. In the second
part of that section we introduce the concept of condensed dominating
broadcast. Roughly speaking, a condensed dominating broadcast is such
that any broadcast, obtained from it by transferring some weights from
different vertices to a single vertex, is no longer dominating. We show that
every graph has a condensed dominating broadcast of weight ,(G) which
implies the previously known result about efficient dominating broadcasts
[2, Theorem 17].

In Section 3 we study the broadcast domination in graph products. Let
G and H be two graphs. For all three products of graphs G and H the
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vertex set of the product is V(G) x V(H). Their edge sets are defined
as follows. In the Cartesian product GOH two vertices (z,y) and (v, w)
are adjacent if and only if either z = v and yw € E(H) or y = w and
zv € E(G). In the direct product G x H two vertices (z,y) and (v,w)
are adjacent if and only if 2v € F(G) and yw € E(H). Finally, the edge
set E(G® H) of the strong product G ® H is the union of E(GOH) and
E(G x H). For v € V(H) let G, = {(u,v) € V(GOH) |u € V(G)} and
for u € V(G) let H, = {(u,v) € V(GOH)|v € V(H)}. Note that the
subgraph of GOH induced by G, is isomorphic to G and the subgraph of
GOH induced by H, is isomorphic to H.

We refer to [7] where domination concepts in graph products have been
surveyed — the main attention is given to (upper and lower) bounds of a
given domination parameter in a given graph product expressed in terms
of the domination parameters of factor graphs. We prove upper bounds for
the broadcast domination of all three standard graph products. For the
Cartesian and the strong product we show v,(GOH) < 2(7(G) + 7(H)),
and 7,(GRH) < % max{y,(G),75(H)}, respectively. For the direct product
we obtain

3 max{7(G), v (H)} if rad(G) # rad(H)
(G x H) < { 3min{ys(G),v(H)} +1 if rad(G) = rad(H).

Finally, in the last section we obtain exact values for broadcast domina-
tion numbers of two classes of Cartesian products of graphs, notably Ham-
ming graphs (Cartesian products of complete graphs), and Cartesian prod-
ucts of cycles. For instance we prove that 4,(Cp,,0C,) = rad(C,,0C,) -
1 if and only if m and n are both even, and otherwise 7,(C,, 0C,) =
rad(C,,0C,).

2 Two remarks

2.1 Broadcast domination number vs. radius

In (3] the following lower bound was proved for the broadcast domination
number of an arbitrary connected graph:

diam(G) + 1
o)z [Bm@ 1] 8
The expression on the right is also known to be the lower bound for the
usual domination number, hence (1) is its improvement.
Knowing 7,(G) < rad(G), it seems to be interesting to find some lower
bounds for the broadcast domination number expressed in terms of the
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radius. Since diam(G) > rad(G), we get from (1) the following bound that
holds for arbitrary connected graph G:

we) > |G,

This cannot be improved directly because in some graphs diam(G) =
rad(G), but we shall obtain a better bound by using a different approach.
It is in many cases (but not in all) better as (1).

Lemma 2.1 Let G be a graph, and H its spanning subgraph. Then
7(G) < w(H)

and
rad(G) < rad(H).

Proof. It is convenient to look at G as if G would be obtained from H by
adding some edges. Hence any dominating broadcast in H is also a dom-
inating broadcast in G, thus the first inequality follows. Since dp(u,v) >
dg(u,v) for any two vertices u and v, it is also clear that ey (u) > eg(u)
for any vertex u. Hence the radius of H, which is the minimum eccentricity
in H, cannot be smaller than the radius of G. 0

A dominating broadcast f is called an efficient dominating broadcast
if for every vertex z € V(G) there exists exactly one vertex u € Dy such
that d(z,u) < f(u). In the following lemma we will use the previously
known result [2, Theorem 17] that for every graph there exists an efficient
dominating broadcast f such that v,(G) = w(f).

Lemma 2.2 Let G be a connected graph. Then there is a spanning tree T
in G such that

6(G) = 1(T).

Proof. Let G be a connected graph, and let f be an efficient dominating
broadcast of G with w(f) = 75(G). Hence the neighborhoods Ny(y){u] of
vertices from Dy are pairwise disjoint, and their union is V(G). We obtain
T as follows.

Consider a neighborhood Nj(y)[u] where u is an arbitrary vertex from
Dy. Let T(u) be a spanning tree of the subgraph of G induced by Ny(,[u]
(it can be obtained for instance by BFS starting in u) such that dp(,)(z,u) =
dc(z,u) for every vertex z € Ny(,)[u]. Hence every vertex of T'(u) is
f-dominated by u also in T'(u). Since the trees T(u),u € Dy are pair-
wise disjoint, their disjoint union is a disconnected subgraph of G' (unless
|Dy| = 1). Now, add edges of E(G) between different trees T'(u) in such
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a way that the resulting graph is connected (this is possible, since G is
connected). Clearly, in this procedure we can avoid obtaining cycles, and
so the resulting graph is a spanning tree that we denote by T.

Obviously f is also a dominating broadcast of T, hence v(T) < 1(G).
Since T is a spanning subgraph of G, we have 7,(G) < 1(T) by Lemma
2.1. |

Theorem 2.3 Let G be a connected graph. Then
2rad(G
w6 > 2252,

and the bound is sharp.

Proof. Let us first prove the bound for trees. If G = K> then the bound
clearly holds. Let T # K, be an arbitrary tree, and v € V(T') be a central
vertex of T'. Then there is a vertex z at distance rad(T") from v. We claim
that there is a vertex y, from a connected component of 7—v not containing
z, such that d(v,y) > rad(T) — 1. Suppose there is no such y. Let u be
the neighbor of v on the path between v and z. Then d(u,z) = rad(T) ~ 1,
and d(u,z) < rad(T) — 1 for all other z € V(T), which is a contradiction.
Hence there is a vertex y such that the path between y and z has at
least 2rad(T") vertices. Denote this path by P, and let f be a dominating
broadcast of T with w(f) = +,(T). For each x € V(T) denote by z' the
unique closest vertex of z in P. Let f' be the broadcast of P defined by
f'(z) = max{f(y) |y’ = }. Since f is a dominating broadcast of T, f' is
a dominating broadcast of P, and w(f) > w(f’). Clearly w(f') > v(P).
It was observed in [3] that v(P,) = [%], and so

W(T) = w(f) > w(f") > [ 2""“"”]

Let now G be an arbitrary connected graph. Then by Lemma 2.2 there
exists a spanning tree T' of G, such that 75(G) = (7). Using that the
bound is true for T we get

%(G) = w(T) > [2ra:(T)] > [2ra§(G)]_

The last inequality holds, because rad(T") > rad(G) (Lemma 2.1).
The bound is achieved, for instance, in the case of even paths P,. O
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2.2 Condensed dominating broadcasts

Let G be a graph and f a dominating broadcast of G. We say that f is a
condensed dominating broadcast if for any vertex z € V(G) and any subset
D' C Dy, such that |D’| > 2, there is a vertex y € D’ such that

Nyl € Nyfz],

where r =3, . p f(u) . From the definition we infer the following. If there
exists a vertex = and a set D' C Dy, such that

dy) < Y flu) (2)

ueD'\{y}

for all y € D', then f is not condensed. In this case one can transfer
the weights of D' to the vertex = and still obtain a dominating broadcast,
which is, intuitively speaking, more condensed than the original one. If f is
a dominating broadcast with vertices z,y € Dy, z # y, such that d(z,y) <
f(z), then f is clearly not condensed. (In the language of (2], a condensed
dominating broadcast is also independent dominating broadcast.) In this
case we can obtain a dominating broadcast f; by setting fi(z) = f(z) +

@), fi(y) = 0, and fi(z) = f(z) otherwise. Clearly w(f,) = w(f), and
[Dy] > |Dy,|. We can show even more.

Lemma 2.4 If f is a condensed dominating broadcast in a graph G, then
f is also an efficient dominating broadcast in G.

Proof. Let f be a condensed dominating broadcast. We claim that the
closed neighborhoods Nyy)[u], where u € Dy are pairwise disjoint. Sup-
pose to the contrary, there is a vertex z € Ny(y[u] N Ny(y)[v] for some
u # v in Dy. Then clearly d(u,v) < f(u) + f(v). Now let = be a vertex on
a shortest u,v-path, such that d(z,u) = f(v) and set D' = {u,v}. Since
d(z,u) = f(v) we find that d(z,v) < f(u) and therefore f is not condensed.
O

The converse of the above implication is not true. For instance, let
G be obtained from the path Ps such that to its central vertex v a leaf
is attached. Then the leaves of G form a perfect code which yields an
efficient dominating broadcast (the leaves are given weight 1, and other
three vertices weight 0). The broadcast is not condensed, since v is at
distance at most two to every leaf.

Lemma 2.5 Let G be a graph and f a dominating broadcast on G. Then
there exists a condensed dominating broadcast g on G, such that w(g) <

w(f).
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Proof. If f is condensed dominating broadcast of G, there is nothing to
prove. In the sequel assume that f is not condensed. Then there is a vertex
z € V(G) and a subset D' C Dy, such that |D’| > 2 and

Niwly] € Nelz], (3)

forall y € D', where r = 3 o f(u).
Define f; as follows:

f(u) ifue D\ D
Hw)y=<¢ r fu==z
0 otherwise

We claim that f; is a dominating broadcast on G. Let y € V(G) be an
arbitrary vertex. Since f is a dominating broadcast, y is f-dominated by
some vertex v € Dy. If v € D' then y is also f;-dominated by v. Otherwise
v € D'. In this case it follows from (3) that Ny, [v] C N[z}, and since
Yy € Nywlv] we find that y is fi-dominated by z. Clearly the weight
of f is equal to the weight of f and |Dy,| < |Dj|. If f, is condensed
then g = f, and we are done. If f; is not condensed, then we can define
analogously as fi, a dominating broadcast f; such that |Dy,| < |Dy,|. More
generally, for any non-condensed dominating broadcast f; we can define a
dominating broadcast of equal weight, such that |Dy,| < |Dy,_,|- If there
is no dominating broadcast g with Dy > 1 and w(g) = w(f), then since | D|
is finite, there is a dominating broadcast g with |Dy| = 1 and w(g) = w(f),
which clearly is condensed.

O

The following result follows immediately from Lemma 2.5.

Theorem 2.6 Let G be a graph. There exists a condensed dominating
broadcast f of G such that w(f) = v(G).

The above results implies {2, Theorem 17] about efficient dominating
broadcasts since by Lemma 2.4 condensed dominating broadcasts are also
efficient. Also, it might be useful, for instance, in finding graphs in which
the broadcast domination number equals their radius (so called Type 2
graphs in [2]). We shall use Theorem 2.6 in the sequel.

3 Bounds for products of graphs

3.1 Cartesian product

We start with an upper bound for the Cartesian product X = GOH of
graphs G and H. It is easy to see that dx((u,z),(v,¥)) = dg(u,v) +

309



dg(z,y), and so rad(GOH) = rad(G) + rad(H). Now,

(GOH) < rad(GOH) = rad(G) + rad(H) < 3 (w(G) +(H),

v

where the last inequality follows from Theorem 2.3, and 7,(G) > [@@11
2rad(G)
==

Proposition 3.1 Let G and H be connected graphs. Then

3
1(GOH) < 5(n(G) +n(H)),
and the bound is sharp.

The sharpness of the bound can be checked with CsOCs5.

Let us now consider a lower bound for v,(GOH). We shall obtain
the lower bound +,(G) that looks natural and perhaps easy, yet the class
of graphs for which it is sharp is rather large. We will also characterize
graphs of this class (so called class X), the result which will be used in the
last section.

For n > 2, let X, be the graph K> ., see Figure 1. A graph G is in
class X if X, is a spanning subgraph of G for some n > 2 and ¥(G) > 1.
Note that for every graph G in class X, 7(G) = 2.

Figure 1: Graphs X,

Theorem 3.2 Let X = GOH be the Cartesian product of two connected
nontrivial graphs. Then v,(X) > 7,(G) and the equality holds if and only if
H = K, and G is a graph from the class X, in which case v(X) = v(X) =
1(G) =7(G) = 2.
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Proof. Let f be a minimum dominating broadcast of X = GOH. Define
the function M : V(G) x V(H) — [Ny as follows

M(u,v) = ma'x{f(u:z) - dH(‘U,Z)IZ € V(H)’z # ’U} .
We claim that for any v € V(H) the function

max{ f(u,v), M(u,v)} if max{f(u,v), M(u,v)} >0
folu,v) = { 1 if f(u,v) = M(u,v) =0
0 otherwise.

is a dominating broadcast of G,. Let (u,v) be an arbitrary vertex of G,.
As f is a dominating broadcast, there is a vertex (z,y) € Dy which f-
dominates (u,v), that is dg(z,u) + du(y,v) < f(zx,y). If y = v then
it is easily seen that (z,y) f,-dominates (u,v). If z = u then clearly
M (u,v) > 0 and so f,(u,v) > 1 by the second row in the definition of f,.
Finally, let y # v and & # u. Then M(z,v) > f(z,y) — dy(v,y) > 0, and
so dg(u,z) £ M(z,v) < fy(z,v). Thus (u,v) is f,-dominated by (z,v),
and the lower bound follows.

Now suppose that v,(X) = 7(G). Let f be a minimum dominating
broadcast of X, and in addition, let f be condensed (we may assume this
by Theorem 2.6). We claim that f(u,2) <1 for all (u,z) € V(X). If not,
let (u,2) € V(X) be such that f(u,2) > 1, and let v € V(H) be a neighbor
of 2. Consider the function f,. Note that M (u,v) > 1, and so for f,(u,v)
we use the first row in the definition of f,. This yields w(f,) < w(f), a
contradiction. Thus indeed f(u,2) <1 for all (u,z) € V(X).

Let (u,v) € V(X) be a vertex, such that f(u,v) = 1. We claim that
N[v] = V(H). If not, let v' € V(H) be a vertex that is not adjacent to
v. Consider the dominating broadcast f». As v and v' are not adjacent
we find that fy(u,v') < Zzev(ﬂ) f(u,z) and hence w(fy) < w(f), a
contradiction.

We now claim that H is a complete graph. If for all z € V(G), there is
a vertex y € V(H), such that f(z,y) = 1, then w(f) > |G| > rad(G) + 1 >
76(G) +1, a contradiction. Hence there is an z € V(G), such that f(z,y) =
0 for all y € V(H). Since f is dominating, for every y € V(H), there is a
neighbor z, of z, such that f(z,,y) = 1. It follows that N[y] = V(H) for
all y € V(H), by the claim of the previous paragraph. Therefore H is a
complete graph. Now if [V/(H)| > 3, then we claim that f is not condensed.
Let z € V(G) be such that f(z,y) = 0forally € V(H) and f(z,,y) = 1 for
all y € V(H), where z, is a neighbor of z. Let D' = {(z,,y) |y € V(H)}
and let v € V(H) be an arbitrary fixed vertex. Then we find that

dx((z,0), (z,9) £2< Y. f(w)
(a,b) € D’
(a’ b) # (-Tyay)
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for all (z4,y) € D’. Thus it follows from (2) that f is not condensed, a
contradiction. Hence H = K.

Since H = K>, and the range of f is {0,1}, Dy corresponds to an or-
dinary dominating set, and |Dg| = 75(X). Thus 9(GOK>) = v(GOK>) =
7%(G) = ¥(G), where the last equality follows from v(G) < 7(G) <
v(GOK>). Let V(H) = {u,v}. Clearly D;NG\ # 0 and DyNG, # B since
otherwise |Dy| = |G| > rad(G) + 1. Let Dy = DyNGy and Dy = Dy NG,.
We claim that for any vertices (w,u) € Dy and (z,v) € Dy, vertices w and
z are not adjacent in G. Indeed, if z and w were adjacent, f would not be
condensed by (2) (for z = (w,v) and D' = {(w,u), (z,v)} we would have
d((w,u), (w,v)) = d((z,v), (w,v)) = 1).

Next we claim that for every (w,u) € D; there is exactly one (2,v) € D,
such that N(w) = N(z),w # z. Let (w,u) € D, be an arbitrary vertex.
First, suppose that degg(w) = 1. Consider the vertex (t,v), where ¢ is the
only neighbor of w in G. Since (t,v) is not dominated by (¢, u) (recall that
f is condensed), there exist a vertex s € V(G) such that (s,v) dominates
(t,v). Hence N(w) C N(s). If N(w) # N(s), then there is a vertex
t' € N(s)and avertex s', such that (s, u) dominates (¢',«). Since z = (s, u)
is a vertex, such that d{(s,u), (w,u)),d((s,u), (s,v)),d((s,u), (s',u)) < 2,
we find by setting D' = {(w,u), (s,v),(s',u)}, that f is not condensed, a
contradiction. Therefore N(w) = N(s) and s = z.

Now suppose that degg(w) > 1 and let (t1,v), (£2,v) be vertices such
that #;,t2 € N(w). Since f is condensed, (t;,v) and (¢2,v) are not f-
dominated by (¢;,u) and (£2,u), and so there exist vertices (s1,v) and (s2,v)
from Dy, such that (s;,v) dominates (¢;,v). We claim that s, = s = z.
Suppose that s; # s2 and set z = (w,v) and D' = {(s1,v), (s2,v), (w,u)}.
Since d((s1,v), (w,v)) = d((s2,v), (w,v)) = 2 and d((w,u), (w,v)) =1 we
find that f is not condensed, a contradiction. It follows that N(w) C N(z).
By analogous arguments we get N(2) C N(w). Therefore N(w) = N(z2)
and w and z are not adjacent.

Let us now prove that |Dy| = [Ds| = 1. Let Dy = {(wy,u),...,(wn,u)}
and let D; = {(z1,v),...,(zn,u)} be such that N(w;) = N(z;) for i =
1,...,n. Consider the graph G, induced by {w;, 2} U N{(w;). Clearly this
graph is from the set X’ and moreover, since G is connected, there is a graph
G; induced by {w;, z;} U N(w;), such that some vertex from G, is adjacent
to a vertex from G;. We infer there is a vertex ¢; € N(w,;) adjacent to a
vertex t; € N(w;). Setting z = (f1,u) and D' = {(w1,u), (w;,u), (z1,v)}
we find that f is not condensed, a contradiction. Hence n =1, |Dy| = 2
and G is from the class A’ as claimed.

a

We remark that X is the subclass of the class of graphs that appears in
the following result of Hartnell and Rall (4], concerning the usual domina-
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tion number of prisms.

Theorem 3.3 (4] For a connected graph G, v(GOK:) = v(G) if and only
if G has a y-set D that can be partitioned as Dy U D, such that V(G) \
N[D1] = Dz and V(G) \N[Dg] = Dl.

3.2 Strong product

Proposition 3.4 Let X = GRH be the strong product of connected graphs
G and H, Then

(G B H) < 5 max{n(G), w(H)},
and the bound is sharp.
bProof. For any vertices (u,v), (z,y) € V(G) x V(H) their distance is given
’ dx((u,v), (z,9)) = ma'x{dG'(u)x)adH(v’ y)} .
It follows that ex((u,v)) = max{eg(u),en(v)}, and therefore
rad(G ® H) = max{rad(G), rad(H)}.
We derive

(GBH) < rad(GRH) = max{rad(G), rad(H)} < max{27(G), Sm(H)},

where the last inequality follows from Theorem 2.3. Note that v,(Cs) = 2
and 7,(Cs ® Cs) = 3 which shows the bound is sharp. O

We now present an upper bound of a different flavor.

Proposition 3.5 Let D, and D be distance k-dominating sets of G and
H respectively. Then Dy x D, is a distance k-dominating set of G ® H,

moreover b if (uv) €Dy x D
_ if (u,v) € D) x Dy
flu,v) = { 0 otherwise

is a dominating broadcast of G ® H.

Proof. Let (z,y) be an arbitrary vertex of G ® H. Since D; and D,
are distance k-dominating sets of G and H respectively, there are vertices
u € D, and v € D, such that d(z,u) < k and d(y,v) < k. We infer
deru((z,v), (u,v)) = max{d(z,u),d(y,v)} < k. Hence Dy x D, is a dis-
tance k-dominating set of G ® H and f is a dominating broadcast. O

The following corollary is straightforward to prove.

Corollary 3.6 For any graphs G and H, v,(GRH) < min{kyx(G)v:(H) |k €
IN}.
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3.3 Direct product
We will use the following lemma about the distances in direct product [1].

Lemma 3.7 Let X = G x H and let (z,y), (v,w) be vertices of X. Then
dx((z,y), (v,w)) is the smallest d such that there is an z,v-walk of length
d in G and a y,w-walk of length d in H.

Note that from Lemma 3.7 we infer the following. If there is an z,v-
walk of the same parity as dg(y,w) but not longer than dy(y,w), then
dx((z,y), (v,w)) = dy(y,w). This is because we can always prolong the
length of a walk by any even number by going back and forth along the
same edge as many times as needed.

Theorem 3.8 Let X = G x H be the direct product of connected graphs G
and H. Then

3max{(G), v (H)} if rad(G) # rad(H)
WG X H) <4 3min{w(G), (H)} +1 ifrad(G) = rad(H).

and the bound is sharp.

Proof. We may assume without loss of generality that rad(H) < rad(G).
Let u € V(G) be a central vertex of G, and v € V(H) a central vertex of
H, and let v' € V(H) be a neighbor of v.

Suppose first that rad(H) < rad(G). Then we set f(u,v) = f(u,v') =
rad(G), and f(z,y) = 0, otherwise. Let (z,y) be an arbitrary vertex of
G x H. Note that dg(z,u) < rad(G) and dy(y,v) < rad(G). If dg(z,u)
and dy(y,v) are of the same parity then

dx ((z,9), (v,v)) = max{dg(z,u),dn (y,v)} < rad(G),

hence (z,y) is f-dominated by (u,v). If they are not of the same par-
ity, then there is a v/,y-walk W of length dg(y,v) + 1 (which is not
greater than rad(G)), and so it is of the same parity as dg(z,u). Hence
dx((z,y), (u,v")) = max{dg(z,u),|W|} < rad(G), thus (u,v') f-dominates
(z,y). We infer that f is a dominating broadcast of G x H. By Theorem
2.3 we have w(f) = 2rad(G) < 21(G) = 3In(G).

Suppose now that rad(H) = rad(G). Then we set f(u,v) = rad(G),
f(u,v') = rad(G) + 1, and f(z,y) = 0, otherwise. Arguing analogously as
above one can show that f is a dominating broadcast (details are left to
the reader) whose weight is clearly 2rad(G) +1 < 3%(G) + 1. We also have
w(f) < 3v(H)+ 1.

Note that rad(Cg) = 3 # 2 = rad(P3), while v,(Cs) = 2 and 7,(P;) = 1.
Since v5(Cs % P3) = 6, this shows the bound is sharp. D
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4 Broadcast domination of some classes of
graphs

4.1 Hamming graphs

Let G = K, 0K,,0---0K,, be the Cartesian product of p complete
graphs. If n; = 2 for all i we call the graph hypercube or p-cube, and denote
it by @,.

Consider first the case of hypercubes. Note that 7,(Q1) = 1, 1(Q2) =
2 = 7(@3), and in the latter case dominating broadcast is unique (up to
automorphisms of @3). That is, two antipodal vertices u,v € V(Q3) (with
d(u,v) = rad(Qs) = 3) are given f(u) = f(v) = 1, and f(z) = 0, otherwise.
Furthermore, note that similar dominating broadcasts can be obtained for
arbitrary Qn,n > 3, by setting f(u) = k, f(v) = n — k — 1 for antipodal
vertices u,v € V(Q,) (1 £k < n-2), and f(x) = 0, otherwise. Hence
76(Qn) <n—1forn >3.

Note that 7,(Q3) = 3—1 = 2. By Theorem 3.2, 7,(Qn) = 75(Qn—-10K3>)
is strictly greater than +,(Qn-1) as soon as Q,_; is not in class X. Since
the only hypercube in class X is Q, we infer 7,(Qn) > 75(Qn—1) for all
n 2 4, and 50 15(Q5) > n — 1 by induction. Combining this with an earlier
observation, v,(Q,) =n — 1, for n > 3.

Let G = K, 0K,,0---0K,,, be a Hamming graph in which at least
one n; is greater than 2. Since Cartesian product is commutative and
associative we can write

G = Kp, O(..(Kp, 0 - - O(Kp,_,0(Kp,_,0Kp,))...)

where n, > 2 (by reindexing of the factors, if necessary). Since for any i > 2
the graph K,,,0---0K,, is not in X we get y,(Kp,_,O0(K,,O0-- -0K,,)) >
¥5(Kp;O---0K,,). By induction we get 7,(G) > p and therefore, since
p =rad(G), v5(G) = p. We summarize our observations in

Theorem 4.1 Let X = K,,,0K,,0--- OK,, be a Hamming graph. Then

_f p-1 ifni=2foralli andp>3
n(X) = { P otherwise

Hence 7,(X) = rad(X) holds for all Hamming graphs except hypercubes
Qn, where n > 3.

4.2 Cartesian products of cycles

We first consider the case when cycles are of even length. In fact we shall
obtain a result about a somewhat more general class of graphs that might

315



be of independent interest. Call a graph G rad-entipodal if there exist
radial vertices u and v (that is, vertices with d(u,v) = rad(G)) such that
I(u,v) = V(G). That is, every vertex z € V(G) lies on a shortest path
between u and v, so we have d(u,v) = d(u,z) + d(z,v). (We remark that
in rad-antipodal graphs diam(G) = rad(G).)

Lemma 4.2 Let G be o rad-antipodal graph with diam(G) > 3. Then
7(G) < rad(G).

Proof. Let v and v be two radial vertices with I(u,v) = V(G). Define
f:V(G) = Ng by f(u) =k, f(v) = diam(G) — k — 1, where 0 < k <
diam(G) — 1, and f(z) = O otherwise. Then clearly f is a dominating
broadcast of G and w(f) = rad(G) — 1. 0O

Hypercubes and even cycles are rad-antipodal graphs. More rad-antipodal
graphs can be derived from the following lemma.

Lemma 4.3 Let G and H be rad-antipodal graphs. Then X = GOH is
also rad-antipodal.

Proof. Note that rad(GOH) = rad(G)+rad(H). Let u,v € V(G) be radial
vertices of G with I(u,v) = V(G), and z,y € V(H) radial vertices of H with
I(z,y) = V(H). Then dx((u, ), (v,9)) = de(u,v) + du(z,y) = rad(X),
hence (u,z),(v,y) are antipodal vertices in X. Let (a,b) be an arbitrary
vertex in X. Then dx ((u,v),(z,y)) = da(v,v) + du(z,y) = dg(u,a) +
dg(a,v) + dn(z,b) +du(b,y) = dx((u, ), (a,)) + dx ((a,b), (v,y)). Hence
Ix ((u,v), (z,9)) = V(X). a

Since any product of even cycles X has diam(X) > 2 we infer

Corollary 4.4 Let X = C,,0C,,0---0C,, be the product of even cycles
(i-e. n; even for all i). Then v(X) < rad(X).

In the sequel we provide exact broadcast domination numbers of Carte-
sian products of two cycles. We denote the vertices of a cycle Cy,, by integers
1,2,...,m. Note that

min if m and n both even
rad(Cr0C,) = { 2E2=2 if m and n are both odd
min=l  otherwise.

In the proof of Theorem 4.6 we use a result about dominating broadcasts
of grid graphs:
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Theorem 4.5 [2] For any pair m,n of integers with m,n > 2

m n
W(PnOP,) = rad(PaOP:) = | 7| + | 3] -
Theorem 4.6 Let X = C,UC,. If m or n is odd then v,(X) = rad(X),
otherwise v,(X) =rad(X) - 1.

Proof. Let f be a minimum dominating broadcast of X and let u € V(X)
be a vertex such that f(u) > f(z) for all z € V(X). Without loss of
generality assume that m > n.

Suppose that f(u) is even and f(u) + 2 < n. Without loss of generality
assume that u = (1,1). Let Y = X — Njy(,[u] and consider the grids
G1 CY and G; C Y defined as follows:

G1 ={1+f—(2u—),...,m—@} X {2+ Lgﬁ,...,n—@} and

S L 1 Y SO I F S

Asm > n > f(u) + 2 these two grids are well defined (see Figure 2). Now
observe that there are at least f(u) Cp-layers and at least f(u) Cp-layers
of X disjoint with G;. Similarly there are at least f(u) C,, and Cj-layers
disjoint with G2. Therefore, if z € V(G ) is a vertex such that f(z) < f(u),
then the set of f-dominated vertices by z in the subgraph G, is equal to
the set of f-dominated vertices by  in X. Analogous statement holds
if € V(Gs). If ¢ ¢ V(G,) and z f-dominates some vertices from G},
then consider the following projection (see also Figure 2). If z = (z,,2)
and 2 < 2+ f(w)/2, then split the weight f(z) of £ between two vertices
a= (1,2 + f(u)/2) and b = (z1,n — f(u)/2) of the grid G; such that the
vertex a receives the weight

f(z) - (_f(z_u) +2—:c2)

if this value is positive. If the above value is 0, then put weight 1 on a,
otherwise don’t give any weight on a. We put the weight f(z) — w on
b, where w is the weight given to a. Call the obtained function f' and
observe that the functions f and f’ dominate the same set of vertices in
G). It is easily seen that for any z ¢ V(G1) (or z ¢ V(G2)) the weight
of z can be split between two vertices of G; (or G2) in such a way that
the set of dominated vertices from G; (or G2) stays the same. Since f

dominates G; and G, and since v,(G;) = I_m_zf (u) J + ["_f f;‘"‘J and
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Y(G2) = lm_féu)_l_l + I_"_g(“)J we find that

R e R e a2 L

and at the same time

w(f)Zf(u)+[m_f§u)_1J+ln_zf(u)J = lm_lJ"'lEJ'

2 2

Thus we find that w(f) > 2+2=2 if m and n are both even or both odd
and w(f) > 2£2=L otherwise. Thus w(f) > rad(X) — 1 if m and n are
even and w(f) > rad(X) otherwise.

4
[Ibje
1
Gl i< G,
Cn | Cn
vl le
Xe
uje ule
Cm Cm
T eSS
Cn & Cn T
Ule uile
Cm Cm

Figure 2: Grids G1,...,G5. The boundary of G is clearly indicated by
arrows, while other grids are shaded. On the upper left picture f(u) = 6,
on the upper right f(u) =9, and f(u) = 11 otherwise.

Suppose that f(u) > 1is odd, f(u)+2 < n and let

2 2 PRI ——2
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Note that there are exactly f(u) Cpn and C, layers disjoint with G3. Ar-
guing as in the earlier two cases, we derive that to broadcast dominate G,
as a subgraph of X, one needs as much weights as to broadcast dominate
G3, that is, the product of paths. Hence

w(f) > fw)+ ["‘"’(“)J + [”‘f(“)J .

Since f(u) is odd we find that w(f) > 22 if m and n are both odd,
w(f) > 242=2 if m and n are both even and w(f) > 22=1 otherwise.
Thus w(f) > rad(X)—1 if m and n are even and w(f) > rad(X) otherwise.

If f(u) = 1, then all weights are 1 and thus Dy is a dominating set. We
can also assume that f is condensed and hence efficient. Let £ = (z1,22) €
X — Dy be any vertex. Without loss of generality assume that z is f-
dominated by s = (z;,22 — 1). Consider vertices u = (z; — 1,22) and
v = (z; + 1,z2). If u and v are dominated by one vertex z = (z; + 2, z2),
then w = (21,22 + 1) is dominated by the vertex ¢t = (z;,22 + 2), and
clearly ¢ # z (note that m = 4 in this case). In this case set D' = {s,¢,z}.
Otherwise u and v are dominated by two vertices z; and z;. In this case
set D' = {s,21,22} and observe that in either case f is not condensed by
(2), a contradiction.

Now assume that n < f(u) + 2 and consider the grids

if n is even and

6= {2+ 10 - 52 ma 5 - {212, 222
if 7 is odd. Since v,(G4) = [ﬂﬁ&u J and 7(Gs) = [_m_wz:z_fxu_)J

we find that w(f) > 242=2 if m and n are even and w(f) > Z4p=l
otherwise. Hence we have proved that 7,(X) > L if m and n are even
and (X) > 242=L otherwise.

Thus we have, by Corollary 4.4, that 7,(X) = rad(X) — 1 if m and n
are even and v,(X) = rad(X) otherwise. O
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