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Abstract. We present a block diagonalization method for the
adjacency matrices of two types of covering graphs. A graph Y is a
covering graph of a base graph X if there exists an onto graph map 7 :
Y — X such that for each z € X and for each y € {y | 7(y) = z},
the collection of vertices adjacent to y maps onto the collection
of vertices adjacent to x € X. The block diagonalization method
requires the irreducible representations of the Galois group of Y over
X. The first type of covering graph is the Cayley graph over the
finite ring Z/p™Z. The second type of covering graph resembles large
lattices with vertices Z/nZ x Z/nZ for large n. For one lattice, the
block diagonalization method allows us to obtain explicit formulas
for the eigenvalues of its adjacency matrix. We use these formulas to
analyze the distribution of its eigenvalues. For another lattice, the
block diagonalization method allows us to find non-trivial bounds on
its eigenvalues.
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representations, covering graph, Ramanujan graph, lattice, Ihara zeta
function.

1 Introduction

In this paper, we present a theorem that block diagonalizes the
adjacency matrix of a covering graph. We begin with a definition
of the covering graph. Let X and Y be finite, connected, undi-
rected graphs with no self-loops and no multiple edges. Then,
Y is a covering graph of base graph X if there exists an onto
graph map 7 : Y — X such that for each z € X and for each
y € {y | m(y) = z}, the collection of vertices adjacent to y maps
bijectively onto the collection of vertices adjacent to z € X. Fig-
ure 1 presents an example of a covering graph Y and its base
graph X. In this case, our mapping 7 : Y — X is defined as

Intuitively, Y is constructed by first taking two copies of X then
carefully editing the edges of these copies to satisfy the existence
of the mapping .

Our theorem block diagonalizes the adjacency matrix of Y with
respect to X. In particular, the theorem requires the irreducible
representations of the Galois group of Y over X, Gal(Y/X).
This group is the set of graph automorphisms of Y such that if
o € Gal(Y/X) then 7 (0 (y)) = 7 (y) for all y € Y. For Figure 1,
it is not difficult to show that Gal(Y/X) is isomorphic to Z/2Z.
We also look at graphs X with multiple edges. This changes the
definition of 7 slightly. In Section 2, we present these definitions
formally.
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Fig. 1. The covering graph Y with base graph X.

The block diagonalization of a covering graph will reduce the
computation time required to calculate the eigenvalues of the
adjacency matrix of the covering graph. In one of the graphs,
the block diagonalization form will lead us all the way to explicit
eigenvalue formulas for our graph. In another graph, the blocks
will Eive us upper and lower bounds on the spectrum of the
graph.

In Section 2, we present the definitions and block diagonaliza-
tion theorem for the covering graph. In Bell and Minei (2], this
theorem was presented for a covering graph Y with base graph
X where both X and Y are finite, connected, undirected, graphs
with no self-loops and no multiple edges. In this paper, we allow
X to have multiple edges.

In Section 3, we apply the block diagonalization theorem to two
Cayley graphs of the affine group over the finite ring Z/p"Z
where p is prime and n is a positive integer. A Cayley graph is
defined as follows. If S is a subset of a finite group G, the Cayley
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graph X (G, S) has as its vertex set G. Edges connect vertices
g € G and gs € G for all s € S. Usually, we assume S = S~}
and S generates the group G so that X (G, S) is an undirected,
connected graph. The set S is referred to as the generating set of
the graph. For this section, we set G to be the affine group over
the ring Z/p"Z, Aft (Z/p"Z), where p is a prime number and n
is an integer greater than or equal to 1. We refer to X (G, S) as
an affine graph. The eigenvalues of the adjacency matrix of the
graph are referred to as the eigenvalues of the graph.

In this section, we block diagonalize Y (Aff (Z/p"*'Z),S) as a
covering graph of X (Aff (Z/p"Z), S) for general S. This leads
to a decomposition of the adjacency matrix of Y into p? blocks
of dimension p" (p" — p"~!). We then apply this theorem to the
following two affine graphs. For the first graph, define

T:
{lg" m)Im=12,...,(p~2)}U{( 1),(g 0)} (mod p).

Define
S,=TUT! (mod p)

and
Sp=TUT"" (mod p?)

where 77! (mod p) is the set of inverses of the elements of T
computed modulo p, T-! (mod p?) is the set of inverses of the
elements of T' computed modulo p?, and g is a primitive root of p.
Then, we block diagonalize Y =Y (Aff (Z/p?Z), S,2) as a cover-
ing graph of X = X (Aff (Z/pZ),S,). The adjacency matrix of
Y decomposes into p? blocks of dimension p(p — 1). An impor-
tant connection between X and Y used in the decomposition of
Y is the irreducible representations of the Galois group Y over
X, Gal(Y/X). Forour X and Y, Gal(Y/X) =~ Z/pZ x Z/pZ. In
this case, we easily obtain the representations of Gal(Y/X).

For the second affine graph, we look at Y (Aff (Z/p"*2Z), S) as
a covering graph of X (Aff (Z/p"Z), S) where

S={(g 0, (¢7* 0), 1 1), 01 -1}
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With this simple change to Y, Gal(Y/X) rises significantly
in complexity and makes the theory for block diagonalizing
Y much more difficult. We demonstrate this by looking at
Y =Y (A (Z/p’Z), S) over X = X (Aff (Z/pZ),S).

An interesting computational observation resulting from this
section involves the eigenvalues of X (Aff (Z/pZ),S) where

T =
{(g™" m)|m=12,...,(p-2)yu{(1 1),(g 0)} (mod p)

and S = TUT~!. Calculations for various p show that X satisfies
the Ramanujan bound. More specifically, for A the second largest

eigenvalue (in absolute values) of X, we have A < 2,/|S| — 1.

Graphs that satisfy this bound are called Ramanujan graphs.
Calculations for X (Aff (Z/p"Z), S) suggest that the graphs are
not Ramanujan graphs for n > 2. From past experience, we
believe that a search for a larger family of Ramanujan graphs
lie in X (Aff (Fpn),S) where Fpr is the finite field of order p™.
We say more about this in the final section of this paper.

There exists a more effective method for block diagonalizing a
Cayley graph X (G, .S) by using the irreducible representations
of G. This is the case for our affine graphs where the represen-
tations of the affine group are worked out in [2]. The strength
of our block diagonalization theorem comes from its application
to non-Cayley graphs which is the subject of Section 4.

In Section 4, we look at two non-Cayley graphs with vertices
Z/nZ x Z/nZ where n is a large integer. For n — o0, both
graphs resemble lattices covering the first quadrant of the zy-
plane. For the first graph, we determine explicit formulas for its
eigenvalues. These formulas are used to analyze how the eigen-
values distribute themselves on the real line. For this graph, its
base graph is a multiple-edged graph.

For the second graph of this section, we decompose its adjacency
matrix into a set of 4-dimensional blocks. Using these blocks, we
show that the eigenvalues of the graph are bounded by -2.303
and 3. Empirical data shows that -2.303 and 3 provide tight
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bounds on the eigenvalues. For this graph, its base graph is not
a multiple-edged graph.

In Section 5, we state future work connected with this paper.
The first topic is the Ihara zeta function of our graphs of Section
4. The second topic is related to the potential Ramanujan graph
of Section 3.

2 Block Diagonalization Theorem of the Covering
Graph

In this section, we present the definition of the covering graph
and a theorem for block diagonalizing its adjacency matrix.

Let X and Y be finite, connected, undirected graphs with no
self-loops. Suppose both X and Y have no multiple edges. We
call Y a finite covering of the base graph X if there exists a
covering map 7 : Y — X which is an onto graph map (i.e.,
adjacent vertices map to adjacent vertices) such that for each
z € X and for each y € {y | m(y) = z}, the collection of vertices
adjacent to y maps bijectively onto the collection of vertices
adjacent to z € X.

Suppose Y has no multiple edges but X does have multiple
edges. Then, for each z € X and foreach y € {y | 7(y) = z}, (1)
The collection of vertices adjacent to y maps onto the collection
of vertices adjacent to x € X, (2) Let a3, oo, . . ., @, be n vertices
in Y such that each ¢; is connected to y and 7 (a;) = 7 (a2) =
... = 7 (an). Then, the number of edges between 7 (a;) and
m(y) is also n.

Suppose the set {y | 7(y) = z} has the same number of elements
for any z € X. Let d be the order of {y | 7(y) = z}. Then, Y is
called a d-sheeted covering of X.

In this paper, we assume all our graphs are d-sheeted coverings.
The next definition gives a more intuitive way of interpreting a
d-sheeted cover.
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Given a covering map 7 : Y — X, we can divide the vertices
of Y into discrete sets or sheets S1,9,..., 5, Each sheet S; is
a subgraph of Y such that (1) S; is connected, (2) 7 maps S;
bijectively onto X, (3) If s € S; and r € Y (r may or may not
be in S;) are connected to each other then w(s) and =(r) are
connected to each other.

The following example clarifies the above definitions when X
does have multiple edges. For convenience, define Ey (a,8) to
be an edge connecting vertices a and 8 in Y and Ex (a,f) to
be an edge connecting vertices @ and B in X. Define X to be
the graph with vertices a and b. We make X a multiple-edged
graph by drawing two edges between a and b. Define Y to be
the graph with vertices a;, ag, by, and b,. Draw edges between
a1 and by, between a; and by, between a, and b;, and between
az and by. See Figure 2.

Fig. 2. The covering graph Y with multiple-edged base graph X.

To make Y a covering of X, define 7 : Y — X as 7 (a;) = q,
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7 (a2) = a, w(b1) = b, and = (by) = b. In addition, associate the
edges of Y to the edges of X as

ai, b)) — Ex (7 (a1),7 (b)),
b)),
b1)),
b2))

)7 (
), (
ag),m(
), (

ag, by) — Ex (7 (ag), T

( (
(ay,b9) — Ex (7 (a;
(a2,b1) — Ex (7 (
(

or
Ey (a1,b1) — Ex (a,b),
Ey (a1,b) — Ex (a,b),
Ey (a2, b)) — Ex (a,b),
Ey (ag,b2) — Ex (a,b).

In our example, Y is composed of two sheets, S; = {a;1, b}, and
Sy = {a2, b}

The Galois group of Y over X, Gal(Y/X), is the group of graph
automorphisms of Y such that if 0 € Gal(Y/X) then 7 (o (y)) =
7 (y) for all y € Y. A d-sheeted covering Y is a normal covering
of X if there are d graph automorphisms in Gal(Y/X).

We present a method for block diagonalizing the adjacency ma-
trix of a covering graph. Let the first sheet of Y, Sj, have m
vertices. Define the m x m matrix A(g), g € Gal(Y/X), by

1if ¢ is adjacent to g(j) in Y
(A(g))ij = {

0 otherwise

where %, j are vertices of 5.

Let A = (a;;) and B be matrices. Then, the tensor product of
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Aand B, A® B, is

a11B a1 2B ---
A® B = azle a2,ZB"'

Theorem 1 Let Y be a normal d-sheeted covering of X with
Galois group Gal(Y/X) = {g1,92, - - -, ga}- The adjacency matriz
of Y can be block-diagonalized into blocks of the form

M.= 3 d7(g9)® Alg)
g€Gal(Y/X)

where m Tuns over the irreducible representations of Gal(Y/X)
and d. s the dimension of «.

Proof. Let S; be the first sheet of Y and Ay the adjacency
matrix of Y. For a,b € S; and g;, g; € Gal(Y/X), the entries of
Ay are

1 if a is adjacent to g7 'g;(b)

(AY)g(a).guty = {

0 otherwise.

Also, define the |Gal(Y/X)| x |Gal(Y/X)| matrix p (g) as

1 if g;7'g; = g
0 otherwise

(0 (9k))g,q, = {

where g;, g;,g9x € Gal(Y/X). Thus, p is the right regular repre-
sentation of the Galois group Gal(Y/X) since if J, is a vector
with 1 in position a, we have p(g)d, = dqg-1.

With these definitions,

Ay = > plg) ® A(g).
geGal(Y/X)
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Let {m,m,...,m,} denote the irreducible representations of
Gal(Y/X) and let dy, . .., d, denote their respective dimensions.
Then, p = dim @ - - @D d,7,, as it is the right regular represen-
tation of Gal(Y/X). Hence,

Ay= ). (dim(g)® - - ®duma(g)) ® Al9g)
9€Gal(Y/X)

=é > dimi(g) ® Alg)

i=1 geGal(Y/X)

=P M, =
i=1

3 Application to the Cayley Graph over the Affine
Group

We apply our block diagonalization method to the Cayley graph
over the finite affine group.

Define the affine group over the ring Z/p"Z as

AR (Z/p"Z) = { (z ‘f)

where p is a prime number and n is an integer greater than or
equal to 1. We will refer to X (Aff (Z/p"Z) , S) as an affine graph.

z,y € L[P"Z, p)(y}

x
For simplicity, we write Y as (y ). The eigenvalues of the
01

adjacency matrix of the affine graph is called the eigenvalues of
the affine graph.

Theorem 2 Let n and m be positive integers. Define Spim C
Aff (Z/p"*™Z) and S, C Aff (Z/p"Z) such that (1) |Spim| =
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|Sn|, (2) For every t € S, there exists s € Spyim such that
s = t(mod p”). Let Y =Y (Aff (Z/p"*™Z), Spsm) and X =
X (Aff(Z/p"Z), S,.) be two affine graphs. Then, Y is a normal
finite covering of X and Gal(Y/X) is isomorphic to the group

r={(a b)|abeZ/p" Z p"|(a—1), p"lb}.

Proof. The projection 7 : ¥ — X is the reduction of the
coordinates modulo p™*™ to modulo p™. This preserves vertex
adjacencies. Moreover, given g € X, if we take a vertex ¢ € Y
in m~1g, we see that the vertices in Y adjacent to g’ have the
form ¢'s, for s € S, m- The vertices adjacent to g in X are of
the same form except computed modulo p™. Also, m# maps these
adjacent vertices in Y bijectively onto those in X. Thus, 7 is a
covering map that makes Y a finite covering of X.

If (a b) €T, we define the Galois group element

Yy (T ¥)) (mod p"*’") =(a b)(z y) (mod "*’”).

It follows that m o v = 7 since (a,b) = (1 0)(mod p™) and =
reduces everything mod p". By the definition of 7, these +’s are
the only automorphisms of Y such that # oy = 7 and hence
Gal(Y/X) =T. |

Theorem 3 For X and Y defined as above but with m =1,

Gal(Y/X) ~ Z/pZ & Z/pZ.

Proof. See [2]. =

We demonstrate a practical application of the block diago-
nalization method for the case m = 1. In this case, ¥ =

Y (Aff(Z/p™*'Z), S). Define

A={(a b)|a,beZ/p"Z, p fa}
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and

={(a b) | a,b€Z/p"*'Z, p"|(a - 1), p"|b}.

Then, |A| = p" (p" — p*~!) and |I'| = p®. For each g; € T', the
sets g; A make up the p? sheets of Y.

Construct the p™ (p* — p"~!) x p™ (p" — p"~!) matrix M® as fol-

lows. Associate an element of A to each row of M. Associate
an element of g;A to each column of M®. For each s € S and
aj € A, if ajs = g;a;. for some a, € A then put a 1 in the (j,k)
entry of M. Otherwise, the entries of M are 0’s. There are
p? of these matrices M®.

2miaf 2wid
Ya,8,60 = €XP D - exXp P

for a,3,6,% in {1,...,p}. These are the irreducible representa-
tions of the Galois group.

Define

Then, for each fixed « and ¢, the matrices
P P .
Z Z Voo 8.8% MU(B=1)p+¥)
B=1y=1
make up the block diagonalization form of Y.

We look at the results for the following generating set. Let g be
a primitive root of Z/pZ. Define the set

T =
{(g™ m)|m=12,....,(p—2)}U{(1l 1),(¢ 0)} (mod p).

Define
S,=TUT™" (mod p)
and
Spe=TUT™" (mod p?)
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It is easy to check that Y (Aff(Z/p’Z),S,2)
and X (Aff (Z/pZ), S,) are both connected graphs and that Y

is a covering of X. For p = 5, Y decomposes into twenty-five
20-dimensional blocks and Gal(Y/X) ~ Z/5Z & Z/5Z.

Define A to be the second largest eigenvalue (in absolute val-
ues) of a Cayley graph Y(G,S). If A < 2,/|S| -1 then Y is

called a Ramanujan graph. For our graph above with p = 5,
Y (Affi(Z/p*Z), S,2) has A = 8.60 and its Ramanujan bound is

24/|Sp2| — 1 = 6. Thus, Y is not a Ramanujan graph.

For a computational experiment, we determine A for
X (Aff(Z/pZ), S,) for several p’s.

Pl A |25 e
101 | 16.32 | 28.35 0.57
131 | 18.46 | 32.31 0.57
181 | 22.19| 38 0.58
211 | 23.35 | 41.03 0.56
541 | 35.71|  65.75 0.54

All of these graphs satisfy its Ramanujan bounds. Our data
tells us that the ratios \/I;TI_I are oscillating near 0.56. As

mentioned in Section 1, it is unclear at this point if X is a
Ramanujan graph and if X can be generalized to a larger family
of Ramanujan graphs. We present a brief discussion of X in the
final section of this paper.

The case m > 1 is more difficult to deal with because of the
complicated nature of the irreducible representations of I'. The

following is such an example. Set p = 3, n = 1 and m = 2.
Define Y = Y (Aff (Z/3%Z),S) and X = X (Aff (Z/3Z),S) to
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be two affine graphs with

s={(220).(121)}.

We have
T={(e b)|ebeZ/3Z, 3|(a—1), 3lb}.

The classes of irreducible representations of I' arc as follows.

y T )=exp (2"%) where s = 1,2.

exp (%) if =0,9,18

0 otherwise

0 otherwise

exp (2Zeut2)) if 21y + 2 =0,9,18

0 otherwise

exp (25213 if £ +3=0,9,18

0 otherwise

(), . = {eXp (Zrishute)) if 24y + £ =0,9,18
(1.2)
(), - {
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exp (Zris@ut=tS) if 24y + £ 4 3=0,9,18

("gs))(z 2)
’ 0 otherwise

exp(w) if2ly+z+3=0,9,18

27

(3) —
T =
( ’ )(2‘3) 0 otherwise

8
0 otherwise

exp(ngg;zwz) if 24y +z+6=0,9,18

(3) —
T =
( ’ )(3’2) 0 otherwise

3 exp (W) ifr+6=0,9,18
(™) gy =

exp (mgv%ﬂl) if 2ly +z+6=0,9,18

(Wgs)) 3.3)

Let M be the adjacency matrix of Y. Consider the representa-
tions 7, s = 0,1,...,8. Since X has order six and each «{! is

1-dimensional, these representations produce nine 6-dimensional
blocks for M.

0 otherwise

The second representations 7(¥, s = 1,2, are 1-dimensional.
Thus, these representations contribute two 6-dimensional blocks
for M.

The third representations (! - 7D s = 1,2,...,8,t = 1,2,
are 1-dimensional. These representations contribute sixteen 6-
dimensional blocks for M.

The fourth representations 7r$1) . 7r§3), =012 s =12, are
3-dimensional. Thus, their blocks are 18-dimensional. The multi-
piicgltc}s, of each block is 3. Thus, there are eighteen 18-dimensional
blocks.

There exists a more efficient but more complicated method to
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block diagonalizing a Cayley graph X (G, S). This method in-
volves the irreducible representations of G and is demonstrated
in [2] where G is the affine group over the finite rings. The
strength of our block diagonalization method for covering graphs
comes when the graphs are not Cayley graphs. In the following
section, we look at two such examples.

4 Block Diagonalization of Two Lattice Coverings

We analyze the eigenvalues of the following covering graph. Fix
N to be a positive integer. We construct the graph Y =Y (4N2)
with 4N? vertices. In the zy-plane, place vertices at each (z,y)
where z =0,1,...,(2N—-1)andy =0,1,...,(2N —1). For each
(z,y), draw an edge connecting it with (z + 1, y)(mod 2N) and
(z,y+1)(mod 2N). Figure 3 is the graph of Y (36). For clarity,
we omit the edges connecting the perimeter vertices of Y. As
N — o0, the resulting graph becomes a lattice of the first

quadrant of the zy-plane. For N large, we obtain the eigenvalues
of the adjacency matrix of Y.

Theorem 4 The eigenvalues of the graph Y =Y (4N?) are

2 (cos (——’-‘- + cos (%’22 , 2 (cos (%) — Cos (”—1\;’)) ,

wherem=0,1,...,(N—=1) andn=0,1,...,(N —1).

Proof. We define a base graph X of Y as follows. Place vertices
at (0,0), (1,0), (0,1), and (1, 1). Insert two edges between (0, 0)
and (1,0), between (1,0) and (1,1), between (1,1) and (0, 1),
and between (0, 1) and (0, 0). Define the covering map 7 : Y —
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Fig. 3. The covering graph Y(36). For clarity, we omit the edges
connecting the perimeter vertices.

X as

m(m,n) = (0,0)

m(m+1,n) = (1,0)

m(m,n+ 1) =(0,1)
(

m(m+1,n+1)=(1,1)

where m and n are two even integers between 0 and 2N — 2.
This makes Y a covering of X.

Applying our block diagonalization method to Y, we have
Gal(Y/X) ~ Z/pZ ® Z/pZ. For m = 0,1,...,(N — 1) and
n =0,1,...,(N — 1), the adjacency matrix of Y decomposes
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into the blocks

MNm+n =
0 1+ e—27rin/N 14 e—2m’m/N 0
1 4 e2min/N 0 0 1 + e~27im/N
1+ exmim/N 0 0 1+ e~ 2min/N
0 1+ e27rim/N 1+ e21rin/N 0

By direct computations, Mym4. has eigenvalues of the form

2(cos( )+cos(N)), 2(003(%)—%5(%")),
2( cos( )+cos(N)),2(-cos(",t,") COS("W))I

We present the eigenvalues of Y in the following manner.

Let {e?),eg),eg) e(')} be the four eigenvalues of the block

M;. For each i = 0,1,...,N?2 — 1, plot the points

(), (), (i, €9 (i e?) ). We refer to this
plot as the eigenvalue diagram of Y.

Figure 4 is the eigenvalue diagram for ¥Y'(10000).

The following two theorems analyze the eigenvalue diagram of
Y.

Theorem 5 For 0 < z < 1, define f(z) = 2(| cos(wz)| + 1).
Then, the eigenvalue diagram of G(4N?) lies between the graphs
of f(z) and —f(z).

Proof. This theorem follows from the indexing of the blocks
of the adjacency matrix. The eigenvalues graphed at z = I—V—W{—"
given above are bounded by 2(| cos(7m/N)|+1) as cos (n7/N) <
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Fig. 4. The cigenvalue diagram of Y'(10000).

1. The outer shell of points is given by 2(] cos(wm/N)| + 1).
Thus, we have an upper bound of 2(| cos(wz)| + 1) for this shell.
Similarly, the lower bound for the shell is —2(| cos(nz)| +1). m

We analyze the eigenvalues of our graph that result from the
first eigenvalue equation

2 cos (WTVTP-) + 2cos (W—]\?)
form=0,1,---,N—-1andn =0,1,--- , N — 1. In particular,
we determine a formula for the proportion of these eigenvalues

less than or equal to e € (0,4).

Fix N large. Let 0 < e < 4 and define

L= [_]_V_ arccos (E — 1)]
T 2
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where {z] is the largest integer less than or equal to z.

Lemma 6 Fizn€ {L+1,L+2,---,N —1}. Then,

2 cos (ZTN&) + 2 cos (%) <e

forallm=20,1,...,N—-1.

Proof. We begin with

™ ™
2 cos (W) <e-—2cos (F)

and determine the smallest n can be such that

™
<e- —_ 1.
2<e QCOS(N)

Solving for n, we have

N e
nZ——-arccos(——l).
T 2

Since n is an integer, let
N
n> [L arccos (E - 1)] + 1.
m 2

Then,

2 cos (%) + 2cos (_7;711) <e
forallm=0,1,--- ,N —1.

Lemma 7 Fizxn = 0,1,---,L. Then, the proportion of m’s

such that

™m ™
—_ _ <
2cos(N)+2cos(N) <e
18

s (- ()
N7 I'CC 2 S N .
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Proof. Fix n =0,1,---, L. Then,

ZCOS(WN)‘FZ 05(%") <e
larc (-e-—cos(ﬂ))<E
) N))=NW

g [ (5 -0 (7))] <
N 71_arccos 5 v <5

since m is an integer. Since §; < 1, the proportion of m’s that

make
m
<
2003( N)+2005(N) e

1—l [iv—ar COS (E—cos (ﬁ))] n
Nln ¢ 2 N ’

Theorem 8 Form=0,1,--- ,N—-1,n=0,1,--- ,N — 1, the
proportion of (m,n) pairs satisfying

™ mn
— —) <
2cos(N)+2cos(N) <e

R L !

n=0

provided

Thus,

true is

Proof.NWe know that foralln = L+ 1,--- ,N—-1and m =
0)"', _1,

T T
<e.
QCOS(N)+QCOS(N)_6

Thus, there are o = N(N — 1 — L) (m,n) pairs satisfying this
inequality.
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For each fixed n = 0,1,---, L, we know that the proportion of
m’s that satisfy the inequality is

1= [ arccos (& - cos ()],

8= Zl—%[?arceos(——cos %))]

n=0
Thus, form=0,1,--- ,N—1,n=0,1,--- ,N — 1, the propor-
tion of (m,n) pairs satisfying

T ™
<
QCos(N)+2 os(N)_e

Set

is
@ B 1 &N e ™
m+7v——-1 N7 g[ﬂ_arccos(ﬁ—cos(N)ﬂ.l

Our theorem has a closed form if we pick N carefully enough to
eliminate [ ]. Choose N to be divisible by 3 and ¢ = 1. Then,
L = 2N/3. Thus, the proportion of (m,n) pairs such that

™
_ <
QCOS(N)-l-?cos(N) 1

is

1
1- 18_N (3\/—+67T+47TN+900t (2N)) +O(1)

The following is data to compare our theorem with empirical
data. Define “Empirical Data” to be the proportion of (m,n)’s

O + <

Define “Theory” to be the value

1

Ty

(3\/—+67r+47rN+9c0t <2N>)
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N | Empirical Data | Theory
33 0.6730 0.6636
66 0.6818 0.6700
99 0.6851 0.6721
132 0.6868 0.6732
165 0.6877 0.6738

We look at an asymptotic approximation to the proportion of
eigenvalues in a given interval |a, 8] C [0, 4]. Symmetry allows us
to give an asymptotic approximation for any interval contained
in [—4,4]. A first approximation is to consider the area given
in the band relative to the total area in the region bounded
by 0 < y < 2(|cos(nz)| + 1). This may seem reasonable but
experimental errors were inconsistent and did not account for
the fact that the eigenvalues are distributed along cosine curves.
We obtain a more reasonable estimate by considering the arc
lengths of the cosine curves as the asymptotic distribution of
the eigenvalues. This leads to elliptic integrals that can only be
evaluated numerically. However, the asymptotic values appear
to agree with the above exact calculations. To approximate the
asymptotic proportion of eigenvalues in a given band, we com-
pute the arclengths of the curves 2(cos(wz;) + cos(wxs)) that lie
in the band [a, G]. If we fix z,, the arclength of the curve is given

by

b
2/ 1 \/1 + 472 sin®(7z;) dz,
al

where

a —la B (mz2) b—l 'CCO (g—cos(w ))
1 = _arccos | 5 —cos(m3p) |, by = —arccos | 5 )

and the two accounts for the symmetry in the eigenvalues. This
is an elliptic integral of the second kind. We then integrate with
respect to z3 to get the asymptotic for the eigenvalues in [¢, 0]
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as

bo b
/ ? / ' \/1 + 472 sin%(mx;) dzydzy
as Jau

where

1
a2=larccos ﬁ—1 , bp = — arccos (g—l).
T 2 T 2

The corresponding asymptotic approximation for the percentage
of eigenvalues in the region [0, 1] corresponding to the above data
is approximately 0.65. This value is obtained by using Simpson’s
rule on the integral with n = 1000 steps.

We construct our next covering graph. Fix N to be a posi-
tive integer. We construct the graph Z (4N?) with 4N? ver-
tices. Place vertices at (z,y) where z = 0,1,...,(2N — 1) and
y=0,1,...,(2N — 1). Let m and n be two even integers be-
tween 0 and 2N —2. Consider the four vertices (m,n), (m+1,n),
(m,n+1), and (m+1,n+1). Draw an edge between (m + 1,n)
and (m,n), between (m + 1,n) and (m,n + 1), and between
(m+1,n) and (m+ 1,7+ 1). Next, draw an edge between be-
tween (m+1,n+1) and (m+2,n+1)(mod 2N). Finally, draw
an edge between (m,n) and (m,n — 1)(mod 2N).

Figure 5 is the graph Z for N = 4. We omit the edges connecting
the perimeter vertices. As N increases to co, we have a tiling of
the first quadrant of the zy-plane.

Theorem 9 The eigenvalues of Z are contained in the interval
[~—2.303, 3].

Proof. We begin with a definition for a base graph X of Z. Place
vertices at (0,0), (1,0), (0,1), and (1,1). Insert an edge between
(0,0) and (1,0), between (1,0) and (1,1), between (1,1) and
(0,1), between (0,1) and (0,0), and between (1,0) and (0, 1).
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V.

Fig. 5. The covering graph Z(64). For clarity, we omit the edges
connecting the perimeter vertices.

Define the covering map 7: Z — X as

m(m,n) = (0,0)

r(m+ 1,n) = (1,0)

r(m,n+1)=(0,1)
(

m(m+1,n+1)=(1,1)

where m and n are two even integers between 0.and 2N — 2.
This makes Z a covering of X.
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Applying our block diagonalization method, the adjacency ma-
trix of Z decomposes into the blocks

0 e—21rim/N e—21rin/N 1

e2m’m/N 0 1 1

M m+4n —
Nm+ e27rin/1\’ 1 0 1
1 1 1 0

where m=0,1,...,(N-1)andn=0,1,...,(N —1).

We obtain our eigenvalue bounds in the following manner. Con-
sider the matrix

0 e—27ri:c e—21riy 1
e2m'.1: O 1 1

e 1 0 1
1 1 1 0

where 0 < z < 1 and 0 < y < 1. We show that the eigenvalues of
L are contained in {—2.303, 3). Using Gershgorin’s circle theorem
[3] on L, we know that the eigenvalues of L are in the interval
[—3,3]. We show that -2.303 is a tighter lower bound on the
eigenvalues of L. Define M = (2.303)]+ L where [ is the identity
matrix. Our lower bound claim is equivalent to showing that the
Hermitian matrix M is positive semidefinite. Thus, we show that
(1) M has non-negative diagonal entries, (2) M has non-negative
determinant, and (3) The determinants of the four 3x 3 principal
minors of M are all non-negative. Obviously, (1) is true. For (2),
the determinant of M is the formula

flz,y) =
a + 2.606 cos (27(z — y)) + 2.606 cos (27x) + 2.606 cos (27y)

where a = 2.303 (2.303% — 4.909) — 3(2.303% — 1). Using calcu-
lus, we find that f(z,y) has a lower bound of 0.01. Thus, the
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determinant of M is non-negative. For (3), the principal minors
of M are

2303 1 1 \ (2.303 e 2 ]
1 2303 1 | e¥™ 2303 1 )
1 1 2303 ]\ 1 1 2303

2.303 e~2miz | \ /2303 e~ 2miz e—27riy
e 2™ 2303 1 |, e*™* 2303 1
1 1 2303) \e™ 1 2303

The determinants of these matrices are 2.303% — 3(2.303) + 2,
2.303 (2.3032 — 3) + 2 cos (27y), 2.303 (2.3032 — 3) + 2 cos (27z),
and 2.303 (2.303% — 3)+2 cos (27(z — y)), respectively. It is clear
that they are all non-negative for any choice of z and y. Thus, M
is positive semidefinite which means that the smallest eigenvalue
of L is greater than or equal to -2.303. [ ]

Figure 6 is the eigenvalue diagram for Z(10000). Both 3 and
-2.303 are tight bounds on the eigenvalues of Z(10000).

5 Future Work

Our work in this paper has given us two ideas for future projects.

As one application of our block diagonalization method, we con-
sider the Thara zeta functions of our graphs. The Ihara zeta
function associated with a finite connected graph x is defined

by Ihara [4] as
Zy(u) =J(1 - u”(©))~1
(€]

where ¥(C) is the length of the cycle C and the product is taken
over equivalence classes of primitive, closed, backtrackless, tail-

less cycles. The variable u 1s taken sufficiently small for conver-
gence.
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Fig. 6. The eigenvalue diagram for Z(10000).

In order to calculate this zeta function efficiently we use a the-
orem of [4]. Let x be a connected (¢ + 1)-regular graph with
v vertices, adjacency matrix A, and fundamental group rank r,
r—1= ”("—2_12. Then, the Thara zeta function defined above is
the reciprocal of a polynomial. More precisely, we have

- IMr—
Z7u) = (1-u?) det(I — Au + qu*I).

Since our method allows us to block diagonalize A, the deter-
minant portion of the zeta function will factor into the corre-
sponding determinants for each block. (See Stark and Terras [7]
and Stark and Terras [8] for much work done along these lines.)
Following the notation used in Section 2 of this paper, assume
Y is a ¢ + 1 regular cover of X with n distinct representations
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of Gal(Y/X), we have

Zyt(u) = (1 = u®) I, det(I — Myu + qu®I)
= (1 = )" Tespeey) (L — Mu + qu?)

where spec(Y’) is used to denote the eigenvalues of Y. In the
case of Y (4N?) defined in Section 4, where ¢ = 3,v = 4N?, we
have

}7(141\/2)(“)
=(1- u2)4N2 I1 (1 -2 (i cos (%) =+ cos (%)) u+ 3u2)

where the product is taken over m and n from 0 to N — 1 and
=+ means to take all possible sign combinations. We would like

to know if there are any u’s such that Z;(14 n2y(u) converges for

N — o0. In addition, we are interested in the behavior of the
zeros of this function for NV increasing to infinity.

Recall from Section 3, the graph X (Aff (Z/pZ), S,) where g is
a primitive root of p,

T =
{(gm m)|m=1,2,,(p—2)}U{(1 1),(9 0)} (mOdp))

and
S, =TUT™" (mod p).

Computationally, we believe this graph to be a Ramanujan
graph ([5]). If this is true, we would like to extend our definition
for X as far as possible such that this extension still satisfies the
Ramanujan bound. We believe this search should extend into
the affine group over the finite field F,» instead of the affine
group over Z/p"Z. In other words, we believe that the graph

Y =Y (Aff (Fpr) , S)
defined such that Y reduces to X above when n = 1 will yield a

larger class of Ramanujan graphs. There are several graph exam-
ples that support our belief. One example was studied by Terras
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[9]. From that paper, an affine graph over F,» was eventually

shown to be a Ramanujan graph. In particular, it was found
Y

that e 0.9 for any fixed n as p — oo. (A later paper

by Angel, Shook, Terras, and Trimble [1] proved that for the

n A
same affine graph over Z/p"Z, WG — 00.) We note that

for both the graph Y (Aff (Fp»), S) above and the graph of [9],
(1) The vertex sets are matrix groups over the finite field, (2)

The order of the generating sets increase in value with the order
of the vertex sets.

In comparison to the above graphs, consider the graphs of
Lubotzky, Phillips, and Sarnak [6]. The graphs are defined as

X = X (PGL(Z/pZ), S)

where the order of S is fixed and independent of the order
of PGL (Z/pZ). These graphs were shown to be Ramanujan
graphs. In {2], we considered the following experiment. We
looked at the graph

X = X (PGL(Z/5Z), S)

where | S| = 13. As expected, this graph was a Ramanujan graph.
On the other hand, the graph

Y =Y (PGL (2/5Z), 5)

where |S| = 13 was also a Ramanujan graph. Figure 7 is
the eigenvalue histogram for Y. We note that the Ramanujan
bounds are £21/13 — 1 = £6.928. We note that for these graphs,
(1) The vertex sets are matrix groups over the finite ring, (2)
The order of the generating sets is independent of the order of
the vertex sets.
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Fig. 7. The eigenvalue histogram for Y.
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