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Abstract
A graph is said to be locally grid if the structure around each of
its vertices is a 3 x 3 grid. As a follow up of the research initiated
in (8] and [9] we prove that most locally grid graphs are uniquely
determined by their Tutte polynomial.

1 Introduction

Given a graph G, the Tutte polynomial of G is a two-variable polynomial
T'(G;z,y), which contains considerable information on G [4]. A graph
G is said to be Tutte unique if T(G;z,y) = T(H;z,y) implies G & H
for every other graph H. Since chromatic polynomial is an evaluation
of Tutte polynomial [4] the concept of Tutte unique graphs is a natural
extension of the concept of chromatically unique graphs [9], defined as
those graphs uniquely determined by their chromatic polynomial [7]. Tutte
polynomial and Tutte uniqueness have been studied more generally for
matroids [2, 3, 10, 11]. From now on, all graphs considered have no isolated
vertices, since if we allow graphs to have isolated vertices there are no Tutte
unique graphs at all.

In Section 2 we prove that locally grid graphs are Tutte unique. In [8]
was studied the Tutte uniqueness of the toroidal grid. In order to study
this property in the rest of locally grid graphs, classified in [8] and [12], we
generalize the definition of essential cycle given in [8], being both definitions
equivalent [5], and we also calculate the exact number of shortest essential
cycles in locally grid graphs.

Given a fixed graph H, a connected graph G is said to be locally H if
for every vertex z the subgraph induced on the set of neighbours of z is
isomorphic to H. For example, if P is the Petersen graph, then therc are
three locally P graphs [6]. The locally grid condition is slightly different
since it involves not only a vertex and its neighbours, but also four vertices
at distance two.
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We first recall some definitions and results about locally grid graphs
from [8].

Let N(z) be the set of neighbours of a vertex z. We say that a 4—regular
connected graph G is a locally grid graph if for each vertex z there exists
an ordering z,,2,z3,T4 of N(z) and four different vertices y1,y2,¥3,v4,
such that, taking the indices modulo 4,

N(z;)NN(ziy1) = {z,u:}
N(x,) N N(:l:i+2) = {:c}
and there are no more adjacencies among {z,z1,...,%4,¥1,...,¥4} than

those required by these conditions (Figure 1).

Figure 1; Locally Grid Structure

Locally grid graphs are simple, two-connected, triangle-free, and each
vertex belongs to exactly four cycles of length 4.

Let H = P, x P, be the p x ¢ grid, where P, is a path with | vertices.
Label the vertices of H with the elements of the abelian group Z, xZ, in the
natural way. Vertices of degree four already have the locally grid property,
hence we have to add edges between vertices of degree two and three in
order to obtain a locally grid graph. A complete classification of locally
grid graphs is given in (8] where it is also shown that all of them admit an
embedding in the torus or in the Klein bottle. They fall into the following
familics. In all the Figures, the vertices of the graph are represented by dots
and two points with the same label correspond to points that are identified
in the surface.

The Torus T¢, with p>5, 0< 8§ <p/2, §+g25if g>4, §+¢>6
if g=2,3 0r 4 < 6 < p/2 with & # p/3,p/4 if ¢ =1. (Figure 2a). This
graph is built as the graph C, x C,4 but moving the adjacencies in the first
direction & vertices to the right. That is,

E(TE,) = E@H) u {{(,0)G+8g-1)},0<i<p-1}
u {{(O,j)’(P_ laj)}, 0 <j<gqg- 1}

For § = 0 we obtain the toroidal grid C, x Cq, in this case we will write
Tp,q- We can assume that § < p/2. All these graphs are embeddable in the
topological torus.
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The Klein Bottle K, , with p > 5, p odd, ¢ > 5. (Figure 2b)
E(K;,q) = E(H) U {{(j,O),(p—j——l,q—l)},OSj Sp—].}
U {{(O,j),(p—l,j)},OSqu-—-l}
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Figure 2: a) T?5 b) K} ;

The Klein Bottle Kg,q with p > 6, p even, g > 4 (Figure 3a).

B(KS,) = E(H) U {{(,0,(-i-19¢-1}0<j<p-1}
U {{(O,J),(P—I,J)},OS]Sq"“l}
The Klein Bottle Kf,,q with p > 6, p even, g > 5 (Figure 3b).

E(K,,) = EMH) v {{(G:0,(p-jq-1})0<j<p-1}
U {{(0,4),(p-1,7)},0<j<qg-1}

The graphs K;',,q are built by keeping the adjacencies of the second

direction untouched and reversing the ones in the first direction, thus we
obtain graphs embeddable in the Klein bottle.

The graphs S, ; with p > 3 and g > 6. (Figure 4).

Ifp<gq

E(Spq) = EMH) U {(,0,(-Le-p+j)}L0<j<p-1}
u {{(0,4),(35,¢-1)},0<i<p-—1}
U {{(0,i),(p-1,i-p)},p<i<qg-1}
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Figure 3: a) KQ 5 b) K5

Iftg<p
E(Spq) = E(H) U {{(4,0),(0,g=1~4)},0<j<q-1}
U {{p-1-49-1),(p-1,9)},0<i<g-1}
v {{g-1),(i+¢0)},0<i<p-g-1}

Figure 4 shows embeddings of the two kinds of graphs Sy, 4 in the Klein
bottle.

Theorem 1.1. [8] If G is a locally grid graph with N vertices, then ezactly
one of the following holds:

a)G“=’T1flqwithpq=N,p25,6$p/2a.nd6+q25ifq240r
§+q>6ifg=2,30rd4<6<p/2 6#p/3,p/4ifqg=1.

b) G = K}  withpg=N,p >5,i=p (mod 2) for i € {0,1,2} and
g >4+ [i/2].

c) G= Sy, withpg=N,p>3andg2>6.

2 Tutte Uniqueness

Let G = (V, E) be a graph with vertex set V" and edge set E. The rank of
a subset A C E is defined by r(A) = |A| — k(A), where k(A) is the number
of connected components of the spanning subgraph (V, A). The rank-size
generating polynomial is defined as:

R(Giz,y) = ) a" Wyl
ACE

380



Figure 4: a) S58 b) S5 5

The coefficient of z'y’ in R(G;z,y) is the number of spanning subgraphs
in G with rank ¢ and j edges. This polynomial contains exactly the same
information about G as the Tutte polynomial, which is given by:

T(Gszyy) = D (o — 1Ay — p)ldi=rd
ACE

hence, the Tutte polynomial tells us for every i and j the number of edge-
sets in G with rank ¢ and size j. This fact is going to be essential in order
to prove the Tutte uniqueness of locally grid graphs. Given a locally grid
graph G, we show that for every locally grid graph H different from G
and with |V(G)| = |V(H)| there is at least one coefficient of the rank-size
generating polynomial in which both graphs differ.

Given two cycles C and C’ of a locally grid graph G, we say that C
is locally homotopic to C’ if there exists a cycle of length four, say H,
with C N H connected and C’ is obtained from C by replacing C N H with
H - (Cn H). A homotopy is a sequence of local homotopies. A cycle of
G is called essential if it is not homotopic to a cycle of length four. This
definition generalizes the one given in [8] since it does not depend on the
surface in which a locally grid graph is embedded [5)].

Let lg be the minimum length of an essential cycle of G. Note that lg
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is invariant under isomorphism. The number of essential cycles of length
lc contributes to the coefficient a;. -1, of R(G;z,y), which counts the
number of edges sets with rank lg — 1 and size {g.

In order to show the Tutte uniqueness of locally grid graphs we are
going to use the following results proved in (8):

Lemma 2.1. [8] Given two graphs G and G', if G is locally grid and
T(G;z,y) = T(G';z,y) then G’ is locally grid.

Lemma 2.2. [8] Let G, G’ be a pair of locally grid graphs with pq vertices
then:

o lg # lg implies T(G; z,y) # T(G';z,y)-

o Iflg = lg' but G and G’ do not have the same number of shortest essential
cycles, then T'(G;z,y) # T(G';z,y).

The process we are going to follow is to pairwise compare all the graphs
given in the classification theorem of locally grid graphs. In those cases for
which the minimum length of essential cycles or the number of cycles of
this minimum length are different we have that both graphs are not Tutte
equivalent, thus the relevance of the following result.

Lemma 2.3. If G is a locally grid graph with pq vertices, then the length
lg of the shortest essential cycles and the number of these cycles are given
in the following table:
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[ G | le | number of essential cycles |

q ifp<gq
Tpq | min{p,q} 2p fp=gq
4 ifp>gq
q .
fp<q+4d
+ g+d6-1
77, | min{p,q + 6} -r ) fp=q+4
5— )
p(q+5 1) ifp>q+46
q ifp<qg+1
K3, | min{p,q+1} 5¢ ifp=q+1
4q ifp>qg+1
q ifp<gq
K,. | min{p,q} g+1 ifp=gq
1 ifp>gq
q ifp<gq
K2, | min{p,q} q + 2 ifp=gq
ifp>gq
(2p—1) if2p<gq
Spq | min{2p,q} 90 4 q( ) if2p=gq
94 f2p>q

Proof. The cases Tpq, T, and K} | are proved in [8], where it is also shown
that lsp . = min(2p,q) and that 1f g < p the number of shortest essential
cycles is 29. Hence, we are only left with three cases in which we are given
lower bounds on the number of essential cycles of length ls,,. We are
interested in calculating the exact number.

Locally grid graphs with pg vertices are constructed by adding edges
to the p x ¢ grid. These edges are called exterior edges. Essential cycles
of shortest length can be obtained either by joining the two ends of an
exterior edge by a path contained in the p x g grid or by joining the ends
of two exterior edges by two paths contained in the p x ¢ grid. The reason
for which we can not use more than two exterior edges to obtain shortest
essential cycles is that we have to cross twice the p x g grid (horizontally
or vertically) using at least two different paths. It means that we need at
least lg — 2 edges to cross the grid, therefore the minimum length of any
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essential cycle with three or more exterior edges is g + 1.
Along the proof we are going to use that the number of shortest paths

joining (0,0) with (a,b) in 2 p X g grid is ( a -(1— b )

In S, 4 we distinguish the following cases.
Case 1: If 2p < g, every exterior edge of the form {(0,7),(p—1,i—p)}

determines ( 2p p_ 1 ) essential cycles of length 2p and we have ¢—p edges

of this kind.

Using two exterior edges of the form {(4,0),(» — 1,5 + ¢ — p)} and
{(0,%), (i,q — 1)} we obtain shortest essential cycles by joining (0,) with
any (4,0) being 0 < j < p—1 by a path of minimum length contained in
the p x ¢ grid and analogously with (p — 1,5 + ¢ ~ p) and (¢,q — 1). By
a carefully counting one can see that for a fixed j there are 2p -1
ways of joining the ends of these edges, thereforc the number of shortest

essential cycles determined by two exterior edges is p ( % ; 1 ) Hence,
if 2p < q the number of essential cycles of length 2p is ¢ ( 2 p— 1 )

Case 2: If p < g < 2p, every exterior edge of the form {(0,3), (,q—1)}
or {(,0),(p — 1, —p+ )} with 0 < 7 < p — 1 generates q;l
essential cycles of length g. Hence the number of shortest essential cycles
g—1

i

To obtain shortest essential cycles in S, , with p < ¢ < 2p using two
exterior edges we can take either the edges {(¢,0),(p — 1, + ¢ — p)} and
{(0’.7)’ (P - 1,.7 - p)} or {(O:i)’ (iaq - 1)} and {(0’.7)’ (P - 1:.7 - p)} with
0<i<p-—1landp<j<g—1 Inthe first case, we can join (z,0) being
2p-g<i<p-1withany (p~1,j—p) beingp<j<i-p+qgbya
shortest path contained in the p x ¢ grid. Analogously with the other two
ends of the edges. In the second case, for every j we can join the vertex
(0, ) with any (¢,g—1) being 0 < i < j —p by a shortest path contained in
the px g grid and analogously with (0, 7) and (p—1, j—p). In both cases, by
a carefully counting and using properties of binomials numbers, we obtain

g;,l, ( q; 1 ) essential cycles of length g. Hence, if p < ¢ < 2p the

number of shortest essential cycles is:

. ) . ] o1
in S, 4 using one exterior edge is 2> ._,

5 (1551

3=0
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Case 3: If ¢ = 2p, it is easy to prove that the number of shortest
essential cycles in Sy 4 is the sum of the numbers obtained in the previous
cases.

O

An edge-set is called a normal edge-set if it does not contain any essen-
tial cycle. In [8] it is proved that locally grid graphs are locally orientable
and they use that to establish a canonical way to represent edge-sets with a
set I" of words over a given alphabet. Therefore given v € I, B(y) denotes
the edge-set determined by -~ and every connected normal edge-set is the
result of an unique word [8]. An edge-set A is a forbidden edge-set for a
word + if it contains an essential cycle and a subset B C A such that B is
normal and has v as its word. A word +' contains v if B(v) is a subgraph
of B(v'). Denote by N(, G, m,r) the number of edge-sets in a locally grid
graph G with rank r and size m, and such that its word 4’ contains ~.

Lemma 2.4. [8] Let v € I be such that B(-y) contains at least one cycle.
Then the quantity N (v, G, m,r) is the same for all locally grid graphs G with
pq vertices, no forbidden edge-set for v of size m, and such thatlg > m—2.

Theorem 2.5. Let p,q > 6 verify the following conditions:

1.-p( q+§_1 ) # 2" a.ndq+p( q+g—1 ) # 2" forn € N.

2.- pqg # p'q’ for allp g > 6uwithp =qg+d6 =4+ < p and
r—1 -1

qg+p 5 =p 5

Then T}‘{q is Tutte unique for all 6 < p/2.

Proof. Let p,q > 6 and G be a graph with T(G; z,y) = T(T, pq,x y). By
Lemma 2.1, G is a locally grid graph, hence G has to be isomorphic to
exactly one of the following graphs: T g, T;,s,"q,, K;;,,q,, p'.g - We prove
that G is isomorphic to T;,s,',q, with p = p’, ¢ = ¢’ and § = §’ assuming
that G is isomorphic to each one of the previous graphs and obtaining a
contradiction in all the cases except in the aforementioned case. In [8] T}, 4
was shown to be Tutte unique, thus we can consider § > 0 and G not
isomorphic to Ty 4.

Case 1. Suppose G = K 0, ,. By Lemma 2.2, lTo =1 KS, and the
number of shortest essential cycles has to be the same 1n both graphs

Case 1.1. lT:,., =p, lK:,q’ =p withp<g+dandp <q¢ +1.

As a result of Lemma. 2.2, p = p’ and ¢ = ¢’. Our aim is to prove that
the number of edge scts with rank g and size g+1 is different for each graph.
This would lead to a contradiction since this number is the coefficient of
299! in the rank-size generating polynomial.
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If T‘$q has k essential cycles of length g+ 1 (6 > 1) or k +pg (6 = 1),
then K s ¢ Would have k + 4¢ such cycles. Therefore if we can show that
there ex1ts a bijection between edge sets with rank ¢ and size g+ 1 that are
not essential cycles, we would have proved what we want. For every r with
0 < r < g — 2 denote by E, the set {((¢,7),({,7+1));0<i<p—1}. Let
A be an edge set that is not an essential cycle with rank ¢ and size ¢+ 1
in T3 . Define s(A) as min{r € [0,q~2]; ANE, =0}. IfAcC E(T¢,)
the minimum always cxits. For every r with 0 < r < ¢ — 2 we define the
bijection, ¢, between {A C E(T3 )Ir(A) = ¢,|A| = ¢+ 1,s(A) = 7} and
{AC E(K] )Ir(A) = ¢,|Al = ¢+ 1,5(A) =} as follows:

If A C E(T,), ¢(4) = Uag,aineal((@, ), (,5))) where
Y(((3,5), (¥, 5'))) is equal to

((G,3), (p—-1-4+6,7)) if i'=q-1,7j=0
(@G,5), (@,3") if 43" € [0,7]
(P-1-i+4j),(p-1-7+4,j)) if r+1<535<q-1

Case 1.2. s = p, lKg,q, =p =¢ +1withp < g+6 or
l _q+6<p,lKo ,=p' withp’ <¢'+ 1.

The contradiction in these two cases is produced due to the equality of
shortest essential cycles, number of these cycles and number of vertices on
cach graph.

Case 1.3. Iz _=p, lK:/q, =q¢ +1withp<g+dandqg +1<p.

To obtain a contradiction, we are going to prove that there are more
edge-sets with rank ¢’ + 2 and size ¢’ + 3 in T‘s than in K °q Basically,
we are going to follow the same procedure that was developed in (8]. The
previous sets can be classified into three groups:

1.- Normal edge-sets.

2.- Sets containing an essential cycle of length ¢’ + 1 and two other
edges (Figure 5a).

3.- Essential cycles of length ¢’ + 3 (Flgures 5b and 6).

(1) By Lemma 2.4 we know that Tlf 4 and Kp, o have the same number
of normal edge-sets with rank ¢’ + 2 and size ¢’ + 3 that do not contain
a cycle of length four. We are going to prove that the number of normal
edge-sets with rank ¢’ + 2 and size ¢' + 3 containing a cycle of length four
is greater in Tz‘f than in K9 e

Again by Lemma 2.4, the ‘number of edge-sets with rank ¢’ + 1 and size
¢’ + 2 containing a cycle of length four is the same in both graphs, call it
Sq'+1. Add one edge to each of these sets in order to obtain a set with rank
¢’ +2 and size ¢’ + 3. This set can be one of the following types depending
on which edge we are adding:
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a) b

Figure 5: a) A set of edges in Kg,,q, containing an essential cycle of length
¢’ + 1 and two other edges. b) Essential cycles of length ¢’ + 3 in T;f'q

A A

-

Figure 6: Essential cycles of length ¢’ + 3 in K, .,

(A) A normal edge set with rank ¢’ + 2.

(B) A normal edge set containing two non essential cycles and having
rank ¢’ + 1.

(C) An edge set containing an essential cycle of length ¢’ + 1 and a non
essential cycle of length four.

Let A(G), B(G) and C(G) (where G is either T,‘f,q or Kg,,q,), the number
of edge-sets in G that belong to the groups A, B and C respectively. We
recall the following equality from [8]:

se+1(2pg—q —2) = A(G)(d —=1)+ > (¢ +3-6(B))+CG)d -1)
BeB(G)

where §(B) is the number of edges of B which do not belong to any cycle
of length four in B. Since C(T2,) = 0 and C(K), /) # 0 we have:

ATING = 1)+ Tpepers 5(a +3 - 8(B)) = AKY )¢ - 1)+
+Theaues, )@ +3-3(B) + OKY )@ ~ 1)
Applying Lemma 2.4 several times we get that:

> @+3-6B)= > (d+3-4(B))

BeB(T] ) BeB(KS, )
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hence
(T3 ) = 1) = A(Kp )@ — 1) + C(Kp ) — 1)

(2) In T¢ o every essential cycle of length ¢’ + 1 plus two cdges has
rank ¢’ + 2, but in K ) o there are essential cycles for which if we add two
edges we obtain sets w1th rank ¢’ + 1. By hypothesis, both graphs have the
same number of shortest essential cycles therefore the number of edge-sets

in this case is greater in T‘s than in Kp 7

(8) For every essential cycle of length p = ¢’+1in T,f’q we have 2 ’2)
ways of adding two edges in order to obtain a new essential cycle, hence in

2]
T, , there are 2g

12’ ) essential cycles of length ¢’ + 3. In [8] it is proved

q g +2
that in Kg,,q, there are 4¢' ( 2 ) +4 ( 3 ) essential cycles of length

q "+3. Since p = ¢’ +1 and g = 4¢’, the number of essential cycles of length
¢’ + 3 is greater in T g than in Kp, -

Case 1.4. Iys =p=q+3§, lKo > =p withg +1>p'.

Suppose p = q+6 p’ then g = q , hence § < 1. We get a contradiction
because § > 1.

Case 1.5. lT.s =p=q+54, lKo v =p=q¢ +1.

If the length of the shortest essential cycles and the number of these
cycles coincide in both graphs, we would have p = p/, ¢ = ¢, § = 1 and
g+ pq = 5¢' therefore p = 4.

Case 1.6. lrs =p=gq+ R lKg,_q, =q¢ +1withp > ¢ +1.

'
d+l=p=qg+6 = 4q’=q+p(% )
' / ’
' _ q q ' q
ae=(2)<(4) = wes()
Case 1.7. ngq=q+5<p,lKg, =p'=qd+1L
) q

¢+1=p' =q+6 and 5q’=P<q+g_1>

Ifd=1theng=¢,p=p' =g+ <phenced > 1.

— ' —
P>5and(Q+g 1):(%)>q’ = 5q’<P(q+g 1)
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Case 1.8. lrs =q+6<p,lgo, , =¢+1<p".
0 P
Now, ¢’ +1 = g+, so we can assume that § > 1 because if § = 1, then
g =¢', p=7p' and the number of shortest essential cycles would not be the
same in both graphs. The contradiction in this case is similar to the one
/
obtained in the previous case because 4¢' = p ( %

After these eight cases we can conclude that T;f,q is not isomorphic to
KO .

Pg

Case 2. Suppose G isomorphic to T:,',q,.

Case 2.1. irs _=p, lT:; . =p'withp<g+dandp <q¢ +¢.

As a result of Lemma 2.2, p = p’ and ¢ = ¢. Suppose & < &, as
in case 1.1 our purpose is to prove that the number of edge sets with
rank ¢ + ¢’ — 1 and size ¢ + ¢’ is different in each graph. If T;f,q has =

!

essential cycles of length ¢ + &', Tg,',q, has z + p( 7+ g, -1 ), therefore
if we show that there exits a bijection between the edge sets with rank
g+ ¢’ — 1 and size ¢ + ' that are not essential cycles, we would have
proved what we want. For every edge set A with rank ¢ + &’ — 1 and
size ¢ + &’ that is not an essential cycle it is defined s(A) as in case 1.1.
For every r with 0 < r < ¢ — 2 we define the following bijection, ¢,
between {A C E(TS )|r(A) = ¢+ & — 1,|4| = ¢+ &,5(A) = r} and
{ACE(TF)Ir(A) =g+ & —1,|A| = g+ &, 5(A) =r}.

If A C E(TE), vr(A) = Usninead(((5),(@5)) where
¥(((G,9), (#,4'))) is equal to
((ird), (@ + 6= &,5")) if j=q-1,5=0
(G2 ), (', 5)) if 5,5 €[0,7]
((i+6-8,9),@ +6—&,5)) if r+1<ji<q-1

Case 2.2. ngq =p,lrsy =p'=q¢ +& withp<q+4.

. P,'q'

! !

’ +d -1

Suppose T(TY i z,y) = T(TE ;;z,y) then g = ¢’ + p' ( q 5 )
and p =p’. Since pg = p’q’ we obtain q = ¢’, a contradiction.

Case 2.3. lT;jq =p,lrse =q¢ +d withp<g+dandg +4& <p.

v PI;QI
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g+46-1
& <p-1thenp ( Py ) > p. This contradiction was obtained by
having assumed that both graphs have the same Tutte polynomial.
Because of hypothesis 2, we have that the case lT:q =p=q+4,

lTy .= q’ + &' with ¢’ + ¢’ < p’ cannot occur.

With an analogous process to the one followed in case 1.3 we prove
that the number of edge—sets with rank ¢’ + ¢’ + 1 and size ¢’ + 8’ + 2 are
different in T5 and T‘s o+ Therefore, lTs =q+94, lT“' o= g+ <pis
not possible.

The rest of the cases are analogous to the previous ones, hence just one
case can occur, namely, ngq =p=q+6,lpss =p =q + 4, which

¥ p’, 4
impliesp=p',g=¢ and § =¢'. )

Case 3. Suppose G ~ K : g0 then T(T‘sq,x,y) = T(KP g T Y):
Because of Lemmas 2.2 and 2.3, *We cannot have p>dq.

Case 3.1. lTs =p<q+§6, lK1 v =p <.

As in case 1. 1 we have to obtain a bijection to prove that the number
of edge-sets with rank ¢ — 1 and size g are different in each graph.

A C ATE), er(A) = Ui, winead(((id), (7)) where
P(((, ), (#,3")) is deﬁned as follows:

((i1j))(p_1'“il+6ajl)) if jl"_‘q_l’j:O

((,4), @, 5") if j,j'€[0,7]

((p_1_i+6)j)’(p_1_i,+6’jl)) if T+1Sjsjlsq_l
The rest of the cases cannot occur because the length of shortest essen-
tial cycles, the number of these cycles and the number of vertices do not
coincide. We omit the proof for the sake of brevity.

The case G =~ K 1 o is similar to the prev1ous ones, hence we just specify
the bijection in the casep=p <q and q =

If A C A(TJ, ) er(A) = Ui, ))€A¢(((i,j)’ (¢,5'))) where
¥(((3,5), (7', 5))) is equal to:
((iaj)a(p_i’+6rjl)) if jl=q_1)j=0
(5,4, 57) if j,5'€0,7]
((p—i+6sj)s(p_i,+6aj,)) if 7‘+15j;j'5q—1
Case 4. Finally, we are going to assume that G >~ S, . By hypothesis
1 we cannot have lT.s =q+8<pls, = ¢' with ¢’ < 2p'.
Case 4.1. lTo —p<q+6 ls, ., =d with ¢ <p’

Using the same ideas as in case 1.3 we prove that the number of edge-
sets with rank ¢’ + 1 and size ¢’ + 2 is greater in T‘S‘ than in S, 4. For the
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sake of brevity we only give a sketch of the proof. These sets are classified
into three groups: normal edge-sets, sets containing an essential cycle of
length ¢’ and two other edges and essential cycles of length ¢’ +2. We prove
that T;} , has more edge sets of each type than Sy/,o:. The ideas are similar
to case 1.3, so we just mention the last type. For every essential cycle of

p
2

get a new essential cycle. On the other hand, there are essential cycles in
Spr ¢ (see Figure 7) in which the ways of adding two edges is smaller than
':
q
2\ 2
same in both graphs, we have more essential cycles of length ¢’ + 2 in T,f,q
than in Spl‘ql.

N T
[ 'Y
B8 A B
A

a) b)

length ¢’ in T,‘f,q we have 2 ways of adding two edges in order to

. Since p = ¢’ and the number of shortest essential cycles is the

Figure 7: a) Edge sets in Sy o with p’ > ¢’ containing an essential cycle of
length ¢’ and two other edges. b) Essential cycles of length ¢’ +2 in Sy o.

Case 4.2. lrs =p=gq+ o,1s, =20 <.

Given that 2p' = p = g + 4, we have ¢ = 2. We will obtain a
contradiction by assuming we have equality for the number of shortest
essential cycles in both graphs. In this case and in the next ones we

’ ;7 _
are going to use the following property: ( & n 1 ) < ( 2P m 1 ) if

n<m<[(2p —1)/2) =p' — 1. Since ( pp;; ) >q=p—0 then

2‘1( pp721 ) > Q+(2q—1)( pp721 ) > q+p( pp721 ) > q-l-p( pgl )

Case 4.3. lrs =q+ d<pls, =2<q.

/! ! _
Suppose that pg = p'¢’, 2p’ = ¢+d and ¢ ( 2p;o' ' ) =P ( 2p6 1 )
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then § < ¢ and

-1 \_p(2-1\_q+6( 2p-1 < 2 -1
P - q ) - q é é
! !
The contradiction is due to ( 2P v ! ) > ( -1 )
Case 4.4. ng’q =q+6<pls, ,

20 =4 = - _af 201 q'
p'=¢ =¢g+dandp 5 =q v + 27 then

,f 2p pg _2p 2p’' -1
P\s )T 7% -6 §

We obtain a contradiction by assuming we have equality for the number
of shortest essential cycles in both graphs.

The rest of the cases cannot occur because the length of shortest es-
sential cycles, the number of these cycles and the number of vertices do
not coincide. Therefore we obtain a contradiction, since G and Sy o+ do
not have the same Tutte polynomial. We omit the proof for the sake of
brevity. O

Theorem 2.6. K g,q is Tutte unique for all p,q > 6.

Proof. Let p,qg > 6 and G a graph with T(G; z,y) = T(Kqu;z,y). Due to
Lemma 2.1 and Theorem 2.5, G has to be isomorphic to exactly one of the
following graphs: K r a» Sp.q' - We are going to prove that G is isomorphic
to K3, withp=p', ¢= q

Suppose G isomorphic to K o then lTs =] KS and the number of
shortest essential cycles has to be the same m both graphs We just have
to study the case in which lKo =p<qg+l, lKo =9 '+1withp' > ¢ +1.
This is so because, if lKo —q+1 < p and lKo v =p’ with p’ < ¢’ +1 the
reasoning would be a.nalogous and in these cases it is easy to verify that
the number of vertices and the length of shortest essential cycles can not
coincide in both graphs.

Iflgo =p<q+l, lK:,'q, = ¢’ + 1 with p’ > ¢’ + 1 we can show that
the number of edge-sets with rank ¢’ +2 and size ¢’ + 3 is different in K g’q
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and Kg,’q.. We omit the proof because it uses the same arguments as those
in case 1.3.

Suppose G = K 1, o+ Since p is even and p’ odd, all the cases in which
the length of shortest essential cycles in K,‘,’q is p and in K g 18 p’ are
proved. By Lemma 2.3 we know that the number of shortest: essentlal cy-
cles in Kg o is always bigger than one, hence we obtain a contradiction in
all those cases in which the number of shortest essential cycles in K;,’q,
is one. Therefore we just have to study two cases: lKo =¢g+1<p,
lK:,, p<qa,ndlKo q+1<p,le,—p=q'. In the
first case we obtain a contradlctlon by proving thqat the number of edge-
sets with rank p’ + 1 and size p’ + 2 is different in each graph (follow-
ing the same reasoning as in case 1.3 of Theorem 2.5). In the second
case we show that if p’ = ¢’ = ¢+ 1, pg = p'¢/, p are even and p’ is
odd it must then be the case that q is even. By Lemmas 2.2 and 2.3, if
P’ > ¢’ then T(K) 0 G DY) F T(K? > 4T Y) therefore G is not isomorphic to
K2 » o+ Following the same rea.somng as in case 1.1 of Theorem 2.5 we show
that it cannot be that lKo =p<g+1and le . p’ < ¢’. We just spec-

ify the bljectlon between {A C E(Kp )Ir(A) = q,|A| = ¢+ 1,5(4) =7}
and {A C E(K? g )Ir(A) = q,|A|—q+lsA)—r}
IfAC A( P:q)’ SDr(A) = U((i,j),(i',j'))GAw(((ivj)1 (‘Ll,j,))) where

((l,j),(i’-l-l,],)) if jl=q—1v.7=0
P(((E,9),(,3)) = (G.3),(#,5) if 4,5’ €[0,7]
((G+1,7),@+1L35)) if r+1<5,j/<qg-1

On the other hand, we prove (as in case 1.3 of Theorem 2.5) that if
lKo =q+1 < pand lKn , =9 < ¢’ the number of edge-sets of rank
'q

P + 1 and size p’ + 2 is different for each graph.

The other four cases obtained by considering the possnble combinations
of the lengths of shortest essential cycles in K, 0 p.q and K » q» are not possible
since the length of shortest essential cycles, the number of these cycles and
the number of vertices cannot coincide in both graphs.

Finally, suppose G =~ Sy .

Following the same reasoning as in case 1.3 of Theorem 2.5, if
lKg.q =p<g+landls, = ¢ < p’ we show that the number of
edge-sets with rank ¢ 4+ 1 and size ¢’ + 2 is different in Kg,q and Sy o,
hence these graphs do not have the same Tutte polynomial.

It is easy to prove that the rest of the cases cannot occur because
the length of shortest essential cycles, the number of these cycles and the
number of vertices do not coincide in both graphs given that g > 6. a
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Theorem 2.7. The graph K;’q is Tutte unique for all p,q > 6.

Proof. The argument of this proof is basically the same as those followed
in Theorems 2.5 and 2.6. Due to the 'I‘utte uniqueness of qu and K, 0 pg W
only have to prove that T(G :J:,y) # T(K} ot T Y) With G € { (except
ifp=p andg=¢"), K p g Sp',q'}- In every case we are going to suppose
that T'(G; z,y) = T(K ;i = y) and we will obtain a contradiction.

Case 1. If G ~ K, , it is easy to prove that the length of shortest
essential cycles, the number of these cycles and the number of vertices only
coincide if p = p’ and ¢ = ¢'.

Case 2. If G ~ Kg,‘q,, by Lemmas 2.2 and 2.3 we get a contradiction
in all those cases for which the number of shortest essential cycles in K;'q
is one or the number of shortest essential cycles in Kg,’q, is two. In the
other cases a contradiction is reached because p is odd and p’ is even.

Case 3. If G ~ Sy 4 we can consider p < q because if p > g the
number of shortest essential cycles in K} , is one and p,q > 6.

IflKlq —p<qandls,q, = 2p <q orls, o = ¢’ with p’ < ¢’ < 2p/,
by Lemmas 2.2 and 2.3 it is easy to obtain a "contradiction. The same is
true if lK;‘q =p=gqandlis, , = ¢ with ¢ < 2p’ or ls,,;'q, = 2p’ with
2% <.

Ifigy, =p<gqandlis, , = ¢ < p’ we prove (as in previous cases)
that there are different number of edge-sets with rank ¢’ + 1 and size ¢’ + 2
in both graphs, hence they can not have the same Tutte polynomial. O

Theorem 2.8. The graph Kg,q is Tutte unique for p,q > 6.

Proof. Due to Theorems 2.5, 2.6 and 2.7 we just have to prove that
T(G z,y) # T(K pq; z,y) with G € {K2, , (except if p = p’ and ¢ = ¢'),
Spr '} and pg = p'q’.

By Lemmas 2.2 and 2.3, T(K2 ;z,y) # T(K} g z,y) if p # p’ and
q # ¢’ because the length of shortest essential cycles, the number of these
cycles and the number of vertices only coincide if p=p’ and ¢ = ¢'.

If G ~ Sy o we can assume that p < g otherwise if ¢ < p, Kf,,q has two
shortest essential cycles and by Lemma 2.2 we obtain a contradiction.

Ifl K2, =P<4q and ls, , = q' < p’ we prove as in previous cases that
the number of edge-sets Wlth rank ¢’ + 1 and size ¢’ + 2 is different in both
graphs. Hence these two graphs cannot have the same Tutte polynomial,
therefore we get a contradiction and G can not be isomorphic to Sy 4.

In the other cases we obtain a contradiction because the length of short-
est essential cycles, the number of these cycles and the number of vertices
cannot coincide in both graphs. O
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Theorem 2.9. The graph Sy, is Tutte unique for all p,q > 6 verifying

f d+0-1 ’ o €+6-1 't
that 29 # p P and ¢ +p s # 29 for all p', q
with p'¢d’ = pq and § > 0.

Proof. Suppose that Sp, 4 is not Tutte unique. Then, by Theorems 2.5, 2.6,

2.7, 2.8 and Lemma 2.2, S, 4 is isomorphic to S, o with p’ # p, ¢’ # g and
pg=p'q.

Ifls,, =2p<qandlis, , = ¢ with ¢’ < 2p’, by Lemma 2.2 ¢' = 2p,

= 2p' and

q
22P=q( 2pp—1 ) =q/2( 2;) ) withp < ¢/2 < 2pand p,q > 6. If g/2 s

close to 2p then 2%° < q/2 ( 2; ) By induction we prove that we have the

same inequality when q/2 is close to p, that is to say 2% < (p+1) ( 2: )

with p > 6.
The contradiction in the other cases is obtained as in the previous one
from Lemma 2.2. O

We have shown that locally grid graphs are Tutte uniques for p,q > 6,
but our techniques do not apply to p = 3,4, 5. An interesting open problem

is to prove that the number p P ; 1 is not a power of two for p > 6.

We have studied computationally this problem and we have not found any
value of p not verifying the previous property. Besides its own interest, this
proof would give a more general result about the Tutte uniqueness of Tg,q
and Sp .
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