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Abstract Let P, be a path with n vertices. P¥, the k-th power of the
path P,, is a graph on the same vertex set as P, and the edges that join
all vertices x and vy if and only if the distance between them is at most k.
In this paper, the crossing numbers of P¥ are studied. Drawings of P¥ are
presented and proved to be optimal for the case n < 8 and for the case
k<4
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1 Introduction

We consider only finite undirected graphs without loops or multiple
edges.

A graph G = (V,E) is a set V of vertices and a subset £ of the un-
ordered pairs of vertices, called edges.

A drawing is a mapping of a graph into a surface. Vertices go into
distinct nodes. An edge and its incident vertices map into a homeomorphic
image of the closed interval [0,1] with the relevant nodes as endpoints and
the interior, an are, containing no node. A drawing is good if it satisfies
(i) no two arcs incident with a common node have a common point; (ii)
no two arcs have more than one point in common,; (iii) no arc has a self-
intersection; and (iv) no three arcs have a point in common. A common
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point of two arcs is a crossing. An optimal drawing in a given surface is
a good drawing which exhibits the least possible number of crossings. This
number is the crossing number of the graph for the surface. We denote
the crossing number of G for the plane (or sphere) by ¢r(G), a drawing of
G in the plane (or sphere) by D, and the number of the crossings in this
drawing by v(D). It is clear that er(G) < v(D(G)). We also speak of the
nodes as vertices and the arcs as edges. Drawings considered in this paper
are all good.

Let P, be a path with n vertices. P,’f, the k-th power of the path P,,
is a graph on the same vertex set as P, and the edges that join all vertices
z and y if and only if the distance between them is at most k. P, is called
the base path of PX. The graph PF is an important family of non-regular
graphs, whose topological properties have been widely studied[1, 2].

The exact crossing number is known only for a few specific families
of graphs. Such families include some regular graphs as generalized Pe-
tersen graphs P(n, 3)[3], P(2n + 1,n) [4], Circulant graphs C(n; {1,3})[5],
C(mk; {1,k})[6] and C(2n + 1;{1,n}) [7, 8], Flower Snarks and related
graphs[9], and the Cartesian products of cycles C,, DOC,, for alln > m(m+1)
and for m < 7 [10, 11]. For non-regular graphs, the Cartesian products of
some graphs with path and cycles are determined(12, 13, 14, 15, 16, 17].
We refer to recent surveys for more details[18, 19].

It seems rather interesting to determine the crossing numbers of P¥ .
Tts solution can be used to explore an effective approach of the crossing
numbers of non-regular graphs to provide a wider theoretical base for the
application of the crossing number.

In this paper, the crossing numbers of P¥ are studied by showing their
cylinder drawings. Drawings of P* are presented and proved to be optimal
for the case n < 8 and for the case k < 4.

Let X be a subset of V(G) or of E(G) for a graph G. Then (X) denotes
the subgraph of G induced by X.

Let A, B be two disjoint subsets of E(G). In a drawing D, the number
of the crossings crossed by an edge in A and another edge in B is denoted
by vp(A, B). The number of the crossings that involve a pair of edges in
A is denoted by vp(A). So v(D) = vp(E(G)). If an edge is not crossed by
any other edge, we say that it is clean in D; if it is crossed by at least one
edge, we say that it is crossed in D. By counting the number of crossings
in D, we have Lemma 1.1.

Lemma 1.1. Let A, B, C be mutually disjoint subsets of E(G). Then,

vp(C,AUB) = up(C,A)+vp(C,B),
vp(AUB) = wvp(A)+vp(B)+vp(4,B).
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From [20], we have Lemma 1.2.
Lemma 1.2. Let i be the least number of edges of a graph G whose
deletion from G results in a planar subgraph H of G, then cr(G) >i. O

2 cr(PF) for k=1,2,3,4,5,n—2,n—1

Let V P") = {1)1,’02,"' ,vn} and E(P¥) = {vivj | n—k+1<i<j<
n} U (U {vivisn, -+, vivigr}). Then |E(PE)| = nk — HEED,

In order to state our result, we show a drawing D,, , of P" on a cylinder
(homeomorphic to a sphere), which can also be defined as the topological
space Pr obtained from the region {(z,y) € R?|(z% < 1) A (y® < 1)} by
identifying the points (z,y) and (—z, y) for every (z,y) such that z2 = 1. In
a drawing D, x, if there are some points(curves) on the boundary |z| = 1,
these points({curves) should be only counted once though they are drawn
twice in the drawing. In a drawing Dk, the points (—1,y) and (1,y)
should be identified as one point.

We put all vertices of P* and the edges in E(P,) on the boundary z =
—1 called left-wall, then these vertices(edges) should also lie on = 1 called
right-wall. The edges not in E(P,) are drawn from left-wall to right-wall by
straight line segments(distorted slightly if necessary to avoid concurrence).
Figures 2.1-2.4 show the drawings Djo,x for k£ < 4. By counting the number
of crossings in D, i, we have Lemma 2.1.

Lemma 2.1. cr(P¥) < (k= 1)(k62)(k 3) y _ (BkHA)(k— 1)(k—2)(kJ
Proof. Let B; = {viviyj] (2 < j < k) A (viviyj € E(P’“))} for1 <i<n,
then we have

k-1, 1<i<n—k;
{Bil=¢ n—i-1, n-k+1<i<n—-1;
0, i=n.
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For 1 < i < n, define function fu(i) = > ;5;vp, . (Bi, Bj). Let x be
an arbitrary crossing in D, x, which occurs between v,v, and v.vy. Let
y = min{a,b,c,d}, then x is only counted in By, and it is counted just
once. Hence, ¥(Dn k) = 3, <i<, fB(1) by Lemma 1.1.
For 1 € i < n, the edge v;v;114s is crossed by (s — 2) edges (vi41vit3,
oy Vi 1Vigs—1, Vi+1Vits) in Biyq, crossed by (s — 3) edges (vig2Vitd, - - -
Vi4aVigs—1, Vi42Vits) iD Bitg, ..., and crossed by one edge (viys—2vits)
in B;iys—2. Thus, the edge v;v;414s contributes Z;ﬁ y crossings to fg(i),
hence we have,

k=1 s-=2
S5y = Gelkeneey l<i<n—k,
s=3 y=1
fBi)=q "&12 (e Sizl(nziz2nmizg) :
> Xy= n—k+1<i<n-4,
=3 y=1
0, i>n-—3.

Hence, cr(P,’f) Sv(Dng) =iy [B(3)

= (n k) (k-1 L-2 k-3 + 2 . (n—i=1)(n—i—-2)(n—i—-3)
- i=n—k+1 6

— (k=1)(k— 2)(k—3)n_ (3k+4)(k~1)(k—2)(k—3) O
- 6 24 .

Theorem 2.2. cr(P¥)=0for k=1,2,3 and er(Pi)=n—4forn > 5.
Proof. By Lemma 2.1, er(P¥) < 0 for k = 1,2,3 and er(P}) < n - 4.
We need only to prove cr(Pa) > n —4.

Let ¢ be the least number of the edges of P} whose deletion from it
results in a planar subgraph Q2 of P3. Consider Q4. Q% has n vertices,
|E(P2)| = 4n=10 edges. Let D* be a planar drawing of Q7 and r denote the
number of the faces in D*. Then, according to Euler Polyhedron Formula,

n—4n+10+i+r = 2,
r = 3n—-8-—1i.

Since the girth of Q% is 3, by counting the number of the edges of each face
in D*, we have

3x(3n—-8-1)
i

2 x (4n — 10 —2),

<
> n—4.

So, ¢r(P}) =n — 4 by Lemma 1.2. O
Figures 2.1-2.3 show the planar drawings of P}, P2 and P2. Figure 2.4
shows the drawings of Py with n — 4 crossings.
Notice that P?~! = K,, and P22 = K, —e, hence we have, cr(P271) =
cr(K,) and cr(P““z) = cr(Kn —e). Since cr(K7—e) = 6[17), er(Kg—e) =
15(16] and cr(Kn.) = | 21252 ) 1 252)1253) for n < 11 [19], we have
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Figure 2.5. D§ s Figure 2.6. D7 ¢ Figure 2.7. D}, 5(n > 8)

Lemma 2.3. cr(P) =6, cr(P§) = 15 and cr(Pp~1) = 2e=L(z-2)(@-3)
for n < 12. 0
Theorem 2.4. cr(PS) < 4n—23 for n > 8.
Proof. ByLemma2.1,cr(P?) < (5— 1)(5 ~2)(5— 3) . (Bx5+4)(5— 1)(5 2)(5-3) _
4n—19. The drawing D,, 5 of P} descrlbed above can be adJusted slightly to
provide a drawing D;, ¢ with fewer crossings by the following way: forn > 8,
erase all the edges in {1.)2’()4,'03’()5, Un—1Un—3,Un—2Un—4} from D, s, then re-
draw vovg and vsvs from right-wall to right-wall, and redraw v, _;v,_3 and
Un—2Un—4 from left-wall to left-wall(see Figure 2.7). Thus, we reduce 4
crossings. Hence, cr(P2) < 4n — 23 for n > 8. O
Figure 2.5 shows a drawing of P$ with 3 crossings. Figure 2.6 shows
a drawing of P? with 6 crossings. Figure 2.7 shows a drawing of P> with
4n — 23 crossings for n > 8.
Lemma 2.5. cr(Pg) =
Proof. Let D be a good dra,wmg of P§. By Theorem 2.4, cr(P§) < 9. It
remains to prove that vp(Pg) > 9. To the contrary, suppose that uD(Pg‘) <
8.

Let V(P§) = {v;] 1 £ < 8} and the base path Py = v1v203v4v56v70s.
We may divide the edges of P§ into three edge sets: red edge set Ep =
{viv;] 3 < i < j < 6}, yellow edge set E; = {vv;] ¢ € {1,2,7,8}Aj €
{3,4,5,6}} and blue edge set E2 = {v1v2, v2v7, v7ug}. Note that (Ep) = K,
and (El) K4 4. Let E](Z) = {v,-vjl JjE {3, 4, 5,6}}(i € {1,2,7,8}), then
E, = Uze{l 2,7,8} Eq (i)

It is well known that there are only two drawings of K4 in plane within
isomorphism, as shown in Figures 2.8(a) and (b).

Case 1. Suppose vp(Lp) = 0 (see Figure 2.8(a)). Since cr(Ky4) = 4,
vp(Ey) > 4. Since there are only three of the four vertices vs, v4,vs and
vg on each boundary of the drawing, we have vp(Ep, E)) > 4. From the
hypothesis v(D) < 8, we have vp(E;) = 4, vp(FEo, E1) = 4 and vp(E») +
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Figure 2.8(a) Figure 2.8(b) Figure 2.8(c)
vp(Eo) =0 vp(Eo) =1

vp(Es, Eg U E;y) = 0. Thus, all the edges in Eo have to lie in the same
region, without loss of generality, we may assume that they are all in fi.
The four yellow edges incident with vg are all crossed by some red edge
in {v3vy,v4vs,v5v3}, so, all the yellow edges in {v;v;] i € {1,2,7,8} Aj €
{3,4,5}} have to lie in fi. For every pair vertices vz, vy of {v1,v2,v7,vs},
we have vp({vzv;li € {3,4,5}} {vyv; 7 € {3,4,5}}) 2 1, thus, vp(Ey) 2
(‘;) = 6, a contradiction to vp(Ey) = 4.

Case 2. Suppose vp(Ep) = 1 (see Figure 2.8(b)). Since cr(K44) = 4,
vp(E)) > 4. If some vertex v; of {v1,v2,v7,v8} does not lie in f;, then
vp(E1(3), Eo) > 2. Then from the hypothesis v(D) < 8, there are at least
three vertices of {v1,vp,v7,vs} in fi. We may assume that vy, vz and v;
are all lie in f;.

If some yellow edge in E;(¢)(¢i € {1,2,7}) crosses the red edges of Ey,
then vp(E1 (), Eo) > 2. Hence there is at least one i € {1,2,7},say i =7,
such that all the four yellow edges in E;(7) do not cross the red edges (see
Figure 2.8(c)). (Otherwise, we would have vp(U;e(1,2,7) £1(%), Eo) = 6 and
v(D) > vp(E1) + VD(Uie{l,z,n E\ (i), Ep) > 4+ 6 = 10, a contradiction to
v(D) <8.)

There are at most two of the four vertices vs,v4,vs5 and vg on each
boundary of the drawing in Figure 2.8(c), then for every i € {1,2,8} we
have vp(E\ (i), Eo U E(7)) 2 2. Hence we have vp(U;c(1,2,8) E1(2), Eo U
E1(7)) > 6. Notice that the induced subgraph {U;c 128} £1(8)) = K34
and cr(Ks) = 2, we would have (D) > vp(Eo) + vD(U;eq1,2,8) £1(9)) +
vp(Uieq1,2,8) E1(1), EaUEL (7)) 2 142+6 = 9, a contradiction to v(D) < 8.

From Cascs 1-2, the hypnosis vp(P$) < 8 is incorrect. So, vp(P§) =
9. O

3 Upper bounds of cr(P¥)

Lemma 3.1. s a \ . .
k k3 —9k2 +32k—36 3kt —22k3 445k
(1) CT(Pn) < [3 n- 24

+82k=216 4 even n and
cven k.
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(2) er(P¥) < &kzgsz_k:ggn - Mg&wkﬂ for even n and
odd k.

(3) er(P¥) < '?_—g'ié:}wn - %‘&M for odd 7.
Proof. .For k > 6, the drawing D,, x of P¥ can be modified to get a new
drawing ND,, ;. as follows: erase the edges v;v;12(1 < ¢ < n — 2) from the
drawing, then redraw the edges v;v;+2 from left-wall to left-wall for odd 4
and from right-wall to right-wall for even i. Figure 3.1 shows the process
modifying Dy x to ND, j, for k =6,7.

Let B; = {v,-vi+j| 83<i< k)/\(v,-v,-+,~ € E(P,’f))} and R; = {v,-vi+2|viv,-+2 €
E(Pk)} for 1 <3 < n. We have

k-2, 1<is<n-k
|Bif=q n=2-4, n—k+1<i<n-3; (3.1)
0, n—-2<i<n.

For 1 £ ¢ < n, define functions gp(i) = Zj>i UND, .(Bi, Bj) and
gr(?) = 2;;1 UND, .(R;, Bj). Each crossing between an edge in R, and
another edge in By is only counted in gr(z). Let z; < z3, then each cross-
ing between an edge in B;, and another edge in B, is only counted in

gB(x2). Hence, each crossing in ND, x is counted just once, by Lemma

1.1,
V(NDn k) = 3 1<i<n(98(%) + gr (%)) (3.2)

Compute 3, ¢;<, 98(%) firstly.

For 1 < i < n, the edge v;v;41245 is crossed by (s — 2) edges (vi4+1vVitq,
-+ vy Vif1Vits, Vig1Vigss1) in Biy, crossed by (s — 3) edges (vit2viss, - -
Vig2Vits, Vit2Vies+1) i0 Biya, ..., and crossed by one cdge (Vits—2Vits+1)
in B;ys—2. Then, the edge v;v; 1245 contributes 2;’_’__"; y crossings to gp(),
hence we have,

k—2 s-2
Sy = G2 l<i<n—k
=1 =1
g98(i) = nei22 (n—i=2)(n—i—3)(n—i—4)
y=n1 = R n_k+1§z§n—5,
=1 y=1
03 1 _>_ n — 4.
Hence,
N _ (k—2)(k-3)(k—4) -5 —i—=2)(n—i—3}(n—i—
Z?:l gB("') — (n ]C) 2 - )(k—4 + Z?:n—k-f-l (n—i—2)(n é n—i—4)

= (k=(k=3)(k=d) o (3k+5)(k=2)(k=3)(k=d)
- 6 24 :

(3.3)

Then, compute 3, <;<,, gr(%)-
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(2) Ps; (b) P§_, (c) P, (d) Pi_,

Figure 3.1. Adjust D, i to ND, ; for k = 6,7 by adjusting dashed curves to
bold ones

1 O 1 o) 1 O
(b) ND"zz—l,e a ém (b) ND':’z-x,v
Figure 3.2 ND;, ¢(n > 10) Figure 3.3 NDy, ;(n > 12)
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Figure 3.4(a) ND7 ¢ Figure 3.4(b) NDg 4 Figure 3.4(c) NDj

For odd i, the edge v;v;42 is crossed by |B;;,| edges incident with v;41,
and for even %, v;vi42 is crossed by |Bn—;| edges incident with v;4;, i.e.,
gr(%) = |Bi41]| for odd i and gg(i) = |Bn—i] for even i. Hence,

n . - . 31-1 . 3]- .
Tiey 9r() = Si? or() = THE T 0r(25 - 1) + T3 0r(29)
- ni_y
= L3 1Bosl + T iE T Byl (3.9)
Case 1. If n is even, then from (3.4),
n , Z2-1 2-1 -1
2ic19r() =22 |Bojl + 1 |Brosgjl = 2370 |Bajl.

Case 1.1. If k is even, then from the equation (3.1), we have

n . %1 n—k n_q
n—k n_) .
=2zj;§?(k—2)+22;=%_,,“(n—2 - 25)
= (k~2)(n - k) + =22
= (k — 2)n — k=2(k4) (3.5)
Case 1.2. If k is odd, then from (3.1), we have,
n . n_ n—k-1 n_o
Siior() =252 1Byl =255,7 |Byyl+ 23 ks [ Bal
n—k-1 n_o .
=27 (k-2)+ 22;':,,_;_1“(7& —-2-27)
= (k- 2)(n — k — 1) + E=1k=3)
=(k—-2)n— L’tﬁ)lg_"'i‘l"'_l. (3.6)
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Figure 3.5(a) Figure 3.5(b) Figure 3.5(c) Figure 3.5(d)
NDg; NDg 4 ND{o NDu,z

Case 2. If n is odd, then from (3.4) we have, S0, 9r(i) = Y52y [Bajl +
Z;?: |Bn—2;|- From (3.1), we have

—

S 9rG) = T35, Bojl + 57, |Bacssl = 72314l
= Yk =)+ 0 (-2 1)
= (k-2)(n—k—1)+ E=2*=3)
= (k — 2)n — G=2kES) (3.7)

From equations (3.2), (3.3), (3.5), (3.6) and (3.7) we have:

3 3. gn2 _ 10018 4 a5k2 _
(1) CT(P,I;) S k° -9k 2—321&: 36n _ 3kT—22k +4204k +82k—216 for even n and

even k. s . . .

(2) C"(Pf’f) < k°—9k -é—3‘2k—36n _ 3kT-22k +4254k +82k—204 for even n and
odd &. 3 2 4 3 2

(3) cr(Pk) < E2=9% -gszk—asn _ 3k*-22k +4254k +94k=240 £ 44 p 0
Theorem 3.2. (1) cr(Pf) < 8n — 51 for n > 10.

(2) er(P7) < 150 — 109 for n > 12.

Proof. By Lemma 3.1, ¥(ND,g) = 8n — 43 for even n, ¥(ND,g) =
8n — 45 for odd n. The drawing ND, ¢ can be adjusted slightly to pro-
vide a drawing N D, ¢ with fewer crossings as follows: for n > 10, crase
all the edges in {UI'USa03”5’v2LI;,—J—2”2L§J""21%J—4"2L§-J—2}v then, redraw
vivs and vaws from right-wall to right-wall, and redraw V2|5 ]-2V2| 2] and
V2|2 |-4¥2| 2|2 from left-wall to left-wall (see Figure 3.2, where ¢ stands
for v;). Thus, we reduce 8 crossings for even n and can reduce 6 crossings
for odd n. Hence, v(ND;, ¢) = 8n — 51 for n > 10.
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By Lemma 3.1, ¥(ND, 7) = 15n — 93 for even n, and v(ND,7) =
15n — 95 for odd n. The drawing ND, 7 of P can be adjusted slightly
to provide a drawing N D, , with fewer crossings as follows: for n > 12,
erase all the edges in {vjviyo| i € {1,3,2|3] —4,2|3] — 2} U {vivis] i €
{2,3,n — 5,n — 4}}, then, redraw vyvs, vovs, v3vus and vavg from right-
wall to right-wall, and redraw Vo g]-4V2(3|-2) V2| 5]-2V2| 3], Un—5Vn—2 and
Un—4VUn_1 from left-wall to left-wall (see Figure 3.3, where ¢ stands for v;).
Thus, we reduce 16 crossings for even n and can reduce 14 crossings for
odd n. By counting, ¥(ND, ;) = 15n — 109 for n > 12. O

Figure 3.4(a) shows a drawing of P§ with 9 crossings, Figure 3.4(b)
shows a drawing of P§ with 15 crossings and Figure 3.4(c) shows a drawing
of P§ with 22 crossings. Figure 3.5(a) shows a drawing of P with 18
crossings, Figure 3.5(b) shows a drawing of P§ with 30 crossings and Figure
3.5(c) shows a drawing of P with 42 crossings and Figure 3.5(d) shows a
drawing of P{; with 57 crossings. Hence, we have Lemma 3.3.

Lemma 3.3 cr(Pg) < 22, cr(P{) < 30, cr(Pfy) £ 42and er(Pf}) < 57. O

4 Concluding remarks

We show the values of cr(P¥) for n < 15,k < 7 in Table 4.1.

Table 4.1. The crossing numbers of P* forn <15,k <7

"n12345 6 7 8 9 10 11 12 13 14 15
k

1 0000 0 0 0O 0 0 0 0 0 0 0
2 000 0 0 O 0 0 0 0 0 0 0
3 00 0 0 0 0 0 0 0 0 0 O
4 1199 3 4 5 6 7 8 9 10 11
5 39617 9  <13<17<21<25<29 <33 <37
6 91191 15116) < 22 < 29 < 37 <45 <53 <61 <69
7

1819 <30 <42 <57<71 <86 < 101 < 116

By Theorems 2.2, 2.4, 3.2 and Lemmas 2.3, 2.5, 3.3, we have

(1) er(PF) =0 for k < 3,

(2) er(Pd) =n -4,

(8)er(P8) =3, cr(P?) =6,cr(P§)=9,cr(P3) <4n—23 forn > 9,
(4) cr(P8) = 9, cr(P§) = 15, cr(P§) < 22, cr(P8) < 8n—51 for n > 10,
(5) cr(Pj) = 18, er(P§) < 30, er(Pfy) < 42, er(Pfy) < 57, er(P]) <
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15n — 109 for n > 12.

Furthermore, we have the following Conjectures:
Conjecture 4.1. cr(P3) = 4n — 23 for n > 8.
Conjecture 4.2. cr(P§) = 22, er(Pf) = 8n — 51 for n > 10.
Conjecture 4.3. cr(PJ) = 30, cr(P}y) = 42, cr(P]}) = 57, cr(P]) =
15n — 109 for n > 12.

By Lemma 2.5, Conjecture 4.1 holds for n = 8.
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