On the Crossing Numbers of the k-th Power of P_n

Zheng Wenping^{1,2}, Lin Xiaohui³, Yang Yuansheng³, Yang Gui^{1,2}

- Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,
 - School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, P. R. China
 - Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China wpzheng@sxu.edu.cn, yangys@dlut.edu.cn

Abstract Let P_n be a path with n vertices. P_n^k , the k-th power of the path P_n , is a graph on the same vertex set as P_n and the edges that join all vertices x and y if and only if the distance between them is at most k. In this paper, the crossing numbers of P_n^k are studied. Drawings of P_n^k are presented and proved to be optimal for the case $n \leq 8$ and for the case $k \leq 4$.

Keywords crossing number, the k-th power of path, drawing, non-regular graph

1 Introduction

We consider only finite undirected graphs without loops or multiple edges.

A graph G = (V, E) is a set V of vertices and a subset E of the unordered pairs of vertices, called edges.

A drawing is a mapping of a graph into a surface. Vertices go into distinct nodes. An edge and its incident vertices map into a homeomorphic image of the closed interval [0,1] with the relevant nodes as endpoints and the interior, an arc, containing no node. A drawing is good if it satisfies (i) no two arcs incident with a common node have a common point; (ii) no two arcs have more than one point in common; (iii) no arc has a self-intersection; and (iv) no three arcs have a point in common. A common

^{*}Research supported by NSFC(60803034), SRFDP(200801081017) and Research Fund for Shanxi Province Science and Technology Develop Project of Higher Education(20081003).

point of two arcs is a crossing. An optimal drawing in a given surface is a good drawing which exhibits the least possible number of crossings. This number is the crossing number of the graph for the surface. We denote the crossing number of G for the plane (or sphere) by cr(G), a drawing of G in the plane (or sphere) by D, and the number of the crossings in this drawing by $\nu(D)$. It is clear that $cr(G) \leq \nu(D(G))$. We also speak of the nodes as vertices and the arcs as edges. Drawings considered in this paper are all good.

Let P_n be a path with n vertices. P_n^k , the k-th power of the path P_n , is a graph on the same vertex set as P_n and the edges that join all vertices x and y if and only if the distance between them is at most k. P_n is called the base path of P_n^k . The graph P_n^k is an important family of non-regular graphs, whose topological properties have been widely studied[1, 2].

The exact crossing number is known only for a few specific families of graphs. Such families include some regular graphs as generalized Petersen graphs P(n,3)[3], P(2n+1,n) [4], Circulant graphs $C(n;\{1,3\})[5]$, $C(mk;\{1,k\})[6]$ and $C(2n+1;\{1,n\})$ [7, 8], Flower Snarks and related graphs[9], and the Cartesian products of cycles $C_m \square C_n$ for all $n \ge m(m+1)$ and for $m \le 7$ [10, 11]. For non-regular graphs, the Cartesian products of some graphs with path and cycles are determined[12, 13, 14, 15, 16, 17]. We refer to recent surveys for more details[18, 19].

It seems rather interesting to determine the crossing numbers of P_n^k . Its solution can be used to explore an effective approach of the crossing numbers of non-regular graphs to provide a wider theoretical base for the application of the crossing number.

In this paper, the crossing numbers of P_n^k are studied by showing their cylinder drawings. Drawings of P_n^k are presented and proved to be optimal for the case $n \leq 8$ and for the case $k \leq 4$.

Let X be a subset of V(G) or of E(G) for a graph G. Then $\langle X \rangle$ denotes the subgraph of G induced by X.

Let A, B be two disjoint subsets of E(G). In a drawing D, the number of the crossings crossed by an edge in A and another edge in B is denoted by $\nu_D(A, B)$. The number of the crossings that involve a pair of edges in A is denoted by $\nu_D(A)$. So $\nu(D) = \nu_D(E(G))$. If an edge is not crossed by any other edge, we say that it is *clean* in D; if it is crossed by at least one edge, we say that it is *crossed* in D. By counting the number of crossings in D, we have Lemma 1.1.

Lemma 1.1. Let A, B, C be mutually disjoint subsets of E(G). Then,

$$\nu_D(C, A \cup B) = \nu_D(C, A) + \nu_D(C, B), \nu_D(A \cup B) = \nu_D(A) + \nu_D(B) + \nu_D(A, B).$$

From [20], we have Lemma 1.2.

Lemma 1.2. Let i be the least number of edges of a graph G whose deletion from G results in a planar subgraph H of G, then $cr(G) \geq i$. \square

2
$$cr(P_n^k)$$
 for $k = 1, 2, 3, 4, 5, n - 2, n - 1$

Let $V(P_n^k) = \{v_1, v_2, \cdots, v_n\}$ and $E(P_n^k) = \{v_i v_j \mid n-k+1 \le i < j \le n\} \cup (\bigcup_{i=1}^{n-k} \{v_i v_{i+1}, \cdots, v_i v_{i+k}\})$. Then $|E(P_n^k)| = nk - \frac{k(k+1)}{2}$.

In order to state our result, we show a drawing $D_{n,k}$ of P_n^k on a cylinder (homeomorphic to a sphere), which can also be defined as the topological space Pr obtained from the region $\{(x,y) \in R^2 | (x^2 \le 1) \land (y^2 \le 1)\}$ by identifying the points (x,y) and (-x,y) for every (x,y) such that $x^2 = 1$. In a drawing $D_{n,k}$, if there are some points (curves) on the boundary |x| = 1, these points (curves) should be only counted once though they are drawn twice in the drawing. In a drawing $D_{n,k}$, the points (-1,y) and (1,y) should be identified as one point.

We put all vertices of P_n^k and the edges in $E(P_n)$ on the boundary x = -1 called *left-wall*, then these vertices(edges) should also lie on x = 1 called *right-wall*. The edges not in $E(P_n)$ are drawn from left-wall to right-wall by straight line segments(distorted slightly if necessary to avoid concurrence). Figures 2.1-2.4 show the drawings $D_{10,k}$ for $k \le 4$. By counting the number of crossings in $D_{n,k}$, we have Lemma 2.1.

Lemma 2.1. $cr(P_n^k) \leq \frac{(k-1)(k-2)(k-3)}{6}n - \frac{(3k+4)(k-1)(k-2)(k-3)}{24}$. Proof. Let $B_i = \{v_i v_{i+j} | (2 \leq j \leq k) \land (v_i v_{i+j} \in E(P_n^k))\}$ for $1 \leq i \leq n$, then we have

$$|B_i| = \begin{cases} k-1, & 1 \le i \le n-k; \\ n-i-1, & n-k+1 \le i \le n-1; \\ 0, & i=n. \end{cases}$$

For $1 \leq i \leq n$, define function $f_B(i) = \sum_{j>i} \nu_{D_{n,k}}(B_i, B_j)$. Let x be an arbitrary crossing in $D_{n,k}$, which occurs between $v_a v_b$ and $v_c v_d$. Let $y = \min\{a, b, c, d\}$, then x is only counted in B_y , and it is counted just once. Hence, $\nu(D_{n,k}) = \sum_{1 \leq i \leq n} f_B(i)$ by Lemma 1.1.

For $1 \leq i \leq n$, the edge $v_i v_{i+1+s}$ is crossed by (s-2) edges $(v_{i+1} v_{i+3}, \ldots, v_{i+1} v_{i+s-1}, v_{i+1} v_{i+s})$ in B_{i+1} , crossed by (s-3) edges $(v_{i+2} v_{i+4}, \ldots, v_{i+2} v_{i+s-1}, v_{i+2} v_{i+s})$ in B_{i+2}, \ldots , and crossed by one edge $(v_{i+s-2} v_{i+s})$ in B_{i+s-2} . Thus, the edge $v_i v_{i+1+s}$ contributes $\sum_{y=1}^{s-2} y$ crossings to $f_B(i)$, hence we have,

$$f_B(i) = \begin{cases} \sum_{s=3}^{k-1} \sum_{y=1}^{s-2} y = \frac{(k-1)(k-2)(k-3)}{6}, & 1 \le i \le n-k, \\ \sum_{n-i-1} \sum_{s=2}^{s-2} y = \frac{(n-i-1)(n-i-2)(n-i-3)}{6}, & n-k+1 \le i \le n-4, \\ 0, & i \ge n-3. \end{cases}$$

Hence,
$$cr(P_n^k) \le \nu(D_{n,k}) = \sum_{i=1}^n f_B(i)$$

$$= (n-k)\frac{(k-1)(k-2)(k-3)}{6} + \sum_{i=n-k+1}^{n-4} \frac{(n-i-1)(n-i-2)(n-i-3)}{6}$$

$$= \frac{(k-1)(k-2)(k-3)}{6} n - \frac{(3k+4)(k-1)(k-2)(k-3)}{24}.$$

Theorem 2.2. $cr(P_n^k) = 0$ for k = 1, 2, 3 and $cr(P_n^4) = n - 4$ for $n \ge 5$. **Proof.** By Lemma 2.1, $cr(P_n^k) \le 0$ for k = 1, 2, 3 and $cr(P_n^4) \le n - 4$. We need only to prove $cr(P_n^4) \ge n - 4$.

Let *i* be the least number of the edges of P_n^4 whose deletion from it results in a planar subgraph Q_n^4 of P_n^4 . Consider Q_n^4 . Q_n^4 has *n* vertices, $|E(P_n^4)| = 4n-10$ edges. Let D^* be a planar drawing of Q_n^4 and *r* denote the number of the faces in D^* . Then, according to Euler Polyhedron Formula,

$$n-4n+10+i+r = 2,$$

 $r = 3n-8-i.$

Since the girth of Q_n^4 is 3, by counting the number of the edges of each face in D^* , we have

$$3 \times (3n - 8 - i) \le 2 \times (4n - 10 - i),$$

 $i \ge n - 4.$

So, $cr(P_n^4) = n - 4$ by Lemma 1.2.

Figures 2.1-2.3 show the planar drawings of P_n^1 , P_n^2 and P_n^3 . Figure 2.4 shows the drawings of P_n^4 with n-4 crossings.

Notice that $P_n^{n-1} \cong K_n$ and $P_n^{n-2} \cong K_n - e$, hence we have, $cr(P_n^{n-1}) = cr(K_n)$ and $cr(P_n^{n-2}) = cr(K_n - e)$. Since $cr(K_7 - e) = 6[17]$, $cr(K_8 - e) = 15[16]$ and $cr(K_n) = \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$ for $n \leq 11$ [19], we have

Lemma 2.3. $cr(P_7^5) = 6$, $cr(P_8^6) = 15$ and $cr(P_n^{n-1}) = \frac{n(n-1)(n-2)(n-3)}{4}$ for $n \leq 12$.

Theorem 2.4. $cr(P_n^5) \le 4n - 23$ for $n \ge 8$. Proof. By Lemma 2.1, $cr(P_n^5) \le \frac{(5-1)(5-2)(5-3)}{6}n - \frac{(3\times 5+4)(5-1)(5-2)(5-3)}{24} = 4n-19$. The drawing $D_{n,5}$ of P_n^5 described above can be adjusted slightly to provide a drawing $D'_{n,5}$ with fewer crossings by the following way: for $n \geq 8$, erase all the edges in $\{v_2v_4, v_3v_5, v_{n-1}v_{n-3}, v_{n-2}v_{n-4}\}$ from $D_{n,5}$, then redraw v_2v_4 and v_3v_5 from right-wall to right-wall, and redraw $v_{n-1}v_{n-3}$ and $v_{n-2}v_{n-4}$ from left-wall to left-wall(see Figure 2.7). Thus, we reduce 4 crossings. Hence, $cr(P_n^5) \le 4n - 23$ for $n \ge 8$.

Figure 2.5 shows a drawing of P_6^5 with 3 crossings. Figure 2.6 shows a drawing of P_7^5 with 6 crossings. Figure 2.7 shows a drawing of P_n^5 with 4n-23 crossings for $n \geq 8$.

Lemma 2.5. $cr(P_8^5) = 9$.

Proof. Let D be a good drawing of P_8^5 . By Theorem 2.4, $cr(P_8^5) \leq 9$. It remains to prove that $\nu_D(P_8^5) \geq 9$. To the contrary, suppose that $\nu_D(P_8^5) \leq$

Let $V(P_8^5) = \{v_i | 1 \le i \le 8\}$ and the base path $P_8 = v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8$. We may divide the edges of P_8^5 into three edge sets: red edge set $E_0 =$ $\{v_i v_j | 3 \le i < j \le 6\}$, yellow edge set $E_1 = \{v_i v_j | i \in \{1, 2, 7, 8\} \land j \in \{1, 2, 7, 8\}\}$ $\{3, 4, 5, 6\}$ and blue edge set $E_2 = \{v_1v_2, v_2v_7, v_7v_8\}$. Note that $\langle E_0 \rangle \cong K_4$ and $(E_1) \cong K_{4,4}$. Let $E_1(i) = \{v_i v_j | j \in \{3,4,5,6\}\} (i \in \{1,2,7,8\})$, then $E_1 = \bigcup_{i \in \{1,2,7,8\}} E_1(i).$

It is well known that there are only two drawings of K_4 in plane within isomorphism, as shown in Figures 2.8(a) and (b).

Case 1. Suppose $\nu_D(E_0) = 0$ (see Figure 2.8(a)). Since $cr(K_{4,4}) = 4$, $\nu_D(E_1) \geq 4$. Since there are only three of the four vertices v_3, v_4, v_5 and v_6 on each boundary of the drawing, we have $\nu_D(E_0, E_1) \geq 4$. From the hypothesis $\nu(D) \leq 8$, we have $\nu_D(E_1) = 4$, $\nu_D(E_0, E_1) = 4$ and $\nu_D(E_2) +$

Figure 2.8(a) $\nu_D(E_0) = 0$

Figure 2.8(b) $\nu_D(E_0) = 1$

Figure 2.8(c)

 $\nu_D(E_2, E_0 \cup E_1) = 0$. Thus, all the edges in E_2 have to lie in the same region, without loss of generality, we may assume that they are all in f_1 . The four yellow edges incident with v_6 are all crossed by some rcd edge in $\{v_3v_4, v_4v_5, v_5v_3\}$, so, all the yellow edges in $\{v_iv_j | i \in \{1, 2, 7, 8\} \land j \in \{3, 4, 5\}\}$ have to lie in f_1 . For every pair vertices v_x, v_y of $\{v_1, v_2, v_7, v_8\}$, we have $\nu_D(\{v_xv_j | j \in \{3, 4, 5\}\}, \{v_yv_j | j \in \{3, 4, 5\}\}) \ge 1$, thus, $\nu_D(E_1) \ge \binom{4}{2} = 6$, a contradiction to $\nu_D(E_1) = 4$.

Case 2. Suppose $\nu_D(E_0) = 1$ (see Figure 2.8(b)). Since $cr(K_{4,4}) = 4$, $\nu_D(E_1) \geq 4$. If some vertex v_i of $\{v_1, v_2, v_7, v_8\}$ does not lie in f_1 , then $\nu_D(E_1(i), E_0) \geq 2$. Then from the hypothesis $\nu(D) \leq 8$, there are at least three vertices of $\{v_1, v_2, v_7, v_8\}$ in f_1 . We may assume that v_1, v_2 and v_7 are all lie in f_1 .

If some yellow edge in $E_1(i) (i \in \{1,2,7\})$ crosses the red edges of E_0 , then $\nu_D(E_1(i), E_0) \geq 2$. Hence there is at least one $i \in \{1,2,7\}$, say i=7, such that all the four yellow edges in $E_1(7)$ do not cross the red edges (see Figure 2.8(c)). (Otherwise, we would have $\nu_D(\bigcup_{i \in \{1,2,7\}} E_1(i), E_0) \geq 6$ and $\nu(D) \geq \nu_D(E_1) + \nu_D(\bigcup_{i \in \{1,2,7\}} E_1(i), E_0) \geq 4 + 6 = 10$, a contradiction to $\nu(D) \leq 8$.)

There are at most two of the four vertices v_3, v_4, v_5 and v_6 on each boundary of the drawing in Figure 2.8(c), then for every $i \in \{1, 2, 8\}$ we have $\nu_D(E_1(i), E_0 \cup E_1(7)) \geq 2$. Hence we have $\nu_D(\bigcup_{i \in \{1, 2, 8\}} E_1(i), E_0 \cup E_1(7)) \geq 6$. Notice that the induced subgraph $\langle \bigcup_{i \in \{1, 2, 8\}} E_1(i) \rangle \cong K_{3,4}$ and $cr(K_{3,4}) = 2$, we would have $\nu(D) \geq \nu_D(E_0) + \nu_D(\bigcup_{i \in \{1, 2, 8\}} E_1(i)) + \nu_D(\bigcup_{i \in \{1, 2, 8\}} E_1(i), E_0 \cup E_1(7)) \geq 1 + 2 + 6 = 9$, a contradiction to $\nu(D) \leq 8$. From Cases 1-2, the hypnosis $\nu_D(P_8^5) \leq 8$ is incorrect. So, $\nu_D(P_8^5) = 9$.

3 Upper bounds of $cr(P_n^k)$

Lemma 3.1.(1) $cr(P_n^k) \leq \frac{k^3 - 9k^2 + 32k - 36}{6}n - \frac{3k^4 - 22k^3 + 45k^2 + 82k - 216}{24}$ for even n and even k.

- (2) $cr(P_n^k) \le \frac{k^3 9k^2 + 32k 36}{6}n \frac{3k^4 22k^3 + 45k^2 + 82k 204}{24}$ for even n and odd k.
- (3) $cr(P_n^k) \le \frac{k^3 9k^2 + 32k 36}{6}n \frac{3k^4 22k^3 + 45k^2 + 94k 240}{24}$ for odd n. **Proof.** For $k \ge 6$, the drawing $D_{n,k}$ of P_n^k can be modified to get a new

Proof. For $k \geq 6$, the drawing $D_{n,k}$ of P_n^k can be modified to get a new drawing $ND_{n,k}$ as follows: erase the edges $v_iv_{i+2} (1 \leq i \leq n-2)$ from the drawing, then redraw the edges v_iv_{i+2} from left-wall to left-wall for odd i and from right-wall to right-wall for even i. Figure 3.1 shows the process modifying $D_{n,k}$ to $ND_{n,k}$ for k=6,7.

Let $B_i = \{v_i v_{i+j} | (3 \le j \le k) \land (v_i v_{i+j} \in E(P_n^k))\}$ and $R_i = \{v_i v_{i+2} | v_i v_{i+2} \in E(P_n^k)\}$ for $1 \le i \le n$. We have

$$|B_i| = \begin{cases} k-2, & 1 \le i \le n-k; \\ n-2-i, & n-k+1 \le i \le n-3; \\ 0, & n-2 \le i \le n. \end{cases}$$
 (3.1)

For $1 \leq i \leq n$, define functions $g_B(i) = \sum_{j>i} \nu_{ND_{n,k}}(B_i, B_j)$ and $g_R(i) = \sum_{j=1}^n \nu_{ND_{n,k}}(R_i, B_j)$. Each crossing between an edge in R_x and another edge in B_y is only counted in $g_R(x)$. Let $x_1 < x_2$, then each crossing between an edge in B_{x_1} and another edge in B_{x_2} is only counted in $g_B(x_2)$. Hence, each crossing in $ND_{n,k}$ is counted just once, by Lemma 1.1,

$$\nu(ND_{n,k}) = \sum_{1 \le i \le n} (g_B(i) + g_R(i)). \tag{3.2}$$

Compute $\sum_{1 \le i \le n} g_B(i)$ firstly.

For $1 \leq i \leq n$, the edge $v_i v_{i+2+s}$ is crossed by (s-2) edges $(v_{i+1} v_{i+4}, \ldots, v_{i+1} v_{i+s}, v_{i+1} v_{i+s+1})$ in B_{i+1} , crossed by (s-3) edges $(v_{i+2} v_{i+5}, \ldots, v_{i+2} v_{i+s}, v_{i+2} v_{i+s+1})$ in B_{i+2}, \ldots , and crossed by one edge $(v_{i+s-2} v_{i+s+1})$ in B_{i+s-2} . Then, the edge $v_i v_{i+2+s}$ contributes $\sum_{y=1}^{s-2} y$ crossings to $g_B(i)$, hence we have,

$$g_B(i) = \begin{cases} \sum_{s=1}^{k-2} \sum_{y=1}^{s-2} y = \frac{(k-2)(k-3)(k-4)}{6}, & 1 \le i \le n-k, \\ \sum_{n-i-2} \sum_{s=2}^{s-2} y = \frac{(n-i-2)(n-i-3)(n-i-4)}{6}, & n-k+1 \le i \le n-5, \\ 0, & i \ge n-4. \end{cases}$$

Hence,

$$\sum_{i=1}^{n} g_B(i) = (n-k) \frac{(k-2)(k-3)(k-4)}{6} + \sum_{i=n-k+1}^{n-5} \frac{(n-i-2)(n-i-3)(n-i-4)}{6}$$

$$= \frac{(k-2)(k-3)(k-4)}{6} n - \frac{(3k+5)(k-2)(k-3)(k-4)}{24}.$$
(3.3)

Then, compute $\sum_{1 \leq i \leq n} g_R(i)$.

Figure 3.1. Adjust $D_{n,k}$ to $ND_{n,k}$ for k=6,7 by adjusting dashed curves to bold ones

For odd i, the edge v_iv_{i+2} is crossed by $|B_{i+1}|$ edges incident with v_{i+1} , and for even i, v_iv_{i+2} is crossed by $|B_{n-i}|$ edges incident with v_{i+1} , i.e., $g_R(i) = |B_{i+1}|$ for odd i and $g_R(i) = |B_{n-i}|$ for even i. Hence,

$$\sum_{i=1}^{n} g_{R}(i) = \sum_{i=1}^{n-2} g_{R}(i) = \sum_{j=1}^{\lceil \frac{n}{2} \rceil - 1} g_{R}(2j - 1) + \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor - 1} g_{R}(2j)$$
$$= \sum_{j=1}^{\lceil \frac{n}{2} \rceil - 1} |B_{2j}| + \sum_{j=1}^{\lfloor \frac{n}{2} \rfloor - 1} |B_{n-2j}|. \tag{3.4}$$

Case 1. If n is even, then from (3.4),

$$\sum_{i=1}^{n} g_{R}(i) = \sum_{j=1}^{\frac{n}{2}-1} |B_{2j}| + \sum_{j=1}^{\frac{n}{2}-1} |B_{n-2j}| = 2 \sum_{j=1}^{\frac{n}{2}-1} |B_{2j}|.$$

Case 1.1. If k is even, then from the equation (3.1), we have

$$\sum_{i=1}^{n} g_{R}(i) = 2 \sum_{j=1}^{\frac{n}{2}-1} |B_{2j}| = 2 \sum_{j=1}^{\frac{n-k}{2}} |B_{2j}| + 2 \sum_{j=\frac{n-k}{2}+1}^{\frac{n}{2}-1} |B_{2j}|$$

$$= 2 \sum_{j=1}^{\frac{n-k}{2}} (k-2) + 2 \sum_{j=\frac{n-k}{2}+1}^{\frac{n}{2}-1} (n-2-2j)$$

$$= (k-2)(n-k) + \frac{(k-2)(k-4)}{2}$$

$$= (k-2)n - \frac{(k-2)(k+4)}{2}.$$
(3.5)

Case 1.2. If k is odd, then from (3.1), we have,

$$\sum_{i=1}^{n} g_{R}(i) = 2 \sum_{j=1}^{\frac{n}{2}-1} |B_{2j}| = 2 \sum_{j=1}^{\frac{n-k-1}{2}} |B_{2j}| + 2 \sum_{j=\frac{n-k-1}{2}+1}^{\frac{n}{2}-2} |B_{2j}|$$

$$= 2 \sum_{j=1}^{\frac{n-k-1}{2}} (k-2) + 2 \sum_{j=\frac{n-k-1}{2}+1}^{\frac{n}{2}-2} (n-2-2j)$$

$$= (k-2)(n-k-1) + \frac{(k-1)(k-3)}{2}$$

$$= (k-2)n - \frac{(k-2)(k+4)+1}{2}.$$
(3.6)

Case 2. If *n* is odd, then from (3.4) we have, $\sum_{i=1}^{n} g_{R}(i) = \sum_{i=1}^{\frac{n-1}{2}} |B_{2i}| +$ $\sum_{j=1}^{\frac{n-3}{2}} |B_{n-2j}|$. From (3.1), we have

$$\sum_{i=1}^{n} g_{R}(i) = \sum_{j=1}^{\frac{n-1}{2}} |B_{2j}| + \sum_{j=1}^{\frac{n-3}{2}} |B_{n-2j}| = \sum_{j=2}^{n-3} |B_{j}|$$

$$= \sum_{j=2}^{n-k} (k-2) + \sum_{j=n-k+1}^{n-3} (n-2-j)$$

$$= (k-2)(n-k-1) + \frac{(k-2)(k-3)}{2}$$

$$= (k-2)n - \frac{(k-2)(k+5)}{2}.$$
(3.7)

From equations (3.2), (3.3), (3.5), (3.6) and (3.7) we have: (1) $cr(P_n^k) \leq \frac{k^3 - 9k^2 + 32k - 36}{6}n - \frac{3k^4 - 22k^3 + 45k^2 + 82k - 216}{24}$ for even n and even k.

(2) $cr(P_n^k) \le \frac{k^3 - 9k^2 + 32k - 36}{6}n - \frac{3k^4 - 22k^3 + 45k^2 + 82k - 204}{24}$ for even n and odd k.

(3) $cr(P_n^k) \le \frac{k^3 - 9k^2 + 32k - 36}{6}n - \frac{3k^4 - 22k^3 + 45k^2 + 94k - 240}{24}$ for odd n. Theorem 3.2. (1) $cr(P_n^6) \le 8n - 51$ for $n \ge 10$. (2) $cr(P_n^7) \le 15n - 109$ for $n \ge 12$.

By Lemma 3.1, $\nu(ND_{n,6}) = 8n - 43$ for even $n, \nu(ND_{n,6}) =$ 8n-45 for odd n. The drawing $ND_{n,6}$ can be adjusted slightly to provide a drawing $ND'_{n,6}$ with fewer crossings as follows: for $n \geq 10$, crase all the edges in $\{v_1v_3, v_3v_5, v_{2\lfloor \frac{n}{2} \rfloor - 2}v_{2\lfloor \frac{n}{2} \rfloor}, v_{2\lfloor \frac{n}{2} \rfloor - 4}v_{2\lfloor \frac{n}{2} \rfloor - 2}\}$, then, redraw v_1v_3 and v_3v_5 from right-wall to right-wall, and redraw $v_{2\lfloor \frac{n}{2} \rfloor - 2}v_{2\lfloor \frac{n}{2} \rfloor}$ and $v_{2\lfloor \frac{n}{2}\rfloor - 4}v_{2\lfloor \frac{n}{2}\rfloor - 2}$ from left-wall to left-wall (see Figure 3.2, where i stands for v_i). Thus, we reduce 8 crossings for even n and can reduce 6 crossings for odd n. Hence, $\nu(ND'_{n,6}) = 8n - 51$ for $n \ge 10$.

By Lemma 3.1, $\nu(ND_{n,7}) = 15n - 93$ for even n, and $\nu(ND_{n,7}) = 15n - 95$ for odd n. The drawing $ND_{n,7}$ of P_n^7 can be adjusted slightly to provide a drawing $ND'_{n,7}$ with fewer crossings as follows: for $n \geq 12$, erase all the edges in $\{v_iv_{i+2}|\ i \in \{1,3,2\lfloor\frac{n}{2}\rfloor-4,2\lfloor\frac{n}{2}\rfloor-2\} \cup \{v_iv_{i+3}|\ i \in \{2,3,n-5,n-4\}\}$, then, redraw v_1v_3 , v_2v_5 , v_3v_5 and v_3v_6 from rightwall to right-wall, and redraw $v_{2\lfloor\frac{n}{2}\rfloor-4}v_{2\lfloor\frac{n}{2}\rfloor-2}, v_{2\lfloor\frac{n}{2}\rfloor-2}v_{2\lfloor\frac{n}{2}\rfloor}, v_{n-5}v_{n-2}$ and $v_{n-4}v_{n-1}$ from left-wall to left-wall (see Figure 3.3, where i stands for v_i). Thus, we reduce 16 crossings for even n and can reduce 14 crossings for odd n. By counting, $\nu(ND'_{n,7}) = 15n - 109$ for $n \geq 12$.

Figure 3.4(a) shows a drawing of P_7^6 with 9 crossings, Figure 3.4(b) shows a drawing of P_8^6 with 15 crossings and Figure 3.4(c) shows a drawing of P_9^6 with 22 crossings. Figure 3.5(a) shows a drawing of P_8^7 with 18 crossings, Figure 3.5(b) shows a drawing of P_9^7 with 30 crossings and Figure 3.5(c) shows a drawing of P_{10}^7 with 42 crossings and Figure 3.5(d) shows a drawing of P_{11}^7 with 57 crossings. Hence, we have Lemma 3.3.

Lemma 3.3 $cr(P_9^6) \le 22$, $cr(P_9^7) \le 30$, $cr(P_{10}^7) \le 42$ and $cr(P_{11}^7) \le 57$.

4 Concluding remarks

We show the values of $cr(P_n^k)$ for $n \leq 15, k \leq 7$ in Table 4.1.

Table 4.1. The crossing numbers of P_n^k for $n \leq 15$, $k \leq 7$

7	n 1 2 3 4 5	6	7	8	9	10	11	12	13	14	15
\boldsymbol{k}											
1	0000	0	0	0	0	0	0	0	0	0	0
2	000	0	0	0	0	0	0	0	0	0	0
3	0 0	0	0	0	0	0	0	0	0	0	0
4	1[19	_	3	4	5	6	7	8	9	10	11
5		$3^{[1]}$	9 6[17]	•						≤ 33	
6			$9^{[19]}$							≤ 61	
7				$18^{[19]}$	≤ 30	≤ 42	≤ 57	≤ 71	≤ 86	≤ 101	≤ 116

By Theorems 2.2, 2.4, 3.2 and Lemmas 2.3, 2.5, 3.3, we have

- (1) $cr(P_n^k) = 0$ for $k \le 3$,
- (2) $cr(P_n^4) = n 4$,
- (3) $cr(P_6^5) = 3$, $cr(P_7^5) = 6$, $cr(P_8^5) = 9$, $cr(P_n^5) \le 4n 23$ for $n \ge 9$,
- (4) $cr(P_7^6) = 9$, $cr(P_8^6) = 15$, $cr(P_9^6) \le 22$, $cr(P_n^6) \le 8n 51$ for $n \ge 10$,
- (5) $cr(P_8^7) = 18$, $cr(P_9^7) \le 30$, $cr(P_{10}^7) \le 42$, $cr(P_{11}^7) \le 57$, $cr(P_n^7) \le 57$

15n - 109 for $n \ge 12$.

Furthermore, we have the following Conjectures:

Conjecture 4.1. $cr(P_n^5) = 4n - 23$ for $n \ge 8$.

Conjecture 4.2. $cr(P_9^6) = 22$, $cr(P_n^6) = 8n - 51$ for $n \ge 10$.

Conjecture 4.3. $cr(P_9^7) = 30$, $cr(P_{10}^7) = 42$, $cr(P_{11}^7) = 57$, $cr(P_n^7) = 15n - 109$ for $n \ge 12$.

By Lemma 2.5, Conjecture 4.1 holds for n = 8.

Acknowledgement.

We are grateful to the anonymous referees for their helpful suggestions to improve the presentation.

References

- [1] Chlebus B S, Leszek Gasieniec, Kowalski D R, eds, Bounding Work and Communication in Robust Cooperative Computation, Lecture Notes in Computer Science, 2002: 295-310.
- [2] Sun Fang, Yang Yuansheng, Han Song, Harmony of graphs $C_{2j+1} \cup C_{2k}$ and graphs P_n^k , Journal of Dalian University of Technology, 2000, 40(4): 384-387.
- [3] Richter R B, Salazar G, The crossing number of P(N,3), Graphs Combin., 2002, 18: 381-394.
- [4] Ma Dengju, Ren Han, Lu Junjie, Crossing Number of the Generalized Petersen Graph G(2m+1, m), Journal of Eastchina Normal University (Natural Science), 2005, 1: 34-39.
- [5] Yang Yuansheng, Lin Xiaohui, Lü Jianguo, The crossing nubmer of $C(n; \{1,3\})$, Discrete Math., 2004, 289: 107–118.
- [6] Yang Yuansheng, Lin Xiaohui, Lü Jianguo, The crossing nubmer of $C(mk; \{1, k\})$, Graphs and Combinatorics. 2005, 21: 89–96.
- [7] Yang Yuansheng, Lin Xiaohui, Lü Jianguo, The crossing nubmer of $C(n; \{1, n/2 1\})$, Accepted By Utiliatas Math 2004.
- [8] Ma Dengju, Ren Han, Lu Junjic, The crossing number of the circular graph C(2m+1,m), Discrete Math., 2005, 304: 88-93.
- [9] Zheng Wenping, Lin Xiaohui, Yang Yuansheng, The crossing number of flower snarks and related graphs, Ars Combinatorial, 2008, 86:57-64.

- [10] Adamsson J, Richter R B, Arrangements, circular arrangements and the crossing number of $C_7 \times C_n$, J. Combinatorial Theory, Series B, 2004, 90: 21-39.
- [11] Glebsky L Y, Salazar G, The crossing number of $C_m \times C_n$ is as conjectured for $n \ge m(m+1)$, J. Graph Theory, 2004, 47: 53-72.
- [12] Yu Ping, Huang Yuanqiu, On the crossing numbers of $P_m \times W_n$, Journal of Natural Science of Hunan Normal University, 2005, 28: 14-16.
- [13] Wang Jing, Huang Yuanqiu, The Crossing Numbers of Cartesian Products of Paths with 6-Vertex Graphs, Journal of Jishou University(Natural Science Edition), 2005, 26: 9-13.
- [14] Zheng Wenping, Lin Xiaohui, Yang Yuansheng, The crossing number of $K_{2,m} \square P_n$, Discrete Math., 2008, 308(24): 6639–6644.
- [15] Zheng Wenping, Lin Xiaohui, Yang Yuansheng, On the crossing numbers of $K_m \square C_n$ and $K_{m,l} \square P_n$, Discrete Applied Mathematics, 2008, 156(10):1892–1907.
- [16] Zheng Wenping, Lin Xiaohui, Yang Yuansheng, On the crossing numer of $K_m \square P_n$, Graphs and Combinatorics, 2007, 23: 327-336.
- [17] Klešč M, The crossing numbers of $K_5 \times P_n$, Tatra Mt. Math. Publ., 1999, 18: 63–68.
- [18] Beineke L W, Wilson R, Selected topics in graph theory, Academic Press 1978, 68-72.
- [19] Guy R K, Latest results on crossing nubmers, Recent Trends in Graph Theory, (1971), 143-156.
- [20] Fiorini S, On the crossing number of generalized Petersen graphs, Ann. Discrete Math., 1986(30), 295-310.