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Abstract

In this note, we consider relative difference sets with the parame-
ter (m, 2, m—1, "‘—2'2-) in a group G relative to a subgroup N. In
the splitting case, G = H x N, we give a lower bound for the size of
the commutator group H’, and we show that H can not have a ho-
momorphic image which is generalized dihedral. In the non-splitting
case, we prove that there is no (2n, 2, 2n—1, n—1) relative difference
set in a generalized dihedral group of order 4n, n > 1.
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1 Introduction

A relative (m, n, k, A)-difference set in a finite group G of order mn relative
to a subgroup N of order n is a k-subset R of G such that every element
g € G\ N has exactly A representations g = r ;! with ry, 7 € R, and
no non-identity element of N has such a representation. N is called the
forbidden subgroup. R is called abelian (non-abelian) if G is abelian (non-
abelian). R is called splitting if N is a direct factor of G. The readers are
referred to Pott [7] for a survey on relative difference sets.

In a group G, we denote its identity element by 1g, and simply write
1 if it is clear from the context. For a subset X (possibly a multi-set) of
G, we define X1 = {z7!|z € X}. We identify a subset X of G with
the integral group ring element X = ) _ .z € ZG. See (3], (6] for the
standard facts about group rings and character theory.

In this note, we are interested in relative difference sets with the follow-

ing parameter
m-—2
(m,2am— 1$ _2_)' (1)
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This class of relative difference sets arc of special interest because of their
connections with other objects in combinatorial theory, such as negacyclic
matrices, generalized balanced weighing matrices (GBW), strongly regular
graphs. The existence of splitting (m, 2, m-1, "’T'Q) relative difference sets
in the group G = H x N relative to N is equivalent to the existence of
H-invariant GBW(2, m, m-1) over N. This connection between splitting
relative difference sets with GBW was first pointed out by Jungnickel, see
[5]. Using this connection, he proved the following result in [5].

Result 1. Assume the existence of a (m, 2, m-1, "‘T"z ) relative difference
set R in the group G = H x N relative to N, then m—1 is a perfect square,
and H is non-abelian.

The following result is from Xiang [11].

Result 2. Suppose G is abelian, and R is a (m, 2, m-1, L,_,‘g ) relative
difference set in G. Then the Sylow 2-subgroup of G is cyclic.

In this note, we give some necessary conditions for groups containing
relative difference sets with the parameter (1). In the splitting case, G =
H x N with N the forbidden subgroup, we give a lower bound for the
size of the commutator group of H, and we prove that H can not have a
homomorphic image which is generalized dihedral. We also show there is
no (2n, 2, 2n — 1, n — 1) relative difference set in a generalized dihedral
group of order 4n, n > 1.

2 The splitting case

In this section, we fix the following notations: G = H x N is of order 2m; R
is a splitting relative difference set with the parameter (1) in G relativeto N
(hence H is non-abelian); N = {1,80}, o(8) = 2; write R= A+ B0, A,B €
ZH; |A| = a,|B| = b. We can assume RN N = 0 and a > b by replacing R
with some translate of it if necessary. Now RR(-Y = (m — 1) + 252G is
equivalent to

AAGY £ BBED = — 1 4 m=2(H — 1)
ABGY 4 BAD = m22(H 1) (2)
A+B=H-1

An easy computation can show that the parameters satisfy:

u(u + 1)
2

u(u—1)

—1=u?a=
m u-,a 2

b=

where u is an odd positive integer.
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For a prime p and a nonzero integer ¢, if k is the largest integer such
that p* divides t, we will write p*|[¢. A direct consequence is the following
easy lemma which seems to have been ignored in the literature.

Lemma 3. If R is a splitting (m, 2, m — 1, —’"—2‘—2 ) relative difference set
in a group G, then 2|lm, and m has no prime divisor p such that p = 3
mod 4.

Proof. Obviously 2|m. If 4|m, then u? = —1 mod 4, which is impossible.
Hence 2||m. Similarly, if p = 3 mod 4 and p}m, then 42 = —1 mod p,
which is again impossible. 0

Lemma 3 can be used to give much simplified proofs of results in [11].
Substituting B = H — A — 1 into the second equation in (2), we get the

following
A+ 1D2A+1)Y = (u+1)%H + 2 (3)

This equation is what we will explore in this section. Throughout this
article, we assume that m > 2.

2.1 The commutator group H’

Result 1 states that H' = [H, H] > {1}. In this subsection, we prove the
following result which generalizes Result 1 in some cases.

Theorem 4. If R is a splitting (m, 2, m — 1, "‘T‘2 ) relative difference
set in G = H x N relative to N, m = 1+ u? with u a positive integer,
then |H'| > 51, where v’ is the largest divisor of u that is self-conjugate
mod m.

2

Note: We call a prime p self-conjugate mod a nonzero integer n if there
is such an integer f that p/ = —1 mod n’, where n’ is the largest divisor
of n that is coprime with p; an integer ¢ is self-conjugate mod = if each
prime divisor of ¢ is self-conjugate mod n.

Proof. Take the natural epimorphism p: H — K := H/H’, and extend it
to a map from ZH to ZK in the natural way. We have

(2p(A4) +1)(2p(A) + DY = (u + 1)2|H'|K + 2.
Since K is abelian, take any non-principle character x of K,

2x(p(4)) + 1]* = u?.

If K = {1}, then H = H', |H'| = m > %51, So from now on we assume

that K # {1}. A standard argument using the prime ideal decompositions
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in Z[¢}, where £ is a primitive e-th root of unity, e= exp(K), shows that
o’ divides 2x(p(A)) + 1, where v’ is the largest divisor of u that is self-
conjugate mod m. Since u is coprime with 2m, the inversion formula
shows 2p(A) +1 = v’ X +a K for some X € ZK,a € Z, see (8, p.18,
Corollary 1.2.5]. For any non-identity element k¥ € K, we have (2p(A) +
1)(1 — k) = v/ X(1 — k). The left side has coefficients between —2|H’| — 1
and 2|H'| + 1. If 2|H’| + 1 < ¢/, then 2p(A) + 1 = (2p(A) + 1)k. Take any
character x such that x(k) # 1, then 2x(p(A)) + 1 = 0, contradicting the
fact [2x(p(A)) + 1|2 = u?. Hence |H'| > ¥51. O

Corollary 5. If R is a splitting (m, 2, m—1, "‘T'2 ) relative difference set
in G = H x N relative to N, m = 1+ 42 with u = p®, p a prime, a > 1,
then |H'| > 231,

Proof. Notice that m = u?+1, p** = —1 mod m, hence u is self-conjugate
mod m. a

Example. With the same notations as in Theorem 4, we consider the
case that % is a prime power. For two coprime positive integers n',n, we
write ord, (n') to denote the order of n’ in the multiplicative group Z.

(1) u = p°¢®, p,q are distinct primes, @ > 1, b > 1, and % is a prime
power. In this case, at least one of ord,(p®), ordm(q®) must be even;
otherwise m = 2. Since Z;, has a unique involution —1, at least one of p®,
q°, say p*, must be self-conjugate mod m, hence |H'| > '“az—"l

(2) u=pi'p3? - - - p%s, where py,--- ,p, are distinct primes, a; > 1(1 <
i < s), and % is a prime power. Similar to the argument in (1), we
know that one of the p{*,p5?, - , p%* must be self-conjugate mod m, hence
|H'| > 9;—1, where 7 = min{p}*,p3*, -+, p3*}. Except for the case 3||u,
we can conclude directly that |H'| > 1.

2.2 Homomorphic images of H

Let’s recall the definition of a generalized dihedral group. A generalized
dihedral group K is the semidirect product of an abelian group K; and
Cy = {1,a},0(a) = 2, where the action of & on K, is given by taking
inverse, i.e. K = (K;,a : a® = l,aza = z-1,Vz € K;), written as
K=K 1 M Cz.

In this subsection, we show that H can not have a generalized dihedral
group as its homomorphic image. We need the following result.

Proposition 6. Suppose K is a generalized dihedral group, K = K; x Cy,
C> = {1,a},0(a) = 2. R € ZK satisfies RR(~V) = n + AK, with n being
a positive integer. Write R = E1 + Eoa, Ey,Ey € ZK,. Let K be the
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character group of K1, and xo be the principle character of Ky. Then we
have the following:

()E\ETY + BESD = n4 MKy, BBy = 2K;.

(2) Assume that n is a square, say n = u2. Set E} = {x € K} \ {xo} :
Ix(E1)| = u}, B3 = {x € K} \ {xo0} : Ix(E2)| = u}, then E}, E} form a
partition of Ki\ {xo}-

The proof is simple and we omit it. Now, we are in a position to prove
our claim.

Theorem 7. If R is a splitting (m, 2, m—1, %:3 ) relative difference set
in G = H x N relative to N, then H can not have a homomorphic image
which is generalized dihedral.

Proof. Suppose there is a normal subgroup H; of H such that K := H/H,
is generalized dihedral, i.e. K = K; % C, for some abelian group Kj,
and Cy = {1,a},0(a) = 2. Take the natural epimorphism p : H — K
and extend it to a map from ZH to ZK in the natural way. Let xo be
the principle character of K;. Recall our notations at the beginning of
this section: R = A+ B, A,B € ZH, and N = {1,0}. Write p(A) =
A + Az o, Ay, Az € ZK), then from Equation (3) we have

(2p(A) + 1)(2p(A4) + 1)V = (u + 1)?|Hy| K + o2,

where u is an odd positive integer such that m = 1 +u?. Set R = 2p(A) +
1, By = 2A; + 1, E; = 2A45. Then R, E;, E; correspond to those in
Proposition 6. We define E} (i = 1,2) in the same fashion as in Proposition
6. We show E3 = 0; otherwise, there is a x € K such that |x(242)]* = u2.
Then "f: is both a rational integer and an algebraic integer, hence an integer,
contradicting that u is odd. From E3 = 0, we have that A = r K for some
r € Z. Let xo be the principle character of K, and assume xo(E)) = z,
xo(E2)=y. Wehavez +y = 251‘211-2 +1=u?+u+1,y=2rK;|. From
Y 142

Proposition 6 (1), we can deduce that £ = 4% = 2 y = 2 + u. Hence
|K1| divides y = 2 + u. But |K;| is a divisor of , it follows that |K;|
divides u, contradicting that (m,u) = 1. O

3 The non-splitting case

Suppose G is a generalized dihedral group of order dn,n > 1, G = K xCy =
(K,a :a?=1,aza = 27',Vz € K), where K is abelian, C, = {1,a}.
In this section, we show that there is no (2n, 2, 2n — 1, n — 1) relative
difference set in G relative to a subgroup N. We consider the following two
cases .
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The first case. N is a subgroup of K of order 2. Suppose that R is
a (2n, 2, 2n — 1, n — 1) relative difference set in G relative to N. Write
R = A+ Ba, where A,B € ZK. Then RR"V =2n— 1+ (n —1)(G — N)
is equivalent to

AACD £ BBED =9n — 14 (n—1)(K — N),24B = (n - 1)K.

Let xo be the principle character of K. Set a = |A|,b = |B|, and suppose
a < b without loss of generality. It is easy to see that a = n — 1,b = n.
Define four sets as follows: Aj={x € K*: |x(A)| = 1, x is trivial on N},
A3={x € K* : |x(A)|? = 2n — 1, x is nontrivial on N}; B}, B} are defined
in a similar fashion with B in place of A. Let a,, as, by, b2 be the sizes of the
four sets defined above. It is easy to see that the four sets form a partition
of K*\ {xo}, and A}, B} form a partition of the nontrivial characters of
K which are principle on N. The following relations are restatements of
these facts:

ay+ay+by+br=2n-1;ay+by =n-1.

The coefficient of 1 in AA"Y is n — l=z-[a1 + (2n — 1)az + (n — 1)?].

Hencea1+(2n—l)a2=n -~ 1. Smce0<a,1<n—-1 we have 231 <

non < gy < Z2=l < 24l Byt 24B = (n— 1)K indicates that n is odd, a
contradiction. We have thus proved

Theorem 8. Suppose G is a generalized dihedral group of order 4n, n > 1,
G = K % C,, where K is abelian, Ca = {1,a}, o(@) = 2. N is a subgroup
of K of order 2. Then no relative difference set with the parameter (2n, 2,
2n-1, n-1) relative to N ezists in G .

The second case. N is a subgroup of G not contained in K. Then
G = K x N, and we can assume that N = C5. Suppose that R is a relative
difference set with the parameter (2n,2,2n — 1,7 — 1) in G relative to N.
Write R = A + Ba, where A,B € ZK. Then RR*YV = 2n -1+ (n —
1)(G — N) is equivalent to

AACY £ BBCY =90 - 14 (n—1)(K —1),24B = (n - 1)(K - 1).

It follows that 24~V B~ = (n—1)(K —~1). Define G1=K x (), o(9) = 2,
Ry, = A+ B(-19, then it is casily verified that Ry is a splitting (2n, 2,2n -
1, n—1) relative difference set in G, relative to (6). This is impossible from
Result 1. Hence we have proved

Theorem 9. Suppose G is a generalized dihedral group of order 4n, n > 1,
G = K x N, where K is abelian, N = {1,a}, o(a) = 2. Then no relative
difference set with the parameter (2n, 2, 2n-1, n-1) relative to N exists in
G.
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Combining these two cases, we have

Corollary 10. No relative difference set with the parameter (2n, 2, 2n-1,
n-1) ezists in a generalized dihedral group of order 4n, n > 1.
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