Some Algebraic Properties of Bi-Circulant Digraphs*

Ying Xu, Jixiang Meng †
College of Mathematics and Systems Science, Xinjiang University,
Urumqi, Xinjiang 830046, P. R. China

Abstract

For a finite group G and subsets T_1, T_2 of G, the Bi-Cayley digraph $D = (V(D), E(D)) = D(G, T_1, T_2)$ of G with respect to T_1 and T_2 is defined as the bipartite digraph with vertex set $V(D) = G \times \{0, 1\}$, and for $g_1, g_2 \in G$, $((g_1, 0), (g_2, 1)) \in E(D)$ if and only if $g_2 = t_1 g_1$, for some $t_1 \in T_1$, and $((g_1, 1), (g_2, 0)) \in E(D)$ if and only if $g_1 = t_2 g_2$, for some $t_2 \in T_2$. If $|T_1| = |T_2| = k$, then D is k-regular. In this paper, the spectra of Bi-Circulant digraph are determined. In addition, some asymptotic enumeration theorem for the number of directed spanning trees in Bi-Circulant digraphs are presented.

Keywords: Bi-Circulant digraph; Spectra; Spanning trees.

1 Introduction

Let G be a finite group with identity 1 and S be the subset of $G\setminus 1$. The Cayley digraph D=D(G,S) of G with respect S is a directed graph with vertex set G, and for $g_1,g_2\in G$, there is an arc from g_1 to g_2 if and only if $g_2g_1^{-1}\in S$. If S is inverse-closed, that is, $S=S^{-1}$, then D(G,S) corresponds to an undirected graph which is called a Cayley graph of G with respect to S and is denoted by C(G,S).

^{*}The research is supported by NSFC (No.10671165) and SRFDP(No.20050755001) † Corresponding author. E-mail: mjx@xju.edu.cn (J.Meng), xuying1209@163.com(Y.Xu).

It is well known that Cayley digraphs (graphs) are vertex transitive. In [1] and [5], the authors studied the spectra of Cayley graphs. In [3],[7],[9],[10], some asymptotic enumeration theorems for the number of spanning trees for circulant digraphs (graphs) are presented. Here, we will consider the same problems for a newly defined classes digraphs called Bi-Circulant digraphs.

To study semi-symmetric graphs (regular edge transitive but not vertex transitive graphs), Xu [6] defined the so called Bi-Cayley graphs. Let G be a finite group and S be the subset of G, the Bi-Cayley graph BC(G, S) is a bipartite graph with vertex set $G \times \{0, 1\}$ and edge set $\{\{(g, 0), (sg, 1)\}: g \in G, s \in S\}$. When G is a cyclic group, the Bi-Cayley graph BC(G, S) is called Bi-Circulant graph. In [11], Zou and Meng derived the spectra of a Bi-Circulant graph and an asymptotic enumeration theorem for the number of spanning trees in Bi-Circulant graph.

Lemma 1.1. [11] Let G be a cyclic group of order n, $S = \{s_1, s_2, \dots, s_k\}$ be a subset of G.

(1) If $S \neq S^{-1}$, then the eigenvalues of Bi-Circulant graph BC(G,S) are $\pm k, \pm |\omega^{s_1j} + \cdots + \omega^{s_kj}| (j = 1, 2, \cdots, n-1);$

(2) If $S = S^{-1}$, then the eigenvalues of Bi-Circulant graph BC(G, S) are $\pm k, \pm (\omega^{s_1j} + \cdots + \omega^{s_kj}) (j = 1, 2, \cdots, n-1)$.

Lemma 1.2. [11] Let BC(G, S) be a k-regular Bi-Circulant graph of order n and T(G, S) be the number of spanning trees of connected Bi-Circulant graph BC(G, S), then

$$T(G,S) \sim \frac{k^{2n+1}}{f(1)}, n \longrightarrow \infty,$$

where
$$f(z) = \sum_{i=0}^{2s_1-1} z^i + \sum_{i=0}^{2s_2-1} z^i + \dots + \sum_{i=0}^{2s_k-1} z^i + 2 \sum_{l \neq m} \sum_{i=0}^{s_l+s_m-1} z^i$$
 and $f(1) = 2s_1 + 2s_2 + \dots + 2s_k + 2 \sum_{l \neq m} (s_l + s_m)$.

Now we generalize the Bi-Cayley graphs to Bi-Cayley digraphs. For a finite group G and subsets T_1, T_2 of G, the Bi-Cayley digraph $D = (V(D), E(D)) = D(G, T_1, T_2)$ of G with respect to T_1 and T_2 is defined as the bipartite digraph with vertex set $V(D) = G \times \{0,1\}$ and for $g_1, g_2 \in G$, $((g_1,0),(g_2,1)) \in E(D)$ if and only if $g_2 = t_1g_1$, for some $t_1 \in T_1$, and

 $((g_1,1),(g_2,0)) \in E(D)$ if and only if $g_1 = t_2g_2$, for some $t_2 \in T_2$. If $|T_1| = |T_2| = k$, then D is k-regular. When G is a cyclic group, the Bi-Cayley digraph $D(G,T_1,T_2)$ is called a Bi-Circulant digraph.

In this paper, we investigate the spectra of Bi-Circulant digraphs and some asymptotic enumeration theorem for the number of directed spanning trees in Bi-Circulant digraphs are presented.

In the following, we cite some known results which will be used in the next section.

Lemma 1.3 (Horn [4]). Let A, B, C, D be $n \times n$ matrices, and $|A| \neq 0$, AC = CA, then

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|.$$

Let W denote the circulant matrix whose first row is $[0, 1, 0, \dots, 0]$, and Z_n be the cyclic group of integers modulo n.

Lemma 1.4 (Biggs [2]). Let $X = X(Z_n, S)$ be a circulant graph. Then the adjacency matrix of X is $A = \sum_{s \in S} W^s$ and the eigenvalues of X are $\lambda_r = \sum_{s \in S} \omega^{sr}, r = 0, 1, \dots, n-1$, where $\omega = \exp(2\pi i/n)$.

Lemma 1.5 (Zhang [8]). Let D be a k-regular digraph, $\chi(D,\lambda)$ be the characteristic polynomial of D, then the number of direct spanning trees of D is

$$T(D) = \chi'(D, \lambda) = \frac{d}{d\lambda} \chi(D, \lambda)|_{\lambda = k}.$$

For concepts used but not defined here we refer to [2].

2 Main results

We denote the number of directed spanning trees of Bi-Circulant digraph $D(Z_n, T_1, T_2)$ by $T(Z_n, T_1, T_2)$.

The following theorem discuss the spectra of the Bi-Circulant digraph $D(Z_n, T_1, T_2)$.

Theorem 2.1. The eigenvalues of Bi-Circulant digraph $D(Z_n, T_1, T_2)$ are

$$\lambda_r = \pm \left[\sum_{\substack{i=1,2,\cdots,k\\j=1,2,\cdots,l}} (\omega^{t_{2j}+t_{1i}})^r \right]^{1/2}, r = 0, 1, \cdots, n-1,$$

where
$$T_1 = \{t_{11}, t_{12}, \cdots, t_{1k}\}, T_2 = \{t_{21}, t_{22}, \cdots, t_{2l}\}.$$

Proof. Let $D(Z_n, T_1, T_2)$ be a Bi-Circulant digraph and B be the adjacency matrix of $D(Z_n, T_1, T_2)$, A_1 be the adjacency matrix of the circulant digraph $D(Z_n, T_1)$ and A_2 be the adjacency matrix of the circulant digraph $D(Z_n, -T_2)$. By the definition of Bi-Circulant digraph, it is easy to see that

$$B = \left(\begin{array}{cc} 0 & A_1 \\ A_2 & 0 \end{array}\right).$$

Therefore, we have

$$|\lambda I - B| = \begin{vmatrix} \lambda I & -A_1 \\ -A_2 & \lambda I \end{vmatrix} = |\lambda^2 I - A_2 A_1|. \tag{1}$$

Since A_1 and A_2 are circulant matrix, we have

$$A_1 = \sum_{t_1 \in T_1} W^{t_{1i}}, A_2 = \sum_{t_2 \in T_2} W^{t_{2j}}$$

and

$$A_{2}A_{1} = \sum_{\substack{t_{2j} \in T_{2} \\ t_{1i} \in T_{1}}} W^{t_{2j}} \sum_{\substack{t_{1i} \in T_{1} \\ t_{1i} \in T_{1}}} W^{t_{1i}}$$

$$= (W^{t_{21}} + W^{t_{22}} + \dots + W^{t_{2l}})(W^{t_{11}} + W^{t_{12}} + \dots + W^{t_{1k}})$$

$$= \sum_{\substack{i=1,\dots,k \\ i=1,\dots,l}} W^{t_{2j}+t_{1i}}.$$

Thus, the eigenvalues of A_2A_1 are $\mu_r = \sum_{\substack{i=1,\cdots,k\\j=1,\cdots,l}} (\omega^{t_{2j}+t_{1i}})^r$. By (1) we see that the eigenvalues of B are $\lambda_r = \pm \mu_r^{1/2} = \pm [\sum_{\substack{i=1,\cdots,k\\j=1,\cdots,l}} (\omega^{t_{2j}+t_{1i}})^r]^{1/2}, r = 0, 1, \cdots, n-1$.

For the k-regular Bi-Circulant digraph, we have

Theorem 2.2. If the Bi-Circulant digraph $D(Z_n, T_1, T_2)$ is k-regular, i.e., $|T_1| = |T_2| = k$, then the eigenvalues of Bi-Circulant digraph $D(Z_n, T_1, T_2)$ are

$$\pm k, \pm \left[\sum_{\substack{i=1,\cdots,k\\j=1,\cdots,k}} (\omega^{t_{2j}+t_{1i}})\right]^{1/2}, \cdots, \pm \left[\sum_{\substack{i=1,\cdots,k\\j=1,\cdots,k}} (\omega^{t_{2j}+t_{1i}})^{n-1}\right]^{1/2}.$$

Lemma 2.3. Let G be a cyclic group of order n, $T_1 = \{t_{11}, t_{12}, \dots, t_{1k}\}$ $\{1 \le t_{11} < t_{12} < \dots < t_{1k}\}$ and $T_2 = \{t_{21}, t_{22}, \dots, t_{2k}\}$ $\{1 \le t_{21} < t_{22} < \dots < t_{2k}\}$ are the subsets of G. If the roots of the polynomial

$$f(z) = \sum_{m=0}^{t_{11}+t_{21}-1} z^m + \dots + \sum_{m=0}^{t_{1i}+t_{2j}-1} z^m + \dots + \sum_{m=0}^{t_{1k}+t_{2k}-1} z^m$$

are $\alpha_1, \alpha_2, \cdots, \alpha_{t_{1k}+t_{2k}-1}$, then

$$T(Z_n, T_1, T_2) = \frac{(-1)^{(n-1)(t_{1k}+t_{2k}-1)} 2nk \prod_{t=1}^{t_{1k}+t_{2k}-1} (1-\alpha_t^n)}{f(1)},$$

where $f(1) = kt_{11} + \cdots + kt_{1k} + kt_{21} + \cdots + kt_{2k}$.

Proof. By Lemma 1.5 and Theorem 2.2, we have

$$T(Z_{n}, T_{1}, T_{2}) = 2k \prod_{r=1}^{n-1} [k \pm (\sum_{i,j=1,\cdots,k} (\omega^{t_{1i}+t_{2j}})^{r})^{1/2}]$$

$$= 2k \prod_{r=1}^{n-1} [k^{2} - \sum_{i,j=1,\cdots,k} (\omega^{t_{1i}+t_{2j}})^{r}]$$

$$= 2k \prod_{r=1}^{n-1} [1 - (\omega^{t_{11}+t_{21}})^{r} + 1 - (\omega^{t_{11}+t_{22}})^{r} + \cdots$$

$$+1 - (\omega^{t_{1k}+t_{2k}})^{r}]$$

$$= 2k \prod_{r=1}^{n-1} (1 - \omega^{r})(\sum_{m=0}^{t_{11}+t_{21}-1} \omega^{mr} + \sum_{m=0}^{t_{11}+t_{22}-1} \omega^{mr} + \cdots$$

$$+ \sum_{m=0}^{t_{1k}+t_{2k}-1} \omega^{mr})$$

$$= 2k \prod_{r=1}^{n-1} (1 - \omega^{r}) f(\omega^{r}).$$

Since

$$\prod_{r=1}^{n-1} (x - \omega^r) = \sum_{l=0}^{n-1} x^l,$$
(2)

when x = 1, we have $\prod_{r=1}^{n-1} (1 - \omega^r) = n$.

By the definition of f(z) and using the equation (2), we can get that

$$T(Z_{n}, T_{1}, T_{2}) = 2k \prod_{r=1}^{n-1} (1 - \omega^{r}) \prod_{r=1}^{n-1} (\omega^{r} - \alpha_{1}) \cdots \prod_{r=1}^{n-1} (\omega^{r} - \alpha_{t_{1k} + t_{2k} - 1})$$

$$= 2nk \prod_{r=1}^{n-1} (\omega^{r} - \alpha_{1}) \cdots \prod_{r=1}^{n-1} (\omega^{r} - \alpha_{t_{1k} + t_{2k} - 1})$$

$$= (-1)^{(n-1)(t_{1k} + t_{2k} - 1)} 2nk (\sum_{l=0}^{n-1} \alpha_{1}^{l}) \cdots (\sum_{l=0}^{n-1} \alpha_{t_{1k} + t_{2k} - 1}^{l})$$

$$= (-1)^{(n-1)(t_{1k} + t_{2k} - 1)} 2nk \prod_{t=1}^{t_{1k} + t_{2k} - 1} \frac{1 - \alpha_{t}^{n}}{1 - \alpha_{t}}$$

$$= (-1)^{(n-1)(t_{1k} + t_{2k} - 1)} 2nk \frac{\prod_{t=1}^{t_{1k} + t_{2k} - 1} (1 - \alpha_{t}^{n})}{f(1)}.$$

Lemma 2.4. Let

$$f(z) = \sum_{m=0}^{t_{11}+t_{21}-1} z^m + \dots + \sum_{m=0}^{t_{1i}+t_{2j}-1} z^m + \dots + \sum_{m=0}^{t_{1k}+t_{2k}-1} z^m,$$

where $1 \le t_{11} < t_{12} \cdots < t_{1k}$ and $1 \le t_{21} < t_{22} \cdots < t_{2k}$. If $gcd(t_{11} + t_{21}, \cdots, t_{1i} + t_{2j}, \cdots, t_{1k} + t_{2k}) = 1$, then the roots of f(z) satisfy

$$|\alpha_t| > 1, t = 1, 2, \dots, t_{1k} + t_{2k} - 1.$$

Proof. It is easy to see that $f(1) \neq 0$ and

$$(z-1)f(z) = z^{t_{11}+t_{21}} + \dots + z^{t_{1i}+t_{2j}} + \dots + z^{t_{1k}+t_{2k}} - k^2.$$

For $\alpha_t \neq 1$, we have

$$\alpha_t^{t_{11}+t_{21}} + \dots + \alpha_t^{t_{1i}+t_{2j}} + \dots + \alpha_t^{t_{1k}+t_{2k}} = k^2.$$
 (3)

If $|\alpha_t| < 1$, then

$$\begin{split} & |\alpha_t^{t_{11}+t_{21}}+\dots+\alpha_t^{t_{1i}+t_{2j}}+\dots+\alpha_t^{t_{1k}+t_{2k}}| \\ \leq & |\alpha_t^{t_{11}+t_{21}}|+\dots+|\alpha_t^{t_{1i}+t_{2j}}|+\dots+|\alpha_t^{t_{1k}+t_{2k}}| < k^2, \end{split}$$

which contradicts to the equation (3), and hence $|\alpha_t| \geq 1$.

Since $\alpha_t \neq 1$, if $|\alpha_t| = 1$, then we have

$$\begin{cases} \alpha_t = \cos \phi_t + \sqrt{-1} \sin \phi_t, & \sin \phi_t \neq 0, t \in \{1, 2, \dots, t_{1k} + t_{2k} - 1\}; \\ \alpha_t = -1, & \sin \phi_t = 0, t \in \{1, 2, \dots, t_{1k} + t_{2k} - 1\}. \end{cases}$$

By (3), when $\alpha_t = \cos \phi_t + \sqrt{-1} \sin \phi_t$, we can get that

$$\cos(t_{11} + t_{21})\phi_t + \dots + \cos(t_{1i} + t_{2j})\phi_t + \dots + \cos(t_{1k} + t_{2k})\phi_t = k^2.$$

Thus, $\cos(t_{1i}+t_{2j})\phi_t=1$, it is contradicts to the assumption $\gcd(t_{11}+t_{21},\cdots,t_{1i}+t_{2j},\cdots,t_{1k}+t_{2k})=1$. When $\alpha_t=-1$, we can get that $(-1)^{t_{11}+t_{21}}+\cdots+(-1)^{t_{1i}+t_{2j}}+\cdots+(-1)^{t_{1k}+t_{2k}}=k^2$, it is also contradicts to the assumption $\gcd(t_{11}+t_{21},\cdots,t_{1i}+t_{2j},\cdots,t_{1k}+t_{2k})=1$. Therefore, we have $|\alpha_t|>1, t=1,2,\cdots,t_{1k}+t_{2k}-1$, the lemma follows.

Theorem 2.5. Let $D(Z_n, T_1, T_2)$ be a k-regular Bi-Circulant digraph of order 2n, then

$$T(Z_n, T_1, T_2) \sim \frac{2nk^{2n+1}}{f(1)}, n \longrightarrow \infty,$$

where $T_1 = \{t_{11}, t_{12}, \dots, t_{1k}\}, T_2 = \{t_{21}, t_{22}, \dots, t_{2k}\}, gcd(t_{11} + t_{21}, \dots, t_{1i} + t_{2j}, \dots, t_{1k} + t_{2k}) = 1.$

Proof. Let

$$\sigma_{1}(n) = \sum_{j=1}^{t_{1k}+t_{2k}-1} \alpha_{j}^{n}, \quad \sigma_{2}(n) = \sum_{1 \leq i < j \leq t_{1k}+t_{2k}-1} \alpha_{i}^{n} \alpha_{j}^{n},$$

$$\sigma_{3}(n) = \sum_{1 \leq i < j < r \leq t_{1k}+t_{2k}-1} \alpha_{i}^{n} \alpha_{j}^{n} \alpha_{r}^{n},$$

$$\vdots$$

$$\sigma_{t_{1k}+t_{2k}-1}(n) = \prod_{j=1}^{1 \le i < j < r \le t_{1k}+t_2} \alpha_j^n.$$

Then

$$\prod_{t=1}^{t_{1k}+t_{2k}-1} (z-\alpha_t^n) = z^{t_{1k}+t_{2k}-1} - \sigma_1(n)z^{t_{1k}+t_{2k}-2} + \cdots + (-1)^{t_{1k}+t_{2k}-1}\sigma_{t_{1k}+t_{2k}-1}(n).$$

Let z = 1, we have

$$\prod_{t=1}^{t_{1k}+t_{2k}-1} (1-\alpha_t^n) = 1-\sigma_1(n)+\cdots+(-1)^{t_{1k}+t_{2k}-1}\sigma_{t_{1k}+t_{2k}-1}(n).$$

By the definition of f(z), let z = 0, then

$$\sigma_{t_{1k}+t_{2k}-1}(1) = \alpha_1 \alpha_2 \cdots \alpha_{t_{1k}+t_{2k}-1} = (-1)^{t_{1k}+t_{2k}-1} k^2.$$

Thus, $\sigma_{t_{1k}+t_{2k}-1}(n)=(-1)^{(t_{1k}+t_{2k}-1)n}k^{2n}$. Since $gcd(t_{11}+t_{21},\cdots,t_{1i}+t_{2j},\cdots,t_{1k}+t_{2k})=1$, by Lemma 2.4, $|\alpha_t|>1$, $t=1,2,\cdots,t_{1k}+t_{2k}-1$, then, we have

$$\frac{\sigma_i(n)}{\sigma_{t_{1k}+t_{2k}-1}(n)} \longrightarrow 0, n \longrightarrow \infty,$$

for any $i < t_{1k} + t_{2k} - 1$.

By Lemma 2.3, we can get that

$$\frac{T(Z_n, T_1, T_2)}{\frac{2nk^{2n+1}}{f(1)}} = \frac{(-1)^{t_{1k}+t_{2k}-1}(1-\sigma_1(n)+\cdots+(-1)^{t_{1k}+t_{2k}-1}\sigma_{t_{1k}+t_{2k}-1}(n))}{\sigma_{t_{1k}+t_{2k}-1}(n)} = \frac{(-1)^{t_{1k}+t_{2k}-1}}{\sigma_{t_{1k}+t_{2k}-1}(n)} - \frac{(-1)^{t_{1k}+t_{2k}-1}\sigma_1(n)}{\sigma_{t_{1k}+t_{2k}-1}(n)} + \cdots + \frac{\sigma_{t_{1k}+t_{2k}-1}(n)}{\sigma_{t_{1k}+t_{2k}-1}(n)} \to 1, n \to \infty.$$

The theorem follows.

Theorem 2.6. Let $D(Z_n, T_1, T_2)$ be a k-regular Bi-Circulant digraph of order 2n, then

$$\lim_{n \to \infty} \frac{1}{k} \{ T(D, T_1, T_2) \}^{\frac{1}{2n}} = 1.$$

Proof. Obviously, $f(1) = kt_{11} + kt_{12} + \cdots + kt_{1k} + kt_{21} + \cdots + kt_{2k}$, when k is fixed, we have $(f(1))^{\frac{1}{2n}} \longrightarrow 1$, $k^{\frac{1}{2n}} \longrightarrow 1$ and $(2n)^{\frac{1}{2n}} \longrightarrow 1$, $n \longrightarrow \infty$. By Theorem 2.5, the proof is completed.

References

 L.Babai, Spectra of Cayley graph, J.Combin. Theory Ser. B 27(1979) 180-189.

- [2] N.Biggs, Algebraic Graph theory, Amsterdam: North-Holland, 1985.
- [3] X.B.Chen, Q.Y.Lin, F.J.Zhang, The number of spanning trees in odd valent circulant graphs, Discrete Mathematic 282 (2004) 69-79.
- [4] T.A.Horn, C.R.Johnson, Matrix analysis, Cambridge:Cambridge University Press, 1985.
- [5] L.Lovasz, Spectra of graphs with transitive groups, Period. Math. Hungar 6(1975) 191-196.
- [6] M.Y.Xu, Introduction of finite groups II, Beijing:Science Press, 1999(in Chinese).
- [7] X.R.Yong, F.J.Zhang, An asymptotic property of the number of spanning trees of double fixed step loop networks, Appl.Math.-JCU, Ser.B 12(1997) 233-236.
- [8] F.J.Zhang, G.N.Lin, The complixity of digraphs, In: Capobianco MF,Guan M.Hsu DF,eds.Graphs Theory and Its Aplication East and West (1989) 171-180.
- [9] F.J.Zhang, X.Y.Yong, Asymptotic enumeration theorem for the number of spanning trees and Eulerian trails in circulant digraphs and graphs, Sci.China, Ser A 43 (2) (1999) 264-271.
- [10] Y.P.Zhang, X.R.Yong, M.J.Golin, The number of spanning trees in circulant graphs, Discrete Mathematic 223 (2000) 337-350.
- [11] H.Zou, J.X.Meng, Some algebraic properties of Bi-Cayley Graphs, Acta Mathematica Sinica, Chinese Series 50 (5) (2007) 1075-1080.