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Abstract

For a finite group G and subsets T1,T: of G, the Bi-Cayley di-
graph D = (V(D), E(D)) = D(G,T1,T2) of G with respect to Th
and T is defined as the bipartite digraph with vertex set V(D) =
G x {0,1}, and for g1,92 € G, ((91,0),(g2,1)) € E(D) if and only
if g2 = tig1, for some t; € Ty, and ((g1,1),(g2,0)) € E(D) if and
only if g1 = ta2g2, for some t2 € T3. If |Th| = |Tz| = &, then D
is k-regular. In this paper, the spectra of Bi-Circulant digraph are
determined. In addition, some asymptotic enumeration theorem for
the number of directed spanning trees in Bi-Circulant digraphs are
presented.
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1 Introduction

Let G be a finite group with identity 1 and S be the subset of G\1.
The Cayley digraph D = D(G, S) of G with respect S is a directed graph
with vertex set G, and for g¢;,¢2 € G, there is an arc from g; to g if and
only if g-zg{"1 € S. If S is inverse-closed, that is, S = S~1, then D(G,S)
corresponds to an undirected graph which is called a Cayley graph of G
with respect to S and is denoted by C(G, S).
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It is well known that Cayley digraphs (graphs) are vertex transitive. In [1]
and [5), the authors studied the spectra of Cayley graphs. In [3],{7],[9],[10],
some asymptotic enumeration theorems for the number of spanning trees
for circulant digraphs (graphs) are presented. Here, we will consider the
same problems for a newly defined classes digraphs called Bi-Circulant
digraphs.

To study semi-symmetric graphs (regular edge transitive but not vertex
transitive graphs), Xu [6] defined the so called Bi-Cayley graphs. Let G be
a finite group and S be the subset of G, the Bi-Cayley graph BC(G, S) is
a bipartite graph with vertex set G x {0, 1} and edge set {{(g,0), (sg,1)}:
g € G,s € S}. When G is a cyclic group, the Bi-Cayley graph BC(G, S)
is called Bi-Circulant graph. In [11], Zou and Meng derived the spectra
of a Bi-Circulant graph and an asymptotic enumeration theorem for the
number of spanning trees in Bi-Circulant graph.

Lemma 1.1. [11] Let G be a cyclic group of order n, S = {s1,82, , Sk}
be a subset of G.

(1)If S # S~!, then the eigenvalues of Bi-Circulant graph BC(G, S) are
tk, £jw .+ wH(j=1,2,--- ,n-1);

(2)If S = S™!, then the eigenvalues of Bi-Circulant graph BC(G,S) are
dk, H (W -+ w)(=1,2,-- ,n—1).

Lemma 1.2. [11] Let BC(G, S) be a k-regular Bi-Circulant graph of order
n and T(G, S) be the number of spanning trees of connected Bi-Circulant

graph BC(G, S), then

L2n+l
7(G,5)~ S in— oo
where [(z) = 55 2+ 35 2 +282_1z i+2 9 87 o ana £(1) =
281 + 289 + - - .1:02” + 2'_32 (51 4 sm)" lEm im0

I#£m
Now we generalize the Bi-Cayley graphs to Bi-Cayley digraphs. For
a finite group G and subsets 71,75 of G, the Bi-Cayley digraph D =
(V(D), E(D)) = D(G,T\,T5) of G with respect to 77 and T3 is defined as
the bipartite digraph with vertex set V(D) = G x {0, 1} and for g;,¢2 € G,
((g1,0),(g2,1)) € E(D) if and only if go = t191, for some ¢; € T}, and
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({g1,1),(g2,0)) € E(D) if and only if g1 = 292, for some t; € To. If
|T1] = |T2] = k, then D is k-regular. When G is a cyclic group, the Bi-
Cayley digraph D(G,T1,T3) is called a Bi-Circulant digraph.

In this paper, we investigate the spectra of Bi-Circulant digraphs and
some asymptotic enumeration theorem for the number of directed spanning
trees in Bi-Circulant digraphs are presented.

In the following, we cite some known results which will be used in the
next section.

Lemma 1.3 (Horn [4]). Let A, B,C, D be n x n matrices, and |A| # 0,
AC = CA, then

A B =|AD - CBj.
C D
Let W denote the circulant matrix whose first row is [0,1,0,---, 0], and

Zn be the cyclic group of integers modulo n.

Lemma 1.4 (Biggs [2]). Let X = X(Z,,S) be a circulant graph. Then
the adjacency matriz of X is A= s W?* and the eigenvalues of X are
Ar =) eswW',r=0,1,--+ ,n—1, where w = exp(27i/n).

Lemma 1.5 (Zhang [8]). Let D be a k-regular digraph, x(D,\) be the
characteristic polynomial of D, then the number of direct spanning trees of

Dis

T(D) = X (D, ) = 35x(D, Nlamk.

For concepts used but not defined here we refer to [2].

2 Main results

We denote the number of directed spanning trees of Bi-Circulant digraph
D(Z,,T\,Tz) by T(Z,,T1, T3).

The following theorem discuss the spectra of the Bi-Circulant digraph
D(Z,,T1,T?).

Theorem 2.1. The eigenvalues of Bi-Circulant digraph D(Z,,T),T,) are

Ar = £ Z Wttty V2 r = 0,1, ,n -1,

1,2,--4 Kk
1,2, 0,1

i
E
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where Ty = {t11,t12,- -+ , tic}, T2 = {to1,f22, -+ ,tou}.

Proof. Let D(Z,,T1,T3) be a Bi-Circulant digraph and B be the adja-
ceney matrix of D(Z,,T),T2), A1 be the adjacency matrix of the circulant
digraph D(Z,,T1) and A be the adjacency matrix of the circulant digraph
D(Z,,-T3). By the definition of Bi-Circulant digraph, it is easy to see that

0 A4
B= :

Al =4
—As Al

Therefore, we have

N[ - B| =

I = |A2] — Az4Ay|. (1)

Since A; and Aj are circulant matrix, we have

= Z Wt A, = Z Wites

t1:€Ty ty; €T,
and
AgAy = ) W' Y W
t2; €T t1i €Ty

— (Wim + Wtzz 4+ lel)(Wlu + th R th)

— § : thj-i-tn.

i=1,.-- .k
J=1,---,1

Thus, the eigenvalues of A2 A, are p, = Z x (w‘%"“")r By (1) we see

that the eigenvalues of B are A, = +u%/% = :I:[Z it whasth)r)/2 ¢ =

0,1,---,n—1. O
For the k—regular Bi-Circulant digraph, we have

Theorem 2.2. If the Bi-Circulant digraph D(Z,,T,Ts) is k-regular, i.e.,
|T1| = |T2| = k, then the eigenvalues of Bi-Circulant digraph D(Z,,,Ty,Ts)
are

:]:k :l:[ Z Lg,+t|g‘)]l/2". :!:[ Z (wtg_,-i-h.)n—l]l/?

i=1,-
j— . L J=1,0e0 ,k

456



Lemma 2.3. Let G be a cyclic group of ordern, Ty = {t11,t12,- - ,tie} (1 £
tiy < tig < - < t1k) and Tp = {ton, 822, ytok} (1 Stog <2 < -+ <
tar) are the subsets of G. If the roots of the polynomial

ti1+ta)—1 tli+t2j_l i+t —1
f(z) = E 2™+ § 24+ _S_
m=0 m=0 m=0
are g, 2, " Oy qtgr—1, then

(_1)(n—l)(t|k+t2k-1)2nk H:lz"l""t”’—l(l - of)
£(1) ’

where f(1) = kt11 + -+ + kt1g + kto1 + -+ - + ktog.

T(Zn) Tl) T2) =

Proof. By Lemma 1.5 and Theorem 2.2, we have

n-1

T(Zn, T, T2) = 2kH [k % ( Z (wt:-+zz, r)irz)

tj=1,
= 9% H[k2 — Z (whittes Y]
r=1 i,j=1,-,k
n-1
= 2% H[l _ (w£u+¢21)7‘ +1-— (wtu-i-tzz)f +
r=1
+1 - ( ink+tzk)T]
L1+t -1 t11+t22—1
= 2k H(l - w)( Z w™ 4+ Z w™ +
m=0 m=0
t1k+t2k 1
+ Z wmr)
m=0

n—1
= 2 [J(1-w)f().
r=1

Since
n—1 n—1
[[@-w)=>_4, (2)
r=1 1=0

when z = 1, we have [['Z/ (1 —w") = n.
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By the definition of f(2) and using the equation (2), we can get that

n—1 n-1 n—1
T(Zn,T1,T2) = 2k [J(1-w") [ —a1)- [T - aryustn-1)
r=1 r=1 r=1
n-1 n-1
= 2nk H(wr —ap)--- H(wr - atlk+¢2k—l)
r=1 r=1
n-1 n—1
= (_1)(n—1)(t1k+tzk—l)2nk(z ad)--. (z ailk*‘tzk"l)
=0 =0
( v " tikttae—1 1—a®
= (=1)r-Dlu+tax=1) 9,0 t
( ) n g 1- Qg
l)k+t2k—1(1 —am
— _1)(n—l)(t1k+lzk—l)2nk t=1 t
( 7
O
Lemma 2.4. Let
ti1+tay—1 trittzj—1 tixttor—1
f@y= > 2™+ D M+ Y 2T,
m=0 m=0 m=0

where 1 < t17 < t1a-+ < tix and 1 < to) < tog- - < tor. If ged(ty; +
o1, yt1i +toj, Lk + tox) = 1, then the roots of f(z) satisfy

o] > 1, =1,2,-+- ,t1p +tok — 1.
Proof. 1t is easy to see that f(1) # 0 and
(z=1)f(2) = z!tta oo g phebtas g gl g2,
For a; # 1, we have
afu¥tn g o) g g gkt = g2 (3)
If jog| < 1, then

t t tiitt2; Litton
Iatn+2)+”'+at. J+_,_+atlk 2kl

< |a:n+tn|+,,,+|a:h'+“2:‘|+_,,+|a:|k+tu' <k2,

which contradicts to the equation (3), and hence || > 1.
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Since oy # 1, if |a¢] = 1, then we have

ap =cosdy + /—1singy, sing; #0,t € {1,2, - t1p +tor — 1}
o = —1, sing; =0,¢ € {1,2,--- ,t1x + t2x — 1}.

By (3), when oy = cos ¢y + v/ —1sin ¢, we can get that
cos(t11 + t21)@¢ + -+ + cos(ty; + o )e + -+ + cos(tik + tak) e = k2.

Thus, cos(t1; + t25)¢, = 1, it is contradicts to the assumption ged(t;; +
a1, -yt + o5, - stk + tox) = 1. When o = —1, we can get that
(=1)futtar poo g (—1)tatbey oLy (—1)tkti2e = 2t s also contradicts
to the assumption ged(t11 +to1, - - - ,t1i +125, -+ , 1k +t2x) = 1. Therefore,
we have |oy| > 1,t = 1,2, t1g + tog — 1, the lemma follows. O

Theorem 2.5. Let D(Z,,Ti,T2) be a k-regular Bi-Circulant digraph of
order 2n, then
an2n+l
T(Zn’TlaT2) ~ _f_(T)——,n — 00,
where T1 = {t11,t12,- -+ ,tic}, T2 = {to1,to2, -+ ,tar }, ged(tyr+t21, -+, trat
toj, o bk +tak) =1,

Proof. Let
tytize—1
n n_n
oi(n) = Z @, o2(n) = Z a;ajg,
j=1 1<i<j<tieHtar—1
n_n_n
o3(n) = E a5,
1<i<j<r<typ+tar—1
tik+ian—1
n
Ttittz—1(n) = of.
Jj=1
Then
tie+ize—1
H (z-a?) = tikttar—1 _ al(n)zt1k+t2k"2 L
t=1

+(_1)tlk+t2k_lat1k+t2k—1 (n)'
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Let z =1, we have

tik+tar—1

[[ (-ap)=1=oi(m)+-+ (-1 (n).
t=1

By the definition of f(z), let z =0, then

0t1k+lzk—1(1) =000 Oty —1 = (_l)tlk-’-t%_lkz'

ThllS, J¢1k+¢2k_1(n) = (—1)“”‘-“2"—1)"’62". Since gcd(tu + o1, -yt +
t2j9"' atlk +t2k) = 17 by Lemma 2'43 |O‘t! > I’t = 112,' v atlk + o — 11
then, we have

oi(n)

—— — 0,n — 00,
Utlk+t2k—1(n)

for any ¢ < t1x +tor — 1.
By Lemma 2.3, we can get that

T(Zrn Tla T2)
2nk2n+1

7@
(=1)fartta—l(] — gy (n) +--- + (=1) 2" gy, yyp 1 (n))
Jt1k+12k—1(n)

_ (_1)t1k+tzk—l _ (_1)t1k+t2k—101 (n) A ahk+tzk—1(n)

Otittae—1(1) Otittze—1(N) Otytta—1(1)
— 1,n — o0.

The theorem follows. O

Theorem 2.6. Let D(Z,,T1,T2) be a k-regular Bi-Circulant digraph of
order 2n, then

lim %{T(D,Tl,Tg)}ﬁl? -1
Proof. Obviously, f(1) = kt;y + ktio + -+ - + ktix + ktoy + - - - + ktar, when
k is fixed, we have (f(1))% — 1, k= — 1 and (2n)% — 1, n —> oo.
By Theorem 2.5, the proof is completed. O
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