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Abstract

The binary linear code Hy, 2, m > 2, of length (';) represented by
the generator matrix Hm,2 consisting of all distinct column strings
of length m and Hamming weight 2 is considered. A parity-check
matrix Hy , is assigned to the code Hy, 2. The code Hm 2.3, m > 3,
of length (’;‘) + (';‘) represented by the parity-check matrix Hpm 2.3
consisting of all distinct column strings of length m and Hamming
weight two or three is also considered. It is shown that Mz , and
Howm,2.3 are optimal stopping redundancy codes, that is for each of
these codes the stopping distance of the associated parity-check ma-
trix is equal to the minimum Hamming distance of the code, and the
rows of the parity-check matrix are linearly independent. Explicit
formulas determining the number of stopping sets of arbitrary size
for these codes are given.
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1 Introduction

The performance of a low-density parity-check code on the binary erasure
channel is determined by a type of combinatorial structure on the parity-
check matrix H referred to as stopping set [2]. Let C be a linear block code
of length n, dimension k and minimum distance d represented by a r x n
parity-check matrix H with » > n — k. An l-subset T C {1,2,---,n} is
called a stopping set of size ! for H if the r x | submatrix of H consisting
of columns with coordinate indexes in T has no row of Hamming weight
one. Accordingly, stopping distance is a parameter assigned to H while the
minimum distance is a fixed parameter assigned to C.
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The size of the smallest non-empty stopping sets for H is called the
stopping distance of H and is denoted by s(H) [4],[5],[6],(7],[9],{12],[13]. The
stopping distance s(H) has a role on the performance of iterative decoding
of C on the binary erasure channel that is very similar to that of minimum
distance of C under maximum likelihood decoding.

A related concept is stopping redundency. The number of rows of H
effects the complexity of iterative decoding algorithms applied on graphs
representing H, such as the Tanner graph of H [11]. Accordingly, Schwartz
and Vardy [10] introduced the concept of stopping redundancy. The stop-
ping redundancy p(C) of C is the minimum number of rows of a parity-check
matrix H satisfying s(H) = d(C). A code C has optimal stopping redun-
dancy, or just optimal redundancy if it satisfies p(C) = r(C) where 7(C) is
the redundancy of C, that is 7(C) = n — k.

The role of multiplicity of stopping sets is similar to that of the number
of codewords in the weight distribution. Therefore, enumeration of the
stopping sets of a given parity-check matrix H is of great importance.
McEliece (8] determined the number of stopping sets of size threc for a
full-rank parity-check matrix of the Hamming codes, and a formula giving
the number of stopping sets of any size in this matrix was given in [1].

In this paper, matrices Hy, o and Hp, 2.3, m > 3, are considered where
H,, > consists of all distinct length-m weight-two column strings and Hyp 2.3
contains all distinct length-m weight-two and weight-three column stings.
A stopping set analysis of the code with parity-check matrix Hy, o is given
in [4]. Here we consider the codes H;, ; and Hn, 2.3 with generator matrix
H,, » and parity-check matrix Hn, 2.3, respectively. H;’;,’z is analyzed using
a parity-check matrix H,J,;'2 derived from Hp, ».

In Section 2, we show that the code 'H;‘,;,z is an optimal redundancy code
with s(H 5) = d(HZ, ;) = m — 1, and provide a formula enumerating the
stopping sets of arbitrary size ! in the parity-check matrix H,J;L’z. Section
3 is devoted to studying Hom 2.3 and Hp 2.3. It is shown that H,, 23, m >
3, is an optimal redundancy code with d(H,23) = s(Hm23) = 3 and
p(Hm,z2.3) = 7(Hm,2.3) = m. A formula enumerating the stopping sets of
arbitrary size ! for the parity-check matrix H,, 2.3 is provided.

2 Complete weight-2 generator matrices
Let Hpm, 2 be the binary code with parity-check matrix H, 2 consisting of all
distinct binary weight-two length-m column-strings. The dual-code 7'{;}1'2
with generator matrix H,, o is considered.

1t is easy to verify the following recursive relation for Hy, 2 up to column
permutation

1 1 0
H2,2=(1)’ and Hm+1,2=(1 H2)$ m22a
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where I, is the m x m identity matrix, and 1 and O are the all-one and
all-zero strings of lengths m and (7), respectively.

Since each column of H,, 2 has Hamming weight two, the rows of this
matrix add to zero. This together with the existence of the identity matrix
I,—1 in Hp, 5 implies that the rank of Hy, 3 is m — 1. In fact to obtain
a generator matrix for ’H,J;l’z it suffices to delete the first row of H, 2.
Accordingly, the matrix Hj; ,, given by (1), is a parity-check matrix for
Hi,2 Where ‘t7' denotes transpose

HL, = (H:,:_l,2 I(m;,)) . 1)

For example, we have

11110000 0 0
1 000 111000
Hso=| 0100100110 |,

0 0100 10 1 0 1

000 100 10 1 1
1 1000 10 0O0O0UO0O0UO0O0 O
1 0100O0T10O0TUO0TO0TO0T OO0 O
1 00 1000100000 O0 O
1 000 1000 100000 O
L tr 01 1000600 O0T1O0O0TO0O0 O
Hg, = (H, Tio)=| 01 0100000010000
01 00 1 00 O0O0TO0OT1O0O0 O
0 01 100O0O0O0CTO0TO GO 1 00O
00101 060O0TO0TO0TUO0OTO0TO0T10
0001 1 00O0O0GO0UO0OTO OO0 D0 1

Theorem 1 For the code Hz, 5, ™ > 3, with parity-check matrix H, ,,
we have s(H, ;) = d(Hm, 5) =m — 1.

Proof. Applying the recursive structure of matrix H,, 2 one can easily show
that d(Hz, ,) = m — 1 (see Proposition 1 in [3}).

Given a code C with parity-check matrix H we have s(H) < d(C). Thus
to show s(H;, ;) = m — 1 for m > 3, we need to prove that there is no
stopping set of size m —2 or less for H; . We refer to the matrices Hf_; ,
and I(mz-l) as the right and left parts of Hz, 5. It is obvious that each row

of HY_; 5 has Hamming weight two.

Let § C {1,2,---,(3)} be an arbitrary set of column indexes of HY, ,
with |S| < m — 2. We show that S is not a stopping set for H;; ;. Three
cases are considered.

Case 1. If SN {m,m+1,~--,(’;’)} = 0, then S C {1,2,---,m —1}.
Since any matrix consisting of less than m — 1 columns of the left side of
H;};,Q has at least one row of weight one, the set S is not a stopping set.

Case 2. As the right side of H,J,;‘z is the identity matrix I(mz— 1) obviously

a stopping set cannot be a subset of {m,m+1,---,(7)}.
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Case 3. Suppose |[SN{1,2,.---,m—1}| =k with 0 < £ < m — 2. This
implies that 0 < |SN {m,m-l—l,-'-,(’;')} |<m-2-k.

Any k columns, 1 < k < m — 1, of the left side of H; , add to a binary
string of weight k(m — 1 — k) (Theorem 2 in {3]). In other words, any k-
column submatrix of the right side of H , has k(m — 1 — k) rows of weight
one. On the other hand, for 1 < k < m—3 we have k(m—-1—-k) > m—2—k.
Therefore, the set S cannot be a stopping set for H;,‘;,z, implying that
s(HLs)=m-1. =

Corollary 1 (Optimality of Hz ;) The binary code H;, 5, m > 3, is an
optimal redundancy code.

Proof. The rows of H;’,;'z are linearly independent and according to The-
orem 1 the number of rows of H,ﬁyz is an upper bound for the stopping
redundancy of Hy, ,. ®

Theorem 2 The number of stopping sets of size [, [ > m — 1, denoted s,
in the parity-check matrix H;,,, m > 3, is

s,:=m2_l("‘.’l)( o ),osz—z‘(m—i)s-"("—‘i}. (2)

e i l—i(m—1) 2

Proof. As s(H, ;) = m — 1, the number of stopping sets of size less than
m — 1 is zero. The right side of H, , is an identity matrix and does not
contain a stopping set. Hence, to have a stopping set we must choose at
least one column from the left side. The number of ways for choosing ¢

columns from the left side is (™;'). Any i columns of the left side form

i(m — 1 — 1) rows of weight one and () = 51'2"—11 rows of weight two.

Let S be a stopping set of size ! containing i column-indices from the
left side. From among the columns associated with the remaining I — ¢
column-indices chosen from the right side, we need i(m — 1 — ¢) columns
to be matched with the weight-one rows formed in the left side, while the
nonzero entry of each of the remainingl — i —i(m —1—14) =1 —i(m — 1)
right-side columns needs to be matched with one of the weight-two rows
formed in the left side. This gives relation (2). =

3 Combined weight-2 & weight-3 parity-check
matrices

For a given positive integer m, let H,, 2.3 denote the matrix consisting of
all distinet length-m binary column-strings of weight two or three.
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Table 1: The number of stopping sets for HY ;,3<m < 7.

o
K

gL oL i

2 2 Hsa His Hi,
83 1 4 0 0 0
s4 0 6 5 0 0
5 0 6 6 6 0
Sg 0 1 25 10 7
87 (1] 0 38 45 15
38 0 0 27 135 105
89 0 0 10 260 455
810 0 0 1 357 1385
s11 0 0 0 340 3087
812 0 0 0 205 5310
813 0 0 0 75 7305
314 0 0 0 15 7980
3818 0 0 0 1 6837
S16 0 0 0 0 4488
s17 0 0 0 0 2175
318 0 0 0 0 740
819 0 0 0 1] 165
20 0 0 0 0 21
521 0 0 0 0 1

The linear code represented by Hy, 2.3 is denoted by H,,2.3. Thus the
code Hym,2.3 has length () + (). Relation (3) gives a recursive construc-
tion for H,, 2.3 wherein H,, 2 consists of all distinct length-m column-
strings of weight one or two.

1 0 1 1 0
m = = 3
Hmt123 ( Hpi2 Hppos ) ( Hpn2 Zn Hmpas ) ®)

As an example, for m = 3 and m = 4 we have

L1 1o 1 1 11 1 1|0 0 0 0
T 1 0]1 0 01 1 1 0O

H3.2~3=(} (1) ‘1’ {)’H4,2.3= 1 0 1lo 1 of1 1 0 1 {-
01 1|0 0 1|1 0 1 1

It follows from relation (3) and the existence of Z,, in H,,+1,2.3 that the
last m rows of Hp,41,2.3 are linearly independent. This together with the

weight-three submatrix ( H:. . ) implies that the rank of Hy, 23 is m.

Theorem 3 (Optimality of H., 2.3) For the code Hp23, m > 3, of
length (%) + () and its parity-check matrix Ho, 2.3, we have d(Hm 2.3) =
$(Hm23) =3 and p(Hm 2.3) =r(Hm23) = m.

Proof. The parity-check matrix H,, 2.3 consists of distinct nonzero columns
and its last three columns are linearly dependent, implying that the mini-
mum Hamming distance of H, 2.3 is three. According to Theorem 3 in [10],
for a code C with minimum distance at most three and parity-check ma-
trix H representing C, we have s(H) = d(C) and p(C) = v(C). Therefore,
$(Hmp23) =3 and p(Hm,23) =7(Hmz23)=m. =
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The rest of this section is devoted to enumerating stopping sets of size
1 in these matrices. Let C be a binary linear [n,k,d] block code with an
rxn, n—k <r < 2% parity-check matrix H. Assume that S is a
subset of the coordinate set {1,2,...,n} and T is a subset of the row-index
set {1,2,...,7}. The restriction of matrix H to S and T is denoted by HZ.
Thus HY is a |T| x |S| sub-matrix of H. We denote H] by Hs or HT
depending on T = {1,2,..,7} or § = {1,2,...,n}. Given a subset T of
{1,2,...,r}, we denote by zr the number of all-zero columns in HT. If
T = ¢ then 270 = n.

A p-subset Y of {1,2,...,n} is said to be of type p with respect to T,
a subset of {1,2,...,7}, if H,'I; has no all-zero column and its rows have
Hamming weight one. The number of subsets of {1,2,...,n} which are of
type p with respect to T is denoted by y(T',p). By definition we have

_J 0 ifT=90&p>1or T#¢p&p=0,
y(T”’)‘{1 ifT=¢&p=0.

It is known [1] that s;, the number of stopping sets of size [,0 < I < n, in
a given r X n parity-check matrix H is determined by the following relation

{
a= ¥ omyuma (7)) (@

TC{1,2,...,7} p=0

Lemma 1 Let T be a t-subset of the row-index set {1,2,---,m}. Each
weight-one length-¢ column vector appears exactly m—¢+1 times in HY,  ,
forall T C {1,2,---,m}.

Proof. The proof is by induction on m. It is easily verified that each weight-
one length-t column vector appears exactly 3 — ¢ times in Hg: 1o for T C
{1,2}. Suppose the result holds for Hy, 1.2 and consider H,41,1.2. We have
the following recursive relation

0 .- 0

Hpp110= .
Hpio : Hpp

0

Suppose T C {1,2,---,m + 1} and 1 € T. By the induction hypothesis,
each weight-one length-t column vector appears m —t + 1 times in HZ, | ,.
Also, each weight-one length-t vector appears just once in H,E,l . Therefore,
each weight-one length-t vector appears (m —t+1)+1=m —t + 2 times
in Hg:-l-l,l.Z‘

Assume that 1 € T. If T = {1} then the statement is trivial. Thus
suppose 1 € T # {1}. Consider a weight-one length-t vector in HZ ., ; o-
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If the nonzero bit of the vector is in the first row then we are limited to the
right side of the matrix given above. In this case, due to the matrix H, i,
one can easily verify that the number of times the given weight-one length-¢
vector appears is 1 +m — (t — 1) = m — t + 2. On the other hand, if the
nonzero component of the considered vector is in a row different from the
first one we are limited to the left side of the matrix and by the induction
hypothesis, the vector appears m — (t — 1)+ 1 =m ~ ¢+ 2 times in H,’f,,l.z
and hence m— (t —1)+1=m—t+2timesin HL ;5. ®

Lemma 2 For any t-element set T’ C {1,2, - - -, m}, each weight-one length-
t column vector appears (™ ;1) times in HZ, , 5, while the number of times
each weight-two length-t column vector occurs is m — ¢ + 1.

Proof. We apply induction on m. It is easy to see that the statements hold
for m < 3. Assume that the statements are true for Hp, 2.3 and consider
the recursive relation

H o 0 Ve 0 1 e 1
m+1,23 = Hm,2.3 Hm,1.2 ’

Let T C {1,2,---,m + 1} be a t-element set and suppose 1 € T". By the
induction hypothesis any weight-one length-t vector v appears (™}*')

times in Hz';,z.a' According to Lemma 1, the number of times v appears in
HT 5 is m —t+ 1. Thus, the number of times vector v is replicated in
HY 1238 (M50 +(m—t+1) = ("5%).

If T = {1} then obviously the number of times the unique weight-one
length-one vector is replicated in HL, 3 23 is (T)+(%3) = (") = ("‘""'2).
Suppose 1 € T # {1}. Consider a weight-one length-¢ vector v in HL ;5 3
and assume that the first component of v is 1. Then we arec limited to the
right side of Hpy1, 2 3, and the number of weight-zero vectors in H, T- (l}

is (") = (}31) = (m =t +2)(t - 1) = ("£*?). On the other hand, lf
the first component of v is 0 then we have to just consider the left side of
H;n41,2.3, and by the induction hypothesis the number of occurrences of
the weight-one length-(t 1) vector v, obtained from v by deleting its first
component, in H~ {1} s (MTESNAY) = (M)

The same approach and arguments apply to the weight-two column
vectors and hence is omitted. m

Theorem 4 For parity-check matrix Hp, 23, m > 3, and a t-element set
T C{1,2,---,m}, we have

= (") ("5) ®
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and Y (T, p) is given by
T mams mrmrmt e (O )T (M)
Y(T,p) = if p<t<3p, (6)
0, otherwise;

where 1, zs, 3 satisfy the following

1+ 229+ 3z3 = t,
T+ T2+ T3 = p
x1,T2,23 Z 0.

The number of stopping sets of size ! is obtained using relations (4), (5)
and (6).

Proof. Consider a t-subset T of {1,2,---,m}. The complement of T, de-
noted T, has m—t elements and the number of weight-two columns having
their nonzero components in the rows with index in 7¢ is (™;*). Also, the
number of weight-three columns having their nonzero components in the
rows with index in T¢ is (™;*). Thercfore, zr = (™5 9+ (MY

Obviously, for p > t we have y(T,p) = 0 since any matrix M with
p nonzero columns has at least p nonzero entries, and hence the number
of rows in M, that is ¢, must be at least p if each row needs to have
precisely one nonzero element. The same argument shows that if £ > 3p
then y(T, p) = 0 since each column of Hp, 2.3 has Hamming weight two or
three. Therefore, we need to determine y(T',p) for p <t < 3p.

Consider a t x p submatrix M of H,’,;_m whose rows have Hamming
weight one and has no all-zero column. Denote the number of columns in A
with weight i by z;, 1 < ¢ < 3. Thus z; +z2+x3 = pand z1+2x94+3z3 = &.

Let (z1,z2,23) be a solution of this system. The number of p-subsets of
type p with respect to T associated with (z1, z2,x3) is computed as follows.
The number of ways of choosing z; distinct length-t weight-one strings is
(2) and each of these weight-one columns is replicated (™7*') times,

giving ( ;‘) ("“2‘“)3'. For the z5 weight-two columns, we need to choose

2z positions of the remaining ¢ — z; row indices, a problem with (tz_zmzl)

solutions. A given set of 2z positions can be partitioned into 2-element
sets in %,L; different ways. This together with the number of times each
weight-two column is replicated, that is m — ¢ + 1, gives (tz':;’)g,i;%(m -
t + 1)*2. The remaining t — z; — 2z, = 3x3 positions are partitioned into
3-element sets in ‘x(‘::f—;z)?! different ways and each weight-three column is

replicated only once.
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Thus the number of p-subsets associated with a solution (z,z2,z3) is
¢ —t+1\%1 ft—z,\ (2z2)! z2 (3z3)!
(xl)(m 2 ) 2:;) .1:2.22”2 (m —-t+ 1) : 3:3:.":63’3

= st (T ()
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