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Abstract

Exploiting the empirical observation that the probability of &
fixed points in a Welch Costas permutation is approximately the
same as in a random permutation of the same order, we propose
a stochastic model for the most probable maximal number of fixed
points in a Welch Costas permutation.

1 Introduction

Costas arrays are square arrangements of dots and blanks with exactly one
dot per row and column (a permutation array), such that no 4 dots form
a parallelogram and so that no 3 dots lying on a straight line are equidis-
tant. They appearcd for the first time in 1965 in the context of SONAR
detection [6, 7], when J. P. Costas, disappointed by the poor performance
of SONAR systems, used them to describe a novel frequency hopping pat-
tern for SONAR systems with optimal auto-correlation properties. Having
found examples of Costas permutations up to order 12 using pencil and
paper, but unable to continue, let alone to find a general construction tech-
nique himself, he approached Prof. S. Golomb (after approaching several
other mathematicians without success), who developed two generation tech-
niques (10, 15, 16] for Costas permutations, both based on the theory of
finite fields, known as the Welch and the Golomb method, respectively.
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These arc still the only general construction methods for Costas permuta-
tions available today.

One analog of a Costas permutation in one dimension (note that there is
no obvious generalization of the concept of permutation in an odd number
of dimensions) is the Golomb ruler: a linear arrangement of dots and blanks
lying on multiples of a unit distance such that all pairwisc distances between
dots are distinct. It has also important applications in engineering, for ex-
ample in radio-frequency allocation for avoiding third-order interference (1],
in generating convolutional self-orthogonal codes [20], in the formation of
optimal linear telescope arrays in radio-astronomy [2] etc. Of great inter-
est, in particular, are (asymptotically) optimal Golomb rulers, which, in a
given length, pack the maximal possible number of points.

Though Golomb rulers appeared in the engineering literature in the
1950s, the same combinatorial object under an equivalent definition (and a
different name) had appeared in the mathematical literature quite earlier,
in the 1930s, as a Sidon set (a set of integers where all pairwise sums are
distinct) [13). This observation took some time, and in the mecantime the
2 communities had been working separately, unaware of each other’s work
8].

Clearly any diagonal of a Costas array yields a Golomb ruler; of par-
ticular interest is the main diagonal, being potentially the longest Golomb
ruler. We previously demonstrated that the main diagonal of a special
sub-family of Golomb Costas arrays yields asymptotically optimal Golomb
rulers [12]. What about Welch Costas arrays though? Although we offered
simulation results for various orders [11, 12], we were unable to suggest a
formula.

In this work we take a step further by building an approximate proba-
bilistic model for the number of fixed points of a Welch Costas permutation
and using it to estimate the most probable value of the maximum of this
quantity.

2 Basics
In this section we collect a set of properties and results used throughout
the paper. For n € N, we set for brevity [n] := {1,...,n}, as this will

be appearing quite often, along with some self-explicable variants, such as
[n] - 1:={0,1,...,n — 1} etc.

2.1 Costas permutations

Let us begin with the definition of a Costas function/permutation (6, 7, 10]:
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Definition 1. Consider a bijection f : [n] — [n]; f is a Costas permutation
iff:

Vi,j,k such that 1 <4,5,i+ k,j+k<n:
fG+R)—F@) =fG+k)— f(G)=>i=jork=0.

A permutation f corresponds to a permutation array A ;= [a{ j] by set-
ting the elements of the permutation to denote the positions of the (unique)
1 in the corresponding column of the array, counting from top to bottom:
af(i),i = 1. It is customary to represent the 1s of a permutation array as
“dots” and the Os as “blanks”. From now on the terms “array” and “per-
mutation” will be used interchangeably, in view of this correspondence.

The Costas property is invariant under horizontal and vertical flips,
as well as transpositions around the diagonals (and therefore also under
rotations of the array by multiples of 90°, which can be expressed as com-
binations of the previous two operations), hence a Costas array gives birth
to an equivalence class that contains either 8 Costas arrays, or 4 if the array
happens to be symmetric.

There exist algebraic generation techniques for Costas arrays; we will
specifically need the exponential Welch construction:

Theorem 1 (Exponential Welch construction W;*P(q,g,c)). Let q be a
prime, let g be a primitive root of the finite field F(q) of q elements, and let
¢ € [g—1] = 1 be a constant; then, the function f : [q— 1] — [q — 1] where
(@) = ¢ mod q is a bijection with the Costas property.

Flips of W™ -arrays are also W;*P-arrays; in general, however, their
transposes are not: instead, they form a family known as logarithmic Welch
arrays, which we will not be considering any further here, as the main di-
agonal remains invariant under transposition. The two families are disjoint
for p > 5 [12], which implies that there are exactly 2(q — 1)¢(g ~ 1) Welch
permutations (both exponential and logarithmic) of order q — 1.

2.2 Golomb rulers

Definition 2. Let m,n € N, and let f: [m] — 1 — [n + 1] — 1 be injective
with f(0) = 0, f(m—1) = n (whence m < n); f is a Golomb ruler of length
n with m marks iff

Vi, g, kL€ [m], f(E) - fU) = f(k) - f) ®i=korj=1

In other words, consider a ruler of length n with marks on integer points;
we need to select m marks (including 0 and n) so that no distance between
pairs of points is repeated twice. Two important questions arise:
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1. What is the maximal m possible for given n?
2. What is the minimal n possible for given m?

A Golomb ruler is optimal iff it satisfies either of the 2 conditions above;
for neither case, however, do we have closed form answers, although several
estimates exist: the simplest one is that a Golomb ruler of length n defines

at most n possible distances, and, in order to have m points, the 7;
distances they define will need to be unique. It follows that

m m(m — 1) .

o) =T 35— < n = m < V2n asymptotically. (1)

This turns out to be a very generous upper bound: improved arguments
show that m < v+ O(n'/%) [13] and even better that m < \/n+nl/4+1
[17]. Furthermore, the maximal m for a given n satisfies asymptotically
m > /n — O(n®/*®) [13], but it is conjectured to satisfy m > \/n.

Clearly, the main diagonal of a Costas array of order n forms a Golomb
ruler of length at most n — 1; the maximal length is achieved whenever the
array has dots at both (1,1) and (n,n). Any diagonal of a Costas array is
a Golomb ruler, but the main diagonal is potentially the longest one.

An excellent source of information about Golomb rulers/Sidon sets is
A. Dimitromanolakis’ diploma thesis [8].

2.3 Lambert’s function

Lambert’s function will play a key role in the construction of the two prob-
abilistic models for the number of fixed points of a Welch permutation
presented in later sections. We therefore summarize some basic facts about
it here.

Lambert’s function W (3, 5] is the inverse of f(z) = ze”, z € Rz € C
can also be considered, but this extension will not be needed here. It is
therefore defined by the relation

W(z)eW® =z, W:[e™!, 00) = [-1,00). (2)
Note indeed that rn‘Ei]%:ceI = —e!atz =—1. When z < 0, W is multi-

valued (with 2 values for every z, except for z = e~ !), and defining the range
as above is one possible way to make it single-valued. Taking logarithms
on both sides of (2) (for z > 0) we get

In(W (@) + W(z) = In(z), (3)
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whence it follows that
W(z) ~ In(z), = positive and large. (4)

If we are interested in a second order correction too, we can set W(z) =
In(z) + w(z), whence:

w(z) +In(In(z) + w(z)) = 0 = w(z) +In(In(z)) = w(z) ~ — In(In(z)). (5)
Therefore,

W(z) =~ In(z) - In(In(z)), = positive and large. (6)

2.4 The Kolmogorov-Smirnov test

The construction of the probabilistic models presented below relies on the
approximation of a certain probability distribution by another. One of the
available statistical measures of proximity of two probability distributions
(among many others), and the onc we choose to use in this work, is the
Kolmogorov-Smirnov test, whose theory we now proceed to review.

Let F be a cumulative distribution function (cdf) and let X;, i € [n],
n € N be i.i.d. random variables whose common cdf is F. It is well known
that F' can then be approximated by the empirical cumulative distribution

Fa(@)=zlli€ln]: X;<a}l, (7)

which, as n — oo, converges to F in various senses (almost surely for
fixed z, uniformly in z in L*® etc.). We are specifically interested in the
largest deviation between F,, and F, whose distribution is the subject of
the following

Theorem 2 (Kolmogorov-Smirnov test). Let D, = sup|F,(z) — F(z)|;

x
then D, is itself a random variable with the property that the limit random
variable D = lim \/nD,, exists and follows the Kolmogorov distribution K :

K(z)=P(D<z)=1-2 i(—ni-le-%%’. (8)

=1

The proof is omitted (see [18] and also Wikipedia's entry on the Kolmo-
gorov-Smirnov test); K is plotted in Figure 1. What is really striking about
this theorem is that the limit distribution K turns out to be independent
of F (see [14] for a simple proof of this fact, without deriving the formula
for the distribution K); it is, in other words, a central limit theorem. This
property makes this result an excellent goodness-of-fit statistical test: if
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Kolmogorov's K-distribution

18

0 05 1 15 2 25 3
Figure 1: Plot of Kolmogorov’s K-distribution

we suspect that some data are generated by n independent trials of a cdf
F, we form the empirical distribution and compute /nD,,. Agreeing on a
tolerated probability of error €, we compute the value K. so that

K(K)=1—-¢. (9)

If then /nD, > K., we reject the hypothesis that our data set comes from
F; the probability that we reject it by mistake (while the assumption is
actually true, that is) is € (for example, Ko.05 = 1.3581 and Ko.01 = 1.6276).

3 The number of fixed points in a permuta-
tion

The material in this section is well known and can be found in several clas-

sical references about combinatorics, or even mathematical puzzles. We

choose to repeat all relevant derivations here, however, for reasons of com-
pleteness, as they are reasonably simple and brief.

3.1 The number of permutations without fixed points

A convenient intermediate result in our derivations is the number d, of
permutations of order n without fixed points. Such permutations are widely
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known as derangements of n objects [21], and determining their number is
often referred to as the problem of the misaddressed letters [9], where one
asks for the probability of placing n letters in n envelopes, so that no letter
ends up in the correct envelope (assuming, of course, that to each letter
corresponds exactly one envelope and vice versa).

Theorem 3. The probability that a permutation of n objects contains no
fized points is

fn=zn:£:—1-)f, n2>0;

1
= k!
therefore,

lim f, = 1
e

Proof. Assume that, in a certain derangement, 1 is mapped on z; there are
2 possibilities:

¢ z is mapped to 1: then, the remaining n — 2 objects can themselves
be allocated in d,_2 ways. Given that z can be chosen in n — 1 ways,
and that all these choices are mutually exclusive, we obtain in total
(n = 1)dn—2 permutations of this type;

¢ T is not mapped to 1: removing 1 from the domain and z from the
range of the permutation, we see that the requirement that z be not
mapped to 1 makes 1 the “correct” range value for z. By relabeling
z to 1 in the domain, and y to y — 1 for every z < y < n in both
the domain and the range, we end up with a derangement on n — 1
objects. For every particular choice of z and there are exactly d,_;
derangements possible, and different choices of z lead to mutually
exclusive derangements; since = can again be chosen in n — 1 ways,
we obtain a total of (n — 1)d,_; derangements of this type.

It follows that
dn = (n—1)[da-1 + dn_2), (10)

along with the initial conditions d; = 0, dy = 1, which imply that dy = 1.
Setting d,, = n!f,, we obtain

nfn = (n - l)fn-l + fo2 e n(fn - fn—l) = _(fn—l - fn-2): (11)
along with fo = 1, f; =0, and, setting fn — f_1 = (_1,)
equation hy, = h,_j, whence A, is a constant k. Back-substitution leads to

no_1)k
m=ny S, (12)

h,, we reach the
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and the condition f(0) =1 yields that h = 1. This completes the proof.
The well-known power series expansion for the exponential function

b .’L'
=y = (13)
k=0 k!
yields that
oo o0
- (=1* [ A 1
S ey E e s )
= k! R TR (n+1)!
which not only proves that
lim fo = <, (15)
but also that the convergence is very rapid. | O

3.2 The number of permutations with a certain num-
ber of fixed points

The expression for the number of permutations with & > 0 fixed points
relies on the number of permutations without fixed points derived earlier:

Theorem 4. The probability that a permutation of order n has exactly
0 < k < n fized points is

(n — k)! 1) 185 (1) fa
pk = () &5 L CUE i

=0 =0

Proof. Consider a permutation of order n with 0 < k& < n fixed points.

Once the fixed points have been chosen, and this can be done in ways,

n
k
the remaining points must represent a derangement of n — k objects, and
there are d,_; of those. Since different choices for the fixed points are

n-~-k ;

—1)¢

mutually exclusive, we find that there arc in total (:) (n— k) E %
i=0

permutations with exactly fixed points. This completes the proof. O

Let now n — oc for fixed k; Theorem 4 proves

-1
Corollary 1. limp(k,n) := p(k) = %
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In other words, when n is large and k is small compared to n, p(k,n)
tends to be independent of n and approximated by p(k) of Corollary 1.
Note that P = {p(k)}«en is itself a probability distribution, as

Zp(k) =e! Z % =ele=1; (16)

alternatively we can recognize it directly as a Poisson distribution (whose
mean value is equal to 1).

4 The number of fixed points in a Welch Costas
permutation

In previous work [11] we tabulated the maximal number of fixed points of a
W1*®-permutation of order g— 1 for all primes ¢ < 5000 (see Figure 2), but
we were unable to find a closed form solution for this quantity as a function
of g; we simply formulated the conjecture that this quantity seems to be
proportional to In(g), which we justified through fitting. We propose below
a more extensive probabilistic model that will allow us to further verify and
refine this conjecture.

4.1 The motivating random experiment

We observed in the past [11] that the fraction of W;*P-permutations with-
out a fixed point approaches 1/e, which is also asymptotically the fraction
of permutations without a fixed point. This led us to conjecture that, as
far as fixed points are concerned, Wi *P-permutations behave very much
like random permutations, and the latter have the advantage that the
distribution of their number of fixed points is known (Theorem 4), as is
the asymptotic behavior of this distribution (Corollary 1). We now pro-
ceed to establish formally the proximity of the two distributions, using
the Kolmogorov-Smirnov test, which will allow us to use the two distribu-
tions interchangeably and draw conclusions on the number of fixed points
of Wi™-permutations through the study of the number of fixed points of
a randomly chosen permutation, or rather of its asymptotic behavior, as
stated in Corollary 1.

As mentioned in Section 2.1, there exist exactly m = (g — 1)¢(g — 1)
W1™P-permutations of order ¢ — 1, when ¢ > 5 is a prime. By finding
the fixed points of each one, we computed the probability u(k,q — 1) for
such a permutation to have exactly k fixed points. We then compared the
probability distributions Uy_1 = {u(k,q — 1)}o<k<q-1 and P, for all 669
primes ¢ < 5000, using the Kolmogorov-Smirnov test (Section 2.4). The
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Figure 2: Plot of the maximum over all g and c of the number of fixed points
of a W;*P(q, g, c)-permutation for p < 5000, along with the approximation
by 1+ [In(p)].

corresponding values of /mD,, are shown in Figure 3: taking the null
hypothesis to be that U,_; is an empirical distribution corresponding to P,
and setting an error level of 5%, we see that in 641 cases the null hypothesis
cannot be rejected; on the other hand, 5% of 669 is approximately 33, while
the remaining empirical distributions (where the null hypothesis is rejected)
are 669 — 641 = 28: in other words, the number of cases the null hypothesis
fails is approximately equal to the number of cases we expect it to fail due
to the choice of the error level (and we also need to discount small sample
effects occurring for small ¢). This strengthens our conclusion cven further:
for large g, P, the asymptotic estimate of the probability distribution of the
number of fixed points of a randomly chosen permutation, is an excellent
approximation for U,_1, the probability distribution of the number of fixed
points of a randomly chosen W; P-permutation. We formalize this even
further in

u(k,g— 1)

Conjecture 1. For each k, llm —_
N pk,g—1)

1) = p(k) (see Corollary 1}.

= 1, or, equivalently, lim u(k, g—
q

This result is intuitively expected: the mechanism of the Welch con-
struction is also known as a reasonably efficient pseudo-random number
generator, and therefore W;*P-permutations are expected to be “randomly”
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Histogram of m'?D,_, m=(q-1)¢(q~1), ¢<5000, q prime

60

Figure 3: Plot of /mDy,, m = (g — 1)¢(g — 1), for all prime g < 5000.

distributed amongst all permutations, which is precisely what the Kolmo-
gorov-Smirnov test indicates. Note that this result generalizes the result
presented in Challenge 2 of [11], which focused exclusively on derangements.

4.2 A model for the maximal number of fixed points
in Welch Costas arrays

What is then the maximal number of fixed points in a W*P-permutation

of order ¢— 17 In Challenge 1 of [11] we conjectured that the answer is well
approximated by
1+ [In(g)], (17)

but this formula was determined empirically through fitting and was not
based on any mathematical model. We now build such a model in order to
test the validity of this formula and derive better approximations.

Given Conjecture 1, we can approximate the answer by a different, but
closely related, random experiment, whereby we consider m = (¢-1)é(g—1)
Li.d. random variables X;, i € [m] (as many as the W*P-permutations of
order ¢—1, that is) following the distribution P and ask for the probability
distribution of their maximum; more precisely, we set

X™ = max X; (18)

i=1,...,m
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and ask for the probability that X(™ = k or that X(™) < k. The latter
event is true if and only if X; < k for each 4, whence

k- m 20 m
P(Xt™ < k) =p™(k) = eim (Z %) = (1 2> 11_') 19)

i=0 i=k+1

It follows that

P(X™ =k)=P(X™ <k)-P(X™ <k-1)=

=(1—%Z$> -(1-%2%) . (20)

i=k+1 i=k

using the differential approximation z™ — (z—€)™ ~ mez™ 1, as well as the
facts that factorials are rapidly increasing and that 1 — 2 ~ e~ whenever
|z] < 1, this can be simplified into

oo

m—1
m m 1 1

i=k+1

cm (il L YT m (el ) g
~ K e (k+ 1) e P\ T+ e/

When % changes, the left factor in the RHS changes by a factor of approx-
imately k, whereas the exponential in the right factor changes also by a
factor of approximately k:

o When m <« (k + 1)le, P(X M) = k) ~ 7:%’ which decreases rapidly
to 0 as k grows. ’

o When m > (k + 1)le, the exponent is very large and dominates the
formula’s behavior, implying that, for small &, P(X (m) = k) = 0 and
that it is an increasing function of k.

As the probability increases for small k and decrcases for large k, we expect
it to have a maximum, which, intuitively, should occur when m = (k+1)le.
To make this more rigorous, set

- m gy M1 my _
I(k) = In(P(X™ = k) = ~= S +In ( k!) 1. (22)
The maximum occurs at the value of k where

I(k) — Ik — 1) > 0, I(k) —I(k+1) > 0. (23)
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The explicit expressions for these differences are

Uk) = Ik +1) = -(I:"J:l)l,e (1 - ki2) +In(k+1) >0,
1

Uk) — U(k — 1) = k'_l(l-k+1)—ln(k)20, (24)

from which we obtain

| 1
k! In(llc) < (k +1)! ln(k + 1) (25)
-1 e 1- s
This can be approximately simplified as the largest & for which
K n(k) < ? (26)
and, therefore, k = |z] where
I'(z +1)In(z) = % (27)
Using Stirling’s approximation [4], whereby
Iz +1) ~ V212 (f)z, (28)
e
we obtain
z m
Vonz (e) ln(a:) -

= ln(27r) + (a: + ) In(z) — z + In(In(z)) = In(m) -1 (29)

and, assuming both m and z to be large,
zln(z) = In(m) © ue" ~ In(m), z = * (30)
whence
u = W(ln(m)) = In(In(m)) — In(In(In(m))) <
W(in(m)) ., _In(m) (31)

e In(In(m))
where W is Lambert’s function (see Section 2.3). This finally leads to
In(m)
= ~ W(n(m)) | ., | A7) .
2] = |e | lln(ln(m)) J (32)

We have proved
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Theorem 5. Assuming the truth of Conjecture 1, the most probable value

of X(™) is asymptotically equal to lew(]"(m))_l ~ l_nl(rlir(l_(qzn)z—))_l for large m.

Note that we use ~ to denote the fact that this approximation may be
off by a multiplicative constant (or even slowly increasing function of m):
the asymptotic approximation (6) does not include a constant term, hence,
when exponentiated, as in (31), it leads to an ambiguity of a multiplicative
constant (at least). Actually, more precise asymptotical analysis [5] shows
the constant term in (6) to be 0, hence the multiplicative constant in (31)
to be 1, so we could have been careless about this point.

It is evident from the series of the approximations made in the pre-
vious derivations that this asymptotic estimate holds for extremely large
m, probably much larger than the ones considered for ¢ < 5000. In view
of this result, the logarithmic approximation (17) is inaccurate for large g
(although not completely unjustifiable, and still valid obviously within this
specific range): clearly ¢ < 5000 does not constitute numbers large enough
for the asymptotical analysis above to apply, and this gives us a motive to
improve the asymptotical formula.

4.3 An improved model

The approximation expressed in Theorem 5 can be improved by more care-
ful asymptotical analysis. Going back to the RHS equation in (29), we see
that we can build up its solution as a sequence of progressively refined ap-
proximations, by solving simpler equations that become progressively more
complicated through the addition of less and less dominant terms. To be
more precise, let us get the crudest approximation possible by discarding all
terms except the most dominant one(s): when z is very large, the dominant
term is z In(z), and we consequently demand that

z1In(z)) =a:=In(m) -1 - -;—ln(21r) =z =exp(W(a)). (33)

Let us now add the 2 next most dominant terms one by one and consider
the equations

1
yIn(y) —y=a and (z + 5) In(z) —2=a. (34)
Assuming we know the exact solution of the former, we express z as a
perturbation of y, namely z = y+¢; clearly, for a large, ¢ < y. Substitution

. . . L € €
into the latter equation, using the approximation that In{1+ -] = —,

Yy
yields
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(y+e+05)In(y+e)—y—e=as
e = yln(y) + (¢ + 0.5) In(y) + (y+e+0.5)§ —y—¢ (35)

whence it follows that

(€ +0.5) In(y) + (e + 0.5)5 ~0= e —0.5, (36)

as the left term dominates over the right one. In other words, the first
order correction resulting by considering the z-equation instead of the y-
equation in (34) is just a constant; if we do not demand higher precision
from our asymptotic, we can completely forget about the higher order terms

induced by %ln(a:) and (a fortiori) about In(In(z)) in (29), and focus on

the asymptotic expansion of y.
Set y = (1 + €)z,: we get

(I+eziln(z)) +(1+€)z1In(l+e) - (1+e)z; =a e
In(l1+€¢) 1+
w w

e+(1+e) =0, w=In(z;). (37)

. | .
Setting v = ot this can be rewritten as

TTronl+e-1)

the RHS is an analytic function of 1 + ¢ in a neighborhood of € = 0, where
also v = 0. Invoking the inversion theorem for analytic functions [3], we see
that 1 + € is an analytic function of v in a neighborhood of v = 0, as long
as the derivative of (38) at € = 0 is not 0; this can easily checked to be true
(the derivative in question equals —1). In other words, 1+ ¢ = f(v), and f
admits a Taylor expansion around v = 0. We have overall shown that

v= (38)

— (i) — 5 +o(1). (39)

What is the form of f? Setting y = z; + z3, where z, < z;, and
plugging back in (34) we get

(z1 + z2)In(z1 + 22) — 21 — 29 = a. (40)

o )]
But, as above, In(z; + z2) = In(z;) + In (1 + x_) ~ In(z,) + o and
1 1

therefore we obtain

(z1 + z2) In(z1) + (z1 + a:z)g-?- -z — T3 =a, (41)
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which, in view of (33), simplifies into
2
zoIn(zy) + ;g -z =0 (42)
1

The dominant terms are the first and the third, as the other 2 choices
violate the condition that z5 <« z, whence

Iy = 51
>~ In(z1)

-
~— =
y: e (1 + i’-) Lw=W (ln(m) —1- %ln(27r)) . (43)

The process can continue to yield higher order terms of the approxi-
mation: keeping higher order terms in the approximation of the logarithm,

o0
tn
according to the well known Taylor expansion log(1l +t) = E (-1)! o
=1
we further find "
le¥ le¥
325 T Gt

An improved version of Theorem 5 is therefore

T3 = — (44)

Theorem 6. Assuming the truth of Conjecture 1, the most probable value
of X(™ s, for large m, asymptotically equal to |z, where

wel1) 1 » 1 11 11 1
T=e f(—u—)>—§+o(1)—e (1+~u_)_2w3+gﬁ+'”)-§+o(l)’

and where w =W (ln(m) -1- %ln(27r)). f is analytic at the origin and
given by the inversion of (38).

The maximal number of fixed points over all W *P-permutations of order
g—1 as a function of the prime g < 5000 (also shown in Figure 2), along with
the approximation suggested by Theorem 6, are shown in Figure 4. The
results for the first fow primes are omitted, as the approximation is not well
defined there. For 265 primes (39.6% of the total) the approximation yields
an exact result, while for 637 primes (95.2% of the total) the approximation
differs from the true value by at most 1.

4.4 A comparison of the various models

So far we have obtained three different approximations to the maximal
number of fixed points of a W} *P-permutation of a given order: the loga-
rithmic approximation (17), and the formulas of Theorems 5 and 6. How
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Maximal number of fixed points and their approximation
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Figure 4: Plot of the maximum over all g and ¢ of the number of fixed points
of a W™ (q, g, c)-permutation for ¢ < 5000, along with the approximation
suggested by Theorem 6.

do these formulas compare to each other? A plot of their values over all
primes g < 1,000,000 is shown in Figure 5. To begin with, we expect that,
for large m, Theorems 5 and 6 will give the “same” values (asymptotically
differing by the constant 0.5): this does not happen in the given range of g,
so even higher values are needed to observe this. More precisely, note that
both formulas are functions of w ~ W (In(m)) = In(In(m)): when q is close
to 108, w of Theorem 6 is only close to 2.4 which is a small value, hence the
higher order corrections in Theorem 6 make a difference compared to the
simpler dominant-term only asymptotic approximation of Theorem 5. For
example, in order to bring the two formulas within 1% of each other, we
would need w & 100, whence m = eem, which is an astronomically large
number!

On a different note, Theorem 6 (hence eventually Theorem 5 as well)
appears to approximate (17) very well; is this to be expected? Combining
Theorem 5 with (6) we obtain:

a(m In(m) _ In(¢—1)+In(¢(qg—1))
N o ) In(in(m)) ‘ (45)

But In(In(m)) varies very slowly and is practically constant when m (or q) is
confined in a narrow range, while In(¢(q — 1)) is dominated by In(g — 1) ~
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Comparison of the 3 models
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Figure 5: Comparison of the three models for the maximum over all g and
¢ of the number of fixed points of a W;*P(q, g, c)-permutation for g < 106.

In(q): it follows then that, for g confined in a narrow range of values,
eW (In(m)) ~ Cln(q) for some C > 0, hence Theorem 6 and (17) are indeed
compatible. Eventually, however, even under the extremely generous ap-
proximation m = ¢, it can be seen that In(g) grows faster than eW(in(m)),
though only slightly so.

5 Conclusion

Though the exact distribution of the number of fixed points of a W*P-
permutation has still not been found, statistics establishes that, for large
orders, a) it behaves similarly to the corresponding distribution for a ran-
domly chosen permutation, and b) it tends to be independent of the order.
Exploiting this observation, we approximated the most probable maximal
number of fixed points in a W[ P-permutation of a given order through
asymptotical analysis, by assuming the distribution of this number to be
the same as for a randomly chosen permutation. We proposed two models,
the second being a more refined version of the first, based on Lambert’s
W-function.

Comparing the new (stochastic) model to a previously suggested em-
pirically fitted model, we found that the empirical model, though over-
simplifying, is compatible with the new model. We also concluded that
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the more complicated refined version of the new model is meaningful, as
the asymptotic approximation proposed becomes valid for extremely large
primes, much larger than the ones studied here.

To get back to our original motivating point, do the diagonals of W*P-
Costas arrays yield dense Golomb rulers? Our results show that they do
not, as the number of dots in a diagonal is at best the logarithm of the or-
der (further divided by a slowly varying function), whereas optimal Golomb
rulers have asymptotically as many dots as the square root of their length,
and the difference between the logarithm and the square root is consider-
able.
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