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Abstract

The skewness sk(G) of a graph G = (V, E) is the smallest integer
sk(G) > 0 such that a planar graph can be obtained from G by the
removal of sk(G) edges. The splitting number sp(G) of G is the
smallest integer sp(G) > 0 such that a planar graph can be obtained
from G by sp(G) vertex splitting operations. The vertex deletion
vd(G) of G is the smallest integer vd(G) > 0 such that a planar graph
can be obtained from G by the removal of vd(G) vertices. Regular
toroidal meshes are popular topologies for the connection networks
of SIMD parallel machines. The best known of these meshes is the
rectangular toroidal mesh Cy, X Cr, for which is known the skewness,
the splitting number and the vertex deletion. In this work we consider
two related families: a triangulation 7¢,, xc,, of Cm x Cy, in the torus,
and an hexagonal mesh Hc,, xc.,, the dual of 7c,, xc, in the torus.
It is established that sp(Tc,,xc.) = vd(Tc,. xc,) = sk(Hc,.xc,.) =
sp(Hemxc,) = vd(Heop,xc,) = min{m,n} and that sk(7c,.xc,) =
2min{m,n}.
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1 Introduction

Because of their symmetry and regularity, toroidal meshes are a well known
topology for the connection networks of Single Instruction and Multiple
Data Stream parallel machines.They occur as interconnection diagrams of
multiprocessor computers and cellular automata, and so results on nonpla-
narity parameters are relevant to the physical design of such machines [6, 7).

Let Cp, X Cp, n > m > 3, be the graph theoretical product of the
two cycles Cy, and C, with set of vertices V{(Cp x Cp) = {u;,; : 4 € {1,2,
3,...,m},j €{1,2, 3,...,n}}, and set of edges E(Cr x Cr) = {vi,j¥; j+1,
;,jVi41,5, Where the first subscript is read modulo m and the second sub-
script is read modulo n, i € {1,2,3,...,m}, j€{1,2,3,...,n}}. Graph
Cpm X Cp or Tectangular mesh in the torus is the most popular of the regular
toroidal meshes in the torus. The skewness sk(G) of a graph G = (V, E) is
the smallest integer sk(G) > 0 such that a planar graph can be obtained
from G by the removal of sk(G) edges. A splitting operation replaces a ver-
tex v of G by two new and nonadjacent vertices v; and v, and attaches each
neighbour of v either to v, or to vo. The splitting number sp(G) of G is the
smallest integer sp(G) > 0 such that a planar graph can be obtained from
G by sp(G) splitting operations. The nonplanar vertex deletion vd(G), or
vertez deletion, of G is the smallest integer vd(G) > 0 such that a planar
graph can be obtained from G by the removal of vd(G) vertices. The cross-
ing number of a graph G = (V, E) is the minimum number of crossings in
a drawing of G in the plane. If D(G) is such a drawing, then it is said that
D(G) is an optimum drawing of G. The crossing number of Cp, x C,, is still
a much studied open problem, conjectured [7] to be (m — 2)n,n > m. Just
recently [5], the conjecture has been proved for n > m(m + 1).

In this work we consider two families of regular graphs, related to the
rectangular mesh. Interest in such special classes is justified by the fact
that most of the nonplanar parameters, in special the crossing number, are
not even known for graphs as regular as the complete graphs, so that every
single step into this direction is noteworthy.

The graph considered first in this paper is 7¢,,xc, a triangulation of
Crm xCy, in the torus shown in Figure 1(a), with set of vertices V(7¢,, xc,) =
V(Cm x Cy) and set of edges E(Tc,. xc.) = E(Cm % Ca)U {vi jVig1,+1,
where the first subscript is read modulo m and the second subscript is read
modulo », i € {1,2,3,...,m},j € {1,2,3,..., n}}.

In this work we prove that the vertex deletion and the splitting number
of T¢, xc, are equal to min{m,n}, and that the skewness of 7¢, xc, is
2 min{m, n}. The second graph considered is Hc,, xc,, a toroidal hezagonal
mesh shown in Figure 1(b), with set of vertices V(Hc,.xc,) = V(Com X
C,), and set of edges E(Hc,,xc.) = {v2i—1,jY2ij+1, i jVi+1,5, Where the
first subscript is read modulo 2m and the second subscript is read modulo
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Figure 1. A triangular (a) and the dual hexagonal (b) mesh in the torus.

n, 1 €{1,2,3, ..., 2m},j € {1,2,3, ..., n}}. We prove that the vertex
deletion, the splitting number and the skewness of Hc,, xc, are all equal
to min{m,n}.

Figure 2: 7g,xc, in large vertices and bold edges, and Heyxe, in small
vertices and thin edges drawn as dual graphs in the torus.

The dual of an embedding D(G) of a graph G in a surface S is the graph
F, such that the vertices of F' are the faces of D, and for each edge e of
D(G) there is an edge of F' connecting the vertices of F on each side of e.
A graph G is auto-dual in a surface S if there is an embedding D(G) of G
in S, such that G is the dual graph of D(G) in S. The graph Cp, x C,,
is auto-dual in the torus. It is observed that Hc,.xc,, is the dual graph
of 7¢,.xc, in the torus. For the convenience of the reader it is offered in
Figure 2 an example showing graph 7¢, xc, in white large vertices and bold
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edges, and the corresponding embedding of Hg;xc, in white tiny vertices
drawn as dual graphs in the torus.

This paper presents the evaluation of the three nonplanarity parameters
splitting number, skewness, and vertex deletion for dual classes of graphs
in the torus. Note that H¢,, xc,, is a cubic graph. For general cubic graphs,
the NP-completeness of splitting number, skewness, and vertex deletion has
been established (3, 4].

2 Basic properties

The results of this paper depend heavily on the following characterization
by Kuratowski[8]: a graph is planar if and only if it does not contain a
subgraph contractible to K or K3 3. If G has a subgraph H contractible to
a graph F, then [1, 2] sk(G) > sk(F), sp(G) > sp(F) and vd(G) > vd(F).
The crossing number, skewness, splitting number and vertex deletion of a
general graph G = (V, E) are related [1, 2] by the following inequalities:

Fact 1 For every graph G, cr(G) = sk(G) > sp(G) 2 vd(G).

Given i € {1,2,3,...,m} the meridian M of ¢, xc, is the subset
of vertices {vi; : j € {1,2,3,....n} of V(Tc,.xc,)}; the parallel P7 of
Te,.xc, is the subset of vertices {v;; : i € {1,2,3,...,m} of V(7c,.xc,)}-
The diagonal D* of Tg, xc,,, ¢ € {1,2,3,...,m}, is the subset of vertices
{Visk k1 : k € {0,1,2,...,m — 1} of V(Tc,, xc,,). We call the marimum
circles of T, xc,, the subgraphs of T, xc,, induced by M*, P7 or D'. Two
meridians (respectively, parallels, or diagonals) are said to belong to the
same class of maximum circles.

An automorphism a of a graph G is a bijective function o : V' — V, such
that uv € E if and only if e{u)a(v) € E. Given a graph G and a subgraph
S of G, we say that G is S-transitive if for each pair F', H of subgraphs of G,
where F and H are isomorphic to S, there is an automorphism a of G such
that if v € V(F), then a(v) € V(H). By using a suitable automorphism we
can establish that 7¢,, xc, is vertex transitive, and that is edge transitive
if m = n. We can also establish that Hc,, xc, is vertex transitive.

3 Results on 7¢_«c,

3.1 The splitting number and vertex deletion of 7¢,, xc,

Our strategy to prove that the vertex deletion and the splitting number of
Tc,, xc, are both min{m,n} is as follows. In Lemma 2 we show the upper
bound min{m,n} for the splitting number of 7c,xc,. In Lemma 3 we
show the lower bound min{m, n} for the vertex deletion of 7¢,, xc,, which
together with the incqualities from Fact 1 imply the claimed equality.
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Figure 3: Planar embedding of a graph obtained from 7¢,, xc,, with m
splittings. Hence, sp(7¢,.xc,.) < m.

Lemma 2 sp(7¢,.xc,) is at most min{m,n}.

Proof. Figure 3 displays a planar drawing of the graph obtained with
m splitting operatlons in a set of vertices of Tc,,xc,: vin into v}, and
Uiln, Such that N(v{,) = {vi1,vi41,1} and N(v,) = N(vin) \ N(v ),
1€{1,2,3,...,m}. Therefore, sp(Tc,. xc,) < mm{m n}.

(a) (b) (c) (e)

Figure 4: (a) Tosxc, in the torus; (b) vertices of To,xo, (depicted in black) at
distance 1 from vertex vertex u = vy,1; (c) vertices of Ty xc, at distance 2 from
u; (d) and (e) subdivisions of K33 as a subgraph of the graph obtained from
Tc,xc, by the removal of u and v, respectively, at distance 1 and 2 from .

Lemma 3 vd(Zc,yxc,) is at least 3.

Proof. We prove that the removal of a pair of vertices from Tc,yxcy, shown
in Figure 4(a), does not yield a planar graph. Let u and v be two vertices
of Toyxcs. As Toyxe, is vertex transitive, u is assumed to be the vertex
u = v1,1 of Toyxc,. As the diameter of To, ¢, is 2, we consider two cases:
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vertices v at distance 1 from u, and vertices v at distance 2 from . For
the convenience of the reader it is shown in Figures 4(b) and (c) depicted
in black vertices, respectively, the vertices of T¢,xc, whose distance from
u are 1 and 2.

Figures 4 (d) and (e) consider the drawing of two subdivisions of K33
as subgraphs of T¢,xc,, each one of them with parts labelled with 1 and
2. It is shown next that G\ {u,v} contains at least onc of the graphs
depicted in Figures 4 (d) or (e) as a subgraph. If the distance from u
to v is 1, as Te,xc, is edge transitive, we assume v = wvp; and then the
resulting graph obtained from the removal of u and v from T¢;xc, contains
the graph in Figure 4(d) as a subgraph. If the distance from u to v is 2,
then the existence of the automorphism ¢(vg,y) = vy,s, provides that v can
be assumed to be v = v3 2. Hence, the remaining graph obtained from the
removal of v and v from Tg,xc, contains the graph in Figure 4(e) as a
subgraph. a

Figure 5: Subgraph F of T¢,, x¢,. contractible to Tc,,_, xCpm_;-
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Lemma 4 vd(7¢,, xc,,) is at least m.

Proof. We argue by induction. From Lemma 3, it is valid for £k =
3. Assume it is valid for ¥ < m with m > 3 and consider v a ver-
tex of 7¢,,xc,,- We prove that for every vertex v of ¢, xc,, the graph
7¢,,xC,. — v has a subdivision of 7¢,,_, xc,,_, as a subgraph. Since graph
7c,.xc.. is vertex transitive, v is assumed to be vertex V1,m. Figure §
shows how to define a subgraph F' contractible to 7¢,,_,xc,._, as a sub-
graph of 7¢,, xc,, — v1,m. In Figure 5 horizontal full edges represent edges
in a parallel of 7¢,,_, xc,._,, vertical clear dashed edges represent edges
in a meridian of 7¢,,_,xc,._,, and diagonal dark dashed edges represent
diagonal edges of 7¢,,_,xc,._,- In order to obtain the subgraph con-
tractible to Tc,,_, xc,., the edges between each consecutive pair of adja-
cent vertices in each of the following m sets of vertices are sequentially con-
tracted: {vi1,vo2,va1}, {v12,ve3}, {v13,v24}, {14, v25},. .., {V1,m=1,%2,m},
and {vsz,vsa}, {va3, vaa}, {vsa,vss}, -+ s {Vm,m—1,Vm,m}- m]

Figure 6: (a) Drawing of 7¢,, xc, and (b) drawing of the corresponding
graph contractible to 7¢,, xc,, as a subgraph of ¢, xc,,m < n.

Lemma 5 T¢, «c, contains a graph contractible to e, xc,, as a subgraph.

Proof. Figure 6 shows how to define a graph contractible to ¢, x¢,, as
a subgraph of 7¢,, xc,, where the edges between each consecutive pair of
adjacent vertices in each of the following m sets of vertices are sequen-
tia‘lly contracted: {vl,ms V1,m+1y V1,m42, -+ avl.n}) {v2,m» V2,m+1) V2,m+2,
ce ’v2,n}, {'U3,my V3, m+1y V3, m+42: +-+» vS,n}y sy {vm,m: Um,m+15 Um,m+2,
.«+» Um,n}. The contracted edges arc depicted by white long vertical ver-
tices. (]

Theorem 6 vd(7c,, xc,) = sp(Tc,.xc,) = min{m,n}.
Proof. It follows from Fact 1, Lemma 2, Lemma. 4, and Lemma 5. ]
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3.2 The skewness of 7¢, «xc,

Figure 7: Planar embedding of a graph obtained from 7¢,, xc, by removal
of a set with 2m edges. Hence, sk(7¢,.xc,) < 2m.

Lemma 7 sk(7c,,xc,) is at most 2min{m,n}.

Proof. Figure 7 shows a drawing of a planar graph obtained from sk(7¢,, xc,)
by removal of the set with 2m edges: {v1,1%1,2,v1,19mn, V2,192, ¥2,1V1,n,
V3,1V3,n,V3,1V2,ny - - -» Um,lvm,n:'um,lvm—l,n}- a

Lemma 8 sk(7c,xc,) =6.

Proof. It follows from a consequence of the Euler’s theorem, which says
that every planar graph G = (V, E) with |V| > 3 satisfies |E| < 3|V| - 6,
from Lemma 7, that |E(Tgyxc,, )| = 3.(3n) and |V(Tg,xc,)| = 3n. o

Theorem 9 sk(7c,, xc,.) = 2min{m,n}.
Proof. From Lemma 7 and Lemma 5, it is enough to prove that 7¢,, xc,, =
2m. We argue by induction. From Lemma 8 the theorem is valid if m = 3.
Assume the theorem valid for every k¥ < n with n > 3. We prove that the
removal of 2 edges from T¢,, xc,, yields a graph G’, which has a contractible
graph to T¢,,_,xC,._,, 8s a subgraph. Let e; and e be the 2 edges removed
from E(Tc,, xc,,) in order to yield G'. Consider the graph F' contractible
to T¢,._,xC,., defined in Figure 5. We proved that G’ contains a graph
isomorphic to F' as a subgraph. We have 2 cases to analyse.

First case is when e; and ez do not belong to the same class of maximum
circles. We may assume e; to belong to a meridian and e, to belong to a par-
allel of T, xc,,- First of all note that, for all r € {1,2,3,...,m} the edges
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V1,rV1,r41 ¢ S; and for all s € {1,2,3,...,m} the edges vs sv511,s ¢ S. Our
main goal is to prove that there is a pair r, s which defines an automorphism
which maps e; and ez, respectively, to V1,rV1,r+1 and Vg sVs41,s establishing
that G’ contains F as a subgraph. Let e; = V;,jVi,j+1 and ez = Uk ¢Uk41,¢.
We exhibit the subgraph of G’ isomorphic to F by composing 2 auto-
morphisms. The first automorphism a moves vertex e; to meridian M:
a(vzy) = vz—iy1,5. The second automorphism B moves vertex afvge) =
Y(k-i)+1,¢ t0 the vertex vik—s41,(k-iy+1, BVz,y) = Yz (y—tk—i-1)41. Fi-
nally, the composition automorphism of o and g gives automorphism ¢:
B(vz,y) = B(@(Vzy)) = Vgmi)y+1,(y—takmizot)+1-

Second case is when e; and e; belong to the same class of maximum
circles. We may assume e; and ez to belong to parallels. Because no

edge virva, : 7 € {1,2,3,...,m} belongs to S, the same automorphism
#(v2,y) = B(e(t2,y)) = VUa—i)o1,(y=trkmi-1)+1 defines S as asubgraph of G,
0

Figure 8: Planar embedding of a graph obtained from He,, xc, by the
removal of a set with m edges. Hence, sk(Hc,, xc,) < m.

4 Results on He «c,

We prove that the values of skewness, splitting number and vertex deletion
of He, xc, are all min{m,n} as follows. In Lemma 10 we show the upper
bound min{m,n} for sk(Hc,,xc,). In Lemma 13 we prove that min{m, n}
is & lower bound for vd(Hc,, x¢, ). Fact 1 gives the claimed equality.
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Figure 9: Five subdivisions of K33 depicted as a subgraph of Heyxc,-

Lemma 10 sk(Hc, xc.) is at most min{m,n}.

Proof. Figure 8 displays a planar drawing of the graph obtained from
He,, xc,, by the removing the set {v2,191,n, ¥4,193,n, ¥6,105,1, - - » V2m,1V2m—1,n }
with m edges. Hence, sk(Hc,, xc,) < min{m,n}. O

Lemma 11 vd(Hcyxc,) is at least 3.

Proof. We establish vd(Hc,xc,) = 3 by considering that the graph defined
by the removal a subset R with 2 vertices from Hc,xc, yields a nonplanar
graph. Figure 9 is used in the proof of Lemma 11. In Figure 9 are shown
5 subdivisions of K33, each as a subgraph of He,xc,- Each subdivision
is defined in white vertices and coloured edges, such that vertices of each
partition of vertices of the bipartite K3 3 are labelled with 1 and 2, and the
other vertices of the subdivision are not labelled. Vertices not belonging to
the subdivision are depicted black. We show three different colours used to
depict the paths emanating from the three vertices of partition 1.

From Figures 9(a,b,c,d,e) we note that for each vertex v € He,xc,
there is a subdivision S of K3 3 as a subgraph of He,xc,, such that v ¢ S.
Note also that vertex v;,; does not belong to any of the 5 subdivisions.

Let u and v be the vertices of a subset R of V(Hcyxc,). As graph
Heyxc, Is vertex transitive, we assume u = vy,;. Hence, for every possible
set R with 2 vertices of Hc,xcs, there is a subdivision of K3 3 as a subgraph
of the resulting graph obtained by removing R from Hc,xc,. o

Lemma 12 vd(Hc,, xc,,) i5 at least m.

Proof. We prove this assertion by induction on m. The induction basis
with the case m = 3 is established in Lemma 11. It is enough to prove that
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Figure 10: Subdivision of Hc,, xc, as a subgraph of He,xcp, p>m,g> n.

for every vertex v of He,xc, with p > m and g > n, there is a subdivision
of Hc,.xc, as a subgraph of Hc,xc, —v. Hence He,, +1%xCmy leSs a vertex
has a subdivision of H¢,, xc,. as a subgraph. As graph He,xc, is vertex
transitive, we set v to be vertex v = vgp,24. Figure 10 is used in the proof
of Lemma 12. Figure 10 shows a drawing for a subdivision of He,.xc,, in
bold edges and black vertices, as a subgraph of He,xc, —v. We observe
that white vertices adjacent to bold edges define paths to be contracted in
order to define the subdivision of He,.xc,- ]

Lemma 13 vd(Hc,, xc,) = min{m,n}.

Proof. It follows from the observation that He,.xc, has a subdivision of
He,.xc,, which by Lemma 12 has vertex deletion at least m. m]
Theorem 14 vd(Hc,, xc,) = sp(He.xc,) = sk(He, xc,) = min{m,n}.
Proof. It follows from Fact 1, Lemma 10, and Lemma 13. a

5 Final remarks

A natural interesting question which arises from observing the values de-
rived to the vertex deletion, splitting number and skewness of the dual
graphs 7(Cp, x Cy,) and H(Cp, x Cy,) is whether the fact that G and H are
dual graphs in the torus implies that sp(G) = vd(H ), or sp(G) = sp(H), or
vd(G) = vd(H). However, none of these results is true. The graph C3xCj is
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auto-dual in the torus and yet satisfies sp(C3 x Cs) = 3 # 2 = vd(C3 x Cs),
see [1, 2]. Now consider G = Kj, to see an example where G admits an
embedding in the torus whose dual H is a graph with 5 vertices which is
not the K, and therefore planar.

(a) (©)

Figure 11: (a) the Petersen graph, (b) an embedding in the torus of the
Petersen graph, and (c) the plane graph corresponding to the dual in the
torus of the Petersen graph.

In Figure 11(a) we show a drawing of the Petersen graph, in Figure 11(b)
we show an embedding in the torus of the Petersen graph, and in Fig-
ure 11(c) we show a plane drawing of the dual of the Petersen graph. We
observe that the Petersen graph is vertex-transitive, using this property
we can note that the removal of any vertex leaves a subdivision of K33,
proving that the vertex deletion number of the Petersen graph is 2.

Given G* the dual graph in the torus of graph G, a question that could
be posed open here is whether the difference between vd(G) and vd(G*)
can be arbitrarily large.
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