ON SOME RATIONAL DIFFERENCE EQUATIONS

BRATISLAV IRIČANIN AND STEVO STEVIĆ

Abstract

We extend and give short proofs of some recent results regarding some classes of rational difference equations.

1. Introduction

Recently there has been a huge interest in studying rational difference equations, see, e.g., [1-32] and the references therein. In [1] and [2] were studied solutions of some particular cases of the following classes of difference equations

$$x_{n+1} = ax_n + \frac{bx_n x_{n-3}}{cx_{n+2} + dx_{n-3}}, \quad n \in \mathbb{N}_0,$$
 (1)

where a, b, c and d are nonzero numbers, and

$$x_{n+1} = a + \frac{dx_{n-1}x_{n-k}}{b - cx_{n-s}}, \quad n \in \mathbb{N}_0,$$
 (2)

where $k, l, s \in \mathbb{N}_0$ and a, b, c, d > 0. Explicit solution of some subclasses of equations (1) and (2) are given. Our aim here is to give short proofs of the main results in [1] and [2], as well as to extend some of them.

2. On solutions of equation (1)

In this section we prove that equation (1) can be solved explicitly, from which the main results in [1] easily follow.

Theorem 1. All well-defined solutions of Eq. (1) can be solved explicitly.

Proof. First note that if $x_{n_0} = 0$ for some $n_0 \in \mathbb{N}_0$, then $x_{n_0+1} = 0$, so that x_{n_0+4} is not defined. Hence, assume that $x_n \neq 0$, $n = -3, -2, -1, 0, 1, \dots$

For such solutions of equation (1) we have that

$$\frac{x_{n+1}}{x_n} = \frac{ac\frac{x_{n-2}}{x_{n-3}} + ad + b}{c\frac{x_{n-2}}{x_{n-2}} + d}, \quad n \in \mathbb{N}_0.$$

If we use the following change $y_{n+1} = x_{n+1}/x_n$ we obtain

$$y_n = \frac{acy_{n-3} + ad + b}{cy_{n-3} + d}, \quad n \in \mathbb{N}.$$
(3)

By using the changes $z_m^{(l)} = y_{3m+l}$, l = 1, 2, 3, $m \in \mathbb{N}_0 \cup \{-1\}$, we obtain that equation (3) is equivalent with the following three equations

$$z_m^{(l)} = \frac{acz_{m-1}^{(l)} + ad + b}{cz_{m-1}^{(l)} + d}, \quad l = 1, 2, 3, \quad m \in \mathbb{N}_0.$$
 (4)

Equations in (4) can be solved by using the change $z_m^{(l)} = v_{m+1}^{(l)}/v_m^{(l)} + f$, where f will be suitable chosen. Indeed, from (4) we have

$$c\frac{v_{m+1}^{(l)}}{v_{m+1}^{(l)}} + (cf + d)\frac{v_{m+1}^{(l)}}{v_{m}^{(l)}} + (f - a)c\frac{v_{m}^{(l)}}{v_{m-1}^{(l)}} + f^{2}c + fd - acf - ad - b = 0.$$

By choosing f = -d/c, we obtain

$$cv_{m+1}^{(l)} - (ac + d)v_m^{(l)} - bv_{m-1}^{(l)} = 0.$$

This equation is a homogeneous linear second-order difference equation with constant coefficients, whose solutions have the following form

$$v_m^{(l)} = c_1 \lambda_1^m + c_2 \lambda_2^m$$
, where $c_1, c_2 \in \mathbb{R}$,

and

$$\lambda_{1,2} = \frac{ac + d \pm \sqrt{(ac + d)^2 + 4cb}}{2c}$$

or $v_m^{(l)} = (c_1 + mc_2)\lambda_1^m$, if $(ac + d)^2 + 4cb = 0$.

From all above mentioned the general solution of equation (1) can be easily found, finishing the proof of the theorem. \Box

Remark 1. Note that the method described above does not depend on the values of parameters a, b, c and d, so that it can be applied to, for example, the following four particular cases (see Theorems 4-7 in [1])

$$x_{n+1} = x_n \pm \frac{x_n x_{n-3}}{x_{n-2} \pm x_{n-3}}.$$

We leave the calculations to the reader.

Remark 2. Note that the following m + k-th order difference equation

$$x_n = ax_{n-k} + \frac{bx_{n-k}x_{n-m-k}}{cx_{n-m} + dx_{n-m-k}} \quad n \in \mathbb{N}_0,$$

where $k, m \in \mathbb{N}$, can be treated similarly as equation (1).

3. On the equation
$$x_{n+1} = a + \frac{x_n x_{n-1}}{a - x_n}$$

In [2, Theorem 4] it was proved that every solution of the difference equation

$$x_{n+1} = a + \frac{x_n x_{n-1}}{a - x_n}, \quad n \in \mathbb{N}_0,$$
 (5)

with $x_{-1}, x_0 \in \mathbb{R} \setminus \{0, a\}$, is periodic with period four. The proof was given by the method of induction. The next result gives a short proof of a slightly different result, as well as a natural explanation of it.

Theorem 2. Every well-defined solution of Eq. (5) is periodic with period four.

Proof. If $x_{n_1} = 0$, for some $n_1 \in \mathbb{N}_0$, then $x_{n_1+1} = a$ so that x_{n_1+2} is not defined. If $x_{-1} = 0$, then $x_1 = a$, so that x_2 is not defined. If $x_{n_2} = a$, for some $n_2 \in \mathbb{N}_0$, then x_{n_2+1} is not defined. Hence we may assume $x_n \neq 0$, $n \in \mathbb{N}_0 \cup \{-1\}$ and $x_n \neq a$, $n \in \mathbb{N}_0$.

Now note that for such solutions of equation (5) the following relation holds

$$\frac{x_{n+1} - a}{x_n} = -\left(\frac{x_n - a}{x_{n-1}}\right)^{-1}, \quad n \in \mathbb{N}_0,$$

and consequently the sequence $\frac{x_{n+1}-a}{x_n}$ is two periodic. Thus, we have

$$\frac{x_{2n+1}-a}{x_{2n}} = \frac{x_1-a}{x_0} = \frac{x_{-1}}{a-x_0} := b \quad \text{and} \quad \frac{x_{2n}-a}{x_{2n-1}} = \frac{x_0-a}{x_{-1}} = -\frac{1}{b}$$

or

$$x_{2n+1} = bx_{2n} + a$$
 and $x_{2n} = -\frac{1}{b}x_{2n-1} + a$. (6)

Replacing the second equation in (6) into the first one we obtain

$$x_{2n+1} = b(-\frac{1}{b}x_{2n-1} + a) + a = -x_{2n-1} + a(1+b).$$
 (7)

By using (7) twice, we obtain

$$x_{2n+1} = -x_{2n-1} + a(1+b) = -(-x_{2n-3} + a(1+b)) + a(1+b) = x_{2n-3}.$$
 (8)

Similarly

$$x_{2n} = -\frac{1}{b}x_{2n-1} + a = -\frac{1}{b}(bx_{2n-2} + a) + a = -x_{2n-2} + a - \frac{a}{b},$$

from which it follows that

$$x_{2n} = -x_{2n-2} + a - \frac{a}{b} = -(-x_{2n-4} + a - \frac{a}{b}) + a - \frac{a}{b} = x_{2n-4}.$$
 (9)

From (8) and (9) the result follows. \square

Remark 3. The formulation of [2, Theorem 4] is not quite correct. Namely, if

$$x_0 = \frac{a^2}{a - x_{-1}},$$

where $x_{-1} \in \mathbb{R} \setminus \{0, a\}$, then $x_1 = 0$ and $x_2 = a$, so that x_3 is not defined. Hence, we add the phrase "well-defined" in our version of the result. The same remark can be given for the next two results which we are proved in the sequel.

4. On the equation
$$x_{n+1} = 1 + \frac{x_{n-1}x_{n-2}}{1-x_n}$$

ln [2, Theorem 5] was given a long inductive proof of the following result. Here we give a more natural short proof of Theorem 3.

Theorem 3. Let $(x_n)_{n=-2}^{\infty}$ be a well-defined solution of the difference equation

$$x_{n+1} = 1 + \frac{x_{n-1}x_{n-2}}{1 - x_n}, \quad n \in \mathbb{N}_0.$$
 (10)

Then

$$x_{2n-1} = \sum_{i=0}^{n-1} \left(\frac{x_{-2}}{1 - x_0}\right)^j + \left(\frac{x_{-2}}{1 - x_0}\right)^n x_{-1};\tag{11}$$

$$x_{2n} = \sum_{j=0}^{n-1} (-1)^j \left(\frac{1-x_0}{x_{-2}}\right)^j + (-1)^n \left(\frac{1-x_0}{x_{-2}}\right)^n x_0.$$
 (12)

Proof. If $x_{n_3}=0$ for some $n_3 \in \mathbb{N}_0 \cup \{-1\}$, then $x_{n_3+2}=1$ so that x_{n_3+3} is not defined. If $x_{-2}=0$, then $x_1=1$, so that x_2 is not defined. If $x_{n_4}=1$, for some $n_4 \in \mathbb{N}_0$, then x_{n_4+1} is not defined. Hence we may assume $x_n \neq 0$, $n \in \mathbb{N}_0 \cup \{-2, -1\}$ and $x_n \neq 1$, $n \in \mathbb{N}_0$.

Now note that for such solutions of equation (10) the following equality holds $(x_{n+1}-1)/x_{n-1} = -[(x_n-1)/x_{n-2}]^{-1}$, from which it follows that the sequence $(x_{n+1}-1)/x_{n-1}$ is two periodic. Thus

$$\frac{x_{2n+1}-1}{x_{2n-1}} = \frac{x_1-1}{x_{-1}} = \frac{x_{-2}}{1-x_0} \quad \Leftrightarrow \quad x_{2n+1} = \frac{x_{-2}}{1-x_0} x_{2n-1} + 1$$

and

$$\frac{x_{2n}-1}{x_{2n-2}} = \frac{x_0-1}{x_{-2}} \quad \Leftrightarrow \quad x_{2n} = \frac{x_0-1}{x_{-2}} x_{2n-2} + 1.$$

Now note that x_{2n} and x_{2n-1} are solutions of the following two linear first-order difference equations with constant coefficients

$$y_n = \frac{x_{-2}}{1 - x_0} y_{n-1} + 1$$
 and $z_n = \frac{x_0 - 1}{x_{-2}} z_{n-1} + 1$.

The general solution of the linear first-order difference equation with constant coefficients can be found in any book on difference equation (see, for example, [12]), from which formulae (11) and (12) follow. \square

5. On the equation
$$x_{n+1} = 1 + \frac{x_n^2}{1 + 2x_n}$$

In [2, Theorem 6] the authors quoted the following interesting result without any proof. Here we give an elegant short proof of the result.

Theorem 4. Let $(x_n)_{n=0}^{\infty}$ be a well-defined solution of the difference equation

$$x_{n+1} = 1 + \frac{x_n^2}{1 - 2x_n}, \quad n \in \mathbb{N}_0.$$
 (13)

Then

$$x_{2n-1} = \frac{(1-x_0)^{2^{2n-1}}}{(1-2x_0)\prod_{i=1}^{2n-2}(-(1-x_0)^{2^i} - x_0^{2^i})};$$
(14)

$$x_{2n} = \frac{x_0^{4^n}}{(1 - 2x_0) \prod_{i=1}^{2n-1} (-(1 - x_0)^{2^i} - x_0^{2^i})}.$$
 (15)

Proof. Note that for every well-defined solution of equation (13) we have

$$x_{n+1} = \frac{(x_n - 1)^2}{1 - 2x_n} = \left(\frac{(x_{n-1} - 1)^2}{1 - 2x_{n-1}} - 1\right)^2 \left(1 - 2\frac{(x_{n-1} - 1)^2}{1 - 2x_{n-1}}\right)^{-1} = \frac{x_{n-1}^4}{x_{n-1}^4 - (1 - x_{n-1})^4}$$

and consequently

$$1 - \frac{1}{x_{n+1}} = \left(1 - \frac{1}{x_{n-1}}\right)^4. \tag{16}$$

From (16) we have

$$1 - \frac{1}{x_{2n}} = \left(1 - \frac{1}{x_{2n-2}}\right)^4 = \dots = \left(1 - \frac{1}{x_0}\right)^{4^n} \quad \Rightarrow \quad x_{2n} = \frac{x_0^{4^n}}{x_0^{4^n} - (1 - x_0)^{4^n}},$$

which is even better form for this part of the solution, than that given in (15). Similarly, from (16) we obtain

$$1 - \frac{1}{x_{2n-1}} = \left(1 - \frac{1}{x_{2n-3}}\right)^4 = \dots = \left(1 - \frac{1}{x_1}\right)^{4^{n-1}} = \left(\frac{x_0}{x_0 - 1}\right)^{2 \cdot 4^{n-1}}.$$

Thus

$$x_{2n-1} = \frac{(1-x_0)^{2^{2n-1}}}{(1-x_0)^{2^{2n-1}} - x_0^{2^{2n-1}}},$$

which is another form of the expression in (14), as desired. \Box

REFERENCES

- R. P. Agarwal and E. M. Elsayed, On the solutions of fourth-order rational recursive sequence, Adv. Stud. Contep. Math. (2008) (in press).
- [2] R. P. Agarwal and E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contep. Math. 17 (2) (2008), 181-201.
- [3] L. Berezansky and E. Braverman, On impulsive Beverton-Holt difference equations and their applications, J. Differ. Equations Appl. 10 (9) (2004), 851-868.
- L. Berg and S. Stević, Linear difference equations mod 2 with applications to nonlinear difference equations, J. Differ. Equations Appl. 14 (7) (2008), 693-704.
- [5] M. Bohner and G. Sh. Guseinov, The convolution on time scales, Abstr. Appl. Anal. Vol. 2007, Article ID 58373, (2007), 24 pages.
- [6] H. Civciv and R. Türkmen, On the (s,t)-Fibonacci and Fibonacci matrix sequences, Ars Comb. 87 (2008), 161-173.
- [7] M. De la Sen and S. Alonso-Quesada, A control theory point of view on BevertonHolt equation in population dynamics and some of its generalizations, Appl. Math. Comput. 199 (2) (2008), 464-481.
- [8] M. De la Sen and S. A.Quesada, Model-matching-based control of the Beverton-Holt equation in ecology, Discrete Dyn. Nat. Soc. Vol. 2008, Article ID 793512, (2008), 21 pages.
- [9] L. Gutnik and S. Stević, On the behaviour of the solutions of a second order difference equation Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 27562, (2007), 14 pages.

- [10] L. H. Hu, W. T. Li and S. Stević, Global asymptotic stability of a second order rational difference equation, J. Differ. Equations Appl. 14 (8) (2008), 779-797.
- [11] G. Karakostas and S. Stević, On the recursive sequence $x_{n+1} = B + x_{n+k}/(\alpha_0 x_n + \cdots + \alpha_{k+1} x_{n+k+1} + \gamma)$, J. Differ. Equations Appl. 10 (9) (2004), 809-815.
- [12] D. S. Mitrinović and J. D. Kečkić, Methodes for Calculation of Finite Sums, Naučna knjiga, Beograd, (1984).
- [13] A. Y. Ozban, On the system of rational difference equations $x_n = a/y_{n+3}$, $y_n = by_{n+3}/x_{n+q}y_{n+q}$, Appl. Math. Comput. 188 (1) (2007), 833-837.
- [14] S. Ozen, I. Ozturk and F. Bozkurt, On the recursive sequence $y_{n+1} = (\alpha + y_{n+1})/(\beta + y_n) + y_{n+1}/y_n$, Appl. Math. Comput. 188 (1) (2007), 180-188.
- [15] S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math. 33 (1) (2002), 45-53.
- [16] S. Stević, On the recursive sequence $x_{n+1} = g(x_n, x_{n-1})/(A + x_n)$, Appl. Math. Lett. 15 (2002), 305-308.
- [17] S. Stević, On the recursive sequence $x_{n+1} = x_{n-1}/g(x_n)$, Taiwanese J. Math. 6 (3) (2002), 405-414.
- [18] S. Stević, On the recursive sequence x_{n+1} = α_n + (x_{n-1}/x_n) II, Dynam. Contin. Discrete Impuls. Systems 10a (6) (2003), 911-917.
- [19] S. Stević, On the recursive sequence $x_{n+1} = (\alpha + \beta x_{n-k})/f(x_n, \dots, x_{n-k+1})$, Taiwanese J. Math. 9 (4) (2005), 583-593.
- [20] S. Stević, On positive solutions of a (k + 1)-th order difference equation, Appl. Math. Lett. 19 (5) (2006), 427-431.
- [21] S. Stević, Asymptotic periodicity of a higher order difference equation, Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 13737, (2007) 9 pages.
- [22] S. Stević, Asymptotics of some classes of higher order difference equations, Discrete Dyn. Nat. Soc. Vol. 2007, Article 1D 56813, (2007), 20 pages.
- [23] S. Stević, On the recursive sequence $x_{n+1} = A + (x_n^p/x_{n+1}^r)$, Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 40963, (2007), 9 pages.
- [24] S. Stević, On the recursive sequence $x_n = (\alpha + -\frac{k}{i=1} \alpha_i x_{n-p_i})/(1 + -\frac{m}{j=1} \beta_j x_{n-q_j})$, J. Differ. Equations Appl. 13 (1) (2007), 41-46.
- [25] S. Stević, On the recursive sequence $x_n = 1 + (-\frac{k}{i=1}\alpha_i x_{n-p_i})/(-\frac{m}{j=1}\beta_j x_{n-q_i})$, Discrete Dyn. Nat. Soc. Vol. 2007, Article 1D 39404, (2007), 7 pages.
- [26] S. Stević, Boundedness and global stability of a higher-order difference equation, J. Differ. Equations Appl. 14 (10-11) (2008), 1035 - 1044.
- [27] S. Stević, On the difference equation $x_{n+1} = \alpha + (x_{n-1}/x_n)$, Comput. Math. Appl. 56 (5) (2008), 1159-1171.
- [28] S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal. TMA 70 (2009), 839-848.
- [29] S. Stević and K.Berenhaut, The behaviour of the positive solutions of the difference equation $x_n = f(x_{n-2})/g(x_{n-1})$, Abstr. Appl. Anal., Vol. 2008, Article ID 53243, (2008), 9 p.
- [30] F. Sun, On the asymptotic behavior of a difference equation with maximum, Discrete Dyn. Nat. Soc. Vol. 2008, Article ID 243291, (2008), 6 pages.
- [31] T. Sun and H. Xi. Existence of monotone solutions of a difference equation, Discrete Dyn. Nat. Soc. Vol. 2008. Article ID 917560, (2008), 8 pages.
- [32] Y. Yang and X. Yang, On the diference equation $x_{n+1} = (px_{n-s} + x_{n-t})/(qx_{n-s} + x_{n-t})$, Appl. Math. Comput. 203 (2) (2008), 903-907.

Bratislav Iričanin, Faculty of Electrical Engineering, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia, E-mail: iricanin@etf.bg.ac.rs

Stevo Stević, Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 36/4H, 11000 Beograd, Serbia, E-mail: sstevic@ptt.rs