ON SOME RATIONAL DIFFERENCE EQUATIONS
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Abstract
We extend and give short proofs of some recent results regarding some
classes of rational difference equations.

1. INTRODUCTION

Recently there has been a huge interest in studying rational difference cqua-
tions. see. c.g.. [1-32] and the references therein. In {1] and [2] were studied
solutions of some particular eases of the following classes of difference cquations
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where a.b. ¢ and d are nonzero numbers, and
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b—cry_y
where k.l.s € Ny and a.b.e.d > 0. Explicit solution of some subclasses of
equations (1) and (2) are given. Our aim here is to give short proofs of the
wain results in (1] and (2], as well as to extend some of them.

2. ON SOLUTIONS OF EQUATION (1)
[u this section we prove that equation (1) can be solved explicitly, from
which the main results in (1] casily follow.
Theorem 1. All well-defined solutions of Eq. (1) can be solved explicitly.

Proof. First note that if r,,, = 0 for some ny € Ny. then Lng+1 = 0, so that
Lny+a 15 Dot defined. Henee, assume that ¢, # 0, n = =3, =2, —-1,0.1.... .
For such solutions of equation (1) we have that
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If we nse the following change y,41 = Lnp1 /20 We obtain

acln_y+ad + b

, neN, 3
CYn-3 + d ( )

Yn =

By using the changes =) = Yam+i- L = 1,2,3,mm € Ny U {~1}, we obtain
that equation (3) is equivalent with the following three equations
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squations in (1) can be solved by using the (Imngc A= tf,l,’rl/uf,l,) + f, where
£ will he suitable chosen. Indeed, from (4) we have
0 0 o)
'('I‘)* L (ef +d) "l‘t' (f —a)e (l) + e+ fd—acf —ad—b=0.
oy | Um ”:u—l
By choosing [ = —d/c¢, we obtain

uf,',)H (ae + d)ol) — ot | =

¢ m-—

This equation is a homogencous linear second-order difference cquation with
coustant cocflicients, whose solutions have the following form

o) = ) AP + Ay, where ey, o € R,

ac+dx /(ac+ d)? + 4cb
/\"g = 2% .

i ) . )
or 1«,\,,) = (e + me) AP if (e + ll)z + b =0.

From all above mentioned the general solution of equation (1) can be casily
found, finishing the proof of the theorem. 0O

and

Remark 1. Note that the method described above does not depend on the
values of parameters a, b. ¢ and d, so that it can be applied to, for example, the
following four particular cases (see Theorems 4-7 in [1])

Lpd'pn -3

Loy =&, F ——m8.
Ty_ntr,_y

We leave the caleulations to the reader.

Remark 2. Note that the following 1 + k-th order difference equation

bry nir :

1~-kfn—m—k

Ly = g, g+ n € Ny,
Ty + ATy

whore A € N, ean be treated similarly as equation (1).

3. ON THE EQUATION Iy = @ + 2224
In 2. Theorem 4] it was proved that every solution of the difference equation
Lply—i
Ty =a+ —2—. neNy, (5)
a—.r,

with r_j.xg € R\ {0.a}, is periodic with period four. The proof was given
by the method of induction. The next result gives a short proof of a slightly
different result. as well as a natural explanation of it.
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Theorem 2. [Lvery well-defined solution of Eq. (5) is peviodic with perviod four.

Proof. If @, = 0. for some ny € Ny, then w41 = a so that Ty, b2 ds
not. defined. 1f £_y = 0, then 2y = «@, so that w5 is not defined. If Ly, = @,
for some ny € Ny, then r,,, 41 is not defined. Hence we inay assume .r,, # 0,
n€Nyu{-1} and r,, # a. n € Ny.

Now note that for such solutions of equation (5) the following relation holds

-1
Lyl —a Iy —a
—— = ——] . neN,,
I €y -

]

and consequently the sequence === js two periodic. Thus. we have

Loy — - £y o-a _ £y =b  and Loy —a _ ry —a _ _i
Ly 20 a — Iy Ioan | £ b
or
1 .
Longl =beo, +a and g, = —-’-)‘.112,1..4 + a. (6)

Replacing the second equation in (6) into the first one we obtain
1
o) = b("T)-r'.!n—l +a)ta=—re_y +a(l +5). (7

By using (7) twice. we obtain

Py = =L2a—1 {1 +0) = —(—Zop_g +a(l + b)) + a{l +b) = x9,_3. (8)

Similarly
1 1 7}
Loy = —=lopy +a=—=(bra_2 +a)+a=—r9,_y +a— —,
b b b
from which it follows that
a a a
£y = =2 -2 +a— E = —(—Zop—g +a— 5) +a—- [—) = dlopaiq. (9)

IFrom (8) and (9) the result follows. O

Remark 3. The formulation of [2. Theorem 4] is not quite correct. Namely. if
a?
&Iy = ————,
a —.r_y
where 2-) € R\ {0,a}. then z; = 0 and 23 = «a, so that w3 is not defined.
Hence. we add the phrase “well-defined” in our version of the result. The same
remark can be given for the next two results which we are proved in the sequel.
4. ON THE EQUATION i, 41 = | 4 fusifecz

[

In [2, Theorem 5] was given a long inductive proof of the following result.
Here we give a more natural short proof of Theorem 3.
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Theorem 3. Let ()Y, . be a well-defined solution of the difference equation

R ]

Eapr = L+ n € Np. (10)
1 -z,
Then
n-1 g 27 roy n
Fone) = Sk roy: 1
"2 ! ;(l*.lf()) +(1—.’L‘(|> -1 ( l)
n—1 7 n
1 -rg (170 .
Fo—— Z“(——I)I<_:.2_) + (—-1) (T) ro. (12)
J =

Proof. If &, = 0 for some ng € NgU {—1}, then ., 4o = 1 so that r, 4
is not defined. If ey = 0, then &y = 1, so that xy is not defined. If x,, =1,
for some ny € Ny, then o, 4 is not defined. Hence we mmay assume x, # 0,
neNyu{-2. -1} and =, # 1. n € Ng.

Now note that for such solutions of equation (10) the following cquality holds
(#ney — D/wnoy = —[(arn = 1)/p=2)~". from which it follows that the sequence
(Lrpr — 1)/ =y is two periodie. Thus

Loyer— 1 =1 &r_o £
X = = B Lopyl = Lop—1 + 1
i ) £ | — £o 1- Iy
and
T N | xg — 1
== & Loy = Loz + L
-2 )} g ]

Now note that g, and .rw, - are solutions of the following two linear first-
order difference equations with constant coefficients
9 £ — 1
Yo1 +1 and 2z, = fnot + 1L
=g g

2y

i =

The general solution of the lincar first-order difference equation with constant
cocfficients can be found in any book on difference cquation (sce, for example,
[12]). from which formulac (11) and (12) follow. 0O

5. ON THE EQUATION rpyy = 1 + 25—

It [2. Theorem 6] the authors quoted the following interesting result without
any proof. Here we give an elegant short proof of the result.

Theorem 4. Let ()%, be a well-defined solution of the difference equation

2

) _ L5 :
Fasy =14 —l “or. ., ne N(). (1.3)
Then
(1= o)™
Fano1 = ) (14)

(1= 2e0) [T;2y (=1 = wa)* _"’5'):
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4

ran = 2"_1"“ 9 2y (15)
(1 - 2-'70) Hi:l (_(1 - "’l))‘ -y )

Proof. Note that for every well-defined solution of equation (13) we have

i 2 . 2 2 2y ! .-
ey = {ay = 1) _ ((.L,,_; -1) —l) (1_2(13,,_1 -1 ) - J,',_l
r

I -2z, 1 -2z, 1 -2x,_, et = (L= p_y)?
1 1!
| - = (1 - ——) . (16)
RTES -y
From (16) we have

[ N L e
- -(1- == (1=-— = I =
Eap ( Fap-2 ) ( Jfo) 12‘ 2" = (1= xo)!

which is even better form for this part of the solution, than that given in (15).
Similarly. from (16) we obtain

1 et pqu-t
1 | £
l—;=(1—--v———) =...—_-(1___) =( Lo ) ‘
421 Lo -3 £ £g— 1

Thus

aed consequently

(l _ .130)2-.“_'
(L= gg)2*"' = .I:%zn_l '

which is another form of the expression in (14), as desired. [

g1 =
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