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Abstract

As a part of the author’s work of enumerating the edge-forwarding
indices of Frobenius graphs, I give a class of valency four Frobenius
graphs derived from the Frobenius groups Z,,2.,; % Zs. Following
the method of Fang, Li and Praeger, some properties including the
diameter and the type of this class of graphs are given(Theorem 3.2).
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1 Introduction

In [2], Chung et al introduced the concept of forwarding index of commu-
nication networks. In general, we use a graph to model an interconnection
network which consists of hardware and/or software entities that are inter-
connected to facilitate efficient computation and communications [5]. Then
in [6], Heydemann et al defined the edge-forwarding index 7(I") of a finite
graph I' as a measure of the maximal load carried by an edge of I". One
may also refer to [13] for more details.

A Frobenius group is a transitive permutation group on a set V which
is not regular on V, but has the property that the only element of G
which fixes more than one point of V is the identity element of G. It was
shown by Thompson (7, 8] that a finite Frobenius group G has a nilpotent
normal subgroup K, called the Frobenius kernel, which acts regularly on
V. Thus, K is the direct product of its Sylow subgroups and G is the
semidirect product K x H, where H is the stabilizer of a point of V. Each
such subgroup H is called a Frobenius complement of K in G. Gorenstein
[4, pp. 38 and 339] showed that cvery element of H \ {1} induces an
automorphism of K by conjugation which fixes only the identity clement
of K. For a group-theoretic terminology not defined in this paper, we refer
the reader to [4, 9].
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Given a finite group G and a generating set S of G such that § = S~}
and 1 ¢ S, the Cayley graph T’ = C(G, S) on G relative to S has vertex set
G and edge set {{g,gs} | g € G, s € S}. For a graph-theoretic terminology
not defined in this paper, we refer the reader to [1, 10]. Fang ct al in
[3] introduced the G-Frobenius graph T' as a connected orbital graph of
a Frobenius group G = KxH with Frobenius kernel K and Frobenius
complement H. They showed that almost all finite orbital regular graphs
are Frobenius graphs and identified a G-Frobenius graph I';, G = KxH,
as a Cayley graph I’ = Cay(XK, S) for K and for some Cayley subset S.
For a G-Frobenius graph I', where G = K x H, we say that T’ has type-
(n1,...,nq) if d is the diameter of " and, for each ¢ = 1,...,d, n; is the
number of H-orbits of vertices at distance 7 from the identity element in T.

In this paper, I give a class of Frobenius graphs of valency 4 arising
from the Frobenius group G, G = KxH where K = Z4,2,; and H = Z,.
As a result, the diameter and the edge-forwarding index of each graph are
given (Theorem 3.2).

2 Some known results of Frobenius graphs

Given a permutation group G on a set V, the G-action on V induces a
natural action on V x V by (z,9)? = (a9,y9) for (z,y) e VxV and g € G.
The orbits of G in the action on V x V are called orbitals. Note that the set
A = {(z,z) | z € V} is G-invariant as well as the set A® = {(z,y) | z,y €
V,z # y}. A G-orbit in A is called a trivial orbital and that in A° is called
a nontrivial orbital. Let T be a connected graph with vertex set V, and let
G < Aut(T"). Then I is said to be a G-orbital regular graph if G is regular
on each of its orbitals in A€, and there is a nontrivial G-orbital O such that
the edge set is E(T) = {{z,y} | (z,y) € O}. A graph I' is orbital regular if
it is G-orbital regular for some G < Aut(T'). Fang et al. [3] introduced a
Frobenius graph as follows:

Definition 2.1 Let G be a Frobenius group on a set V. A G-Frobenius
graph is defined to be a connected graph I’ with vertex set V(I') = V and
edge set E(T') = {{z,y} | (z,y) € O} for some nontrivial G-orbital O in
AC,

Let G = K x H be a Frobenius group on a set V and let " be a G-
Frobenius graph. Since K is regular on the vertex set V of I', we may
identify V' with K in such a way that K acts by left multiplication.

Example 2.1 For any prime number p, the group G = Z, x Z,_; is a

Frobenius group, where K = Z,, and H = Z,_,. Here, the group G acts
on K in such a way that K acts on itself by translation and H acts on K
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by multiplication. Thus G acts regularly on each nontrivial orbital and the
G-Frobenius graph is isomorphic to the complete graph K.

Lemma 2.1 ([3, Theorem 1.4])) Let G = K x H be a Frobenius group with
Frobenius kernel K and Frobenius complement H. Then a G-Frobenius
graph is a Cayley graph C(K,S) for K and for some generating subset S
of the form

S = zf if |[H| is even or |z]| = 2, (1)
Tl ¥ u(eH)¥ if |H|is odd and |z| # 2,

wherez € K such that (z7) = K. Conversely, if & € K satisfies (z¥) = K,
then C(K, S) is G-Frobenius with S defined in the equation (1).

Now we turn to the problem of computing the edge-forwarding indices of
Frobenius graphs. The load of an edge e in a given routing R of a graph T' is
the number of paths of R going through e. We use #n(T', R, €) to denote the
load of an edge e in a given routing R of a graph I'. Heydemann et al defined
the edge-forwarding indez of (T, R) as n(T', R) = max.cg(r) 7(T, R, e) and
the edge-forwarding index m(I’) of I' as #(I') = ming #(T, R). As for G-
Frobenius graphs, Fang et al gave the following expression for #(I') in
terms of the type of I.

Lemma 2.2 ([3, Theorem 1.6]) Let G = KxH be a Frobenius group and
let T be a G-Frobenius graph of type-(61,92, ...,64), then

2% i6; if|H|is even or |z| =2

r) = i=1 1% ; 2

(™) 4 i6; if|H|is odd and |z| > 2. @
i=1

Moreover, |H| is odd and |z| > 2 if and only if §; = 2.

3 A Class of Valency-4 Frobenius Graphs

Lemma 3.1 Let G = KxH be a Frobenius group, where K = Zyy,2,, and
H = 7Z4. View K as an additive abelian group, then S = {*1,+2n} is a
Cayley subset of K satisfying Lemma 2.1.

Proof: Assume H 2 (g). If 1° = i for some integer 1 < i < 4n? + 1, then

1°° = {4 =1 (mod 4n%+1). An easy calculation shows that i = 2n fits for.
Thus S = {1, +2n}. o

As an example of such Frobenius graphs, we refer the reader to Figure
1, where some edges are omitted from the graph. One may refer to [11, 12]
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for more information on Frobenius graphs. In a graph I, we use N;(u) to
denote the set of vertices in I with distance ¢ from a vertex u and d(u,v)
the distance between « and v.
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Figure 1: A tetravalent Frobenius graph for n =2, K =Z;7 and H = Z4

Theorem 3.2 Let G = KxH be a Frobenius group with K = Z4,2 1 and
H = Z4. If we choose S = {£1,£(2n)}, then the following statements
hold.

(1) Any vertex k € N;(0) of the Frobenius graph I = Cay(K,S) can be
written uniquely as k = z + 2ny for some integers x, y satisfying
2l + o] = i;

(2) the diameter of " is 2n —1;

(3) the type of T is (1,2,...,n—1,n,n—1,...,2,1) and its edge-forwarding
index is 2n°.

Proof: Because K = Zy,24, onc can write K as K = {0, £1,42,..., +(2n?)}.
For any k € T, to find a shortest way in I" from 0 to & is to express &k by
the least number of elements in S. Notice that if we choose 1 we don’t
need to choose —1, and vice versa, in order to acquire the most brief ex-
pression. The casc is the same for (2n + 1) and —(2n +1). So if k£ € N;(0),
k can be uniquely expressed as k = z + (2n + 1)y for some integers z,
y with |z] + |y| = ¢. On the contrary, a vertex k having an expression
k = z + (2n + 1)y clearly satisfies d(k,0) < |z| + |y|.

One can see that N1(0) = S. Let A; = {(z,y) | |z| + |yl =i} and A; =
{z + 2ny| (z,y) € A;}, then N;(0) C A;. So in order to count the vertices
in N;(0) we need only consider the integer pairs in A;. Define a function
f : Z x Z — Z which maps the integer pair (a,b) to (a + 2nd). A direct
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calculation shows that the image set of f on A, is f(A,) = {£2n?, £(2n% -
2n+1), +£(2n?~2n-1),...,+(3n-1),£(n+1), £n}. Because +2n2 € N, (0)
and when |z|+[y| < n and (z,y) # (0, £n), |z + 2ny (mod 4n? +1)| < 2n2.
So, the elements we acquire by now are different from each other and there
are 47 elements in N;(0) for 1 <i < n.

When i > 1, f(An4i) = {£(2n%—2ni+1), £(2n2—2ni+2n),...,£(2n%—
2 +14),£(2n% — i+ 1), £(2n2 — i), ..., £(2ni +n), £(2ni —n), £(2ni —n +
1),...,2(n—i+1),2(rn+1)}. But £(2n?—2ni+1) € N,_;11(0), £(2n2 —
2ni+2n) € Np_i41(0),...,+(2n% —2n +14) € Npyi—1(0),£(20%2 —i+1) €
Nn+i-—l(0)a :l:(2n2 - ’L) (S Nn+i(0), ceuy :':(2112 + n) € Nn+i(0)) :!:(2m - n) €
Nn+i—l(0)y ﬂ:(2m—n+ 1) € Nn+i—l(0)1 ceey :!:(TL—Z-'-I) € Np—it1 (0), :l:(n+
1) € Np_i41(0). Therefore, the number of elements in N, ;(0) is 4(n — 1).

Following the preceding discussion, there are 4i elements in N;(0) for
1 £i £ n and 4(n — j) elements in N,;(0) when j > 1. However,
14+ 2% ,4i+ 2;3;114(n — j) = 4n? + 1 which shows that the diameter of I is
d =2n—1. By Lemma 2.2, the type of I" is (1,2, ...,n—1,n,n—1,...,2,1)
and m(T") = 2n3. O
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