A family of tetravalent Frobenius graphs *

Yan Wang

Mathematics, Yan Tai University, Yan Tai 264005, China. E-mail:yanwangmath@yahoo.com.cn

Abstract

As a part of the author's work of enumerating the edge-forwarding indices of Frobenius graphs, I give a class of valency four Frobenius graphs derived from the Frobenius groups $\mathbb{Z}_{4n^2+1} \rtimes \mathbb{Z}_4$. Following the method of Fang, Li and Praeger, some properties including the diameter and the type of this class of graphs are given (Theorem 3.2).

Key words: Cayley graph; Frobenius graph; Edge-forwarding index 2000 Mathematics subject classification: 05C25

1 Introduction

In [2], Chung et al introduced the concept of forwarding index of communication networks. In general, we use a graph to model an interconnection network which consists of hardware and/or software entities that are interconnected to facilitate efficient computation and communications [5]. Then in [6], Heydemann et al defined the edge-forwarding index $\pi(\Gamma)$ of a finite graph Γ as a measure of the maximal load carried by an edge of Γ . One may also refer to [13] for more details.

A Frobenius group is a transitive permutation group on a set V which is not regular on V, but has the property that the only element of G which fixes more than one point of V is the identity element of G. It was shown by Thompson [7, 8] that a finite Frobenius group G has a nilpotent normal subgroup K, called the Frobenius kernel, which acts regularly on V. Thus, K is the direct product of its Sylow subgroups and G is the semidirect product $K \rtimes H$, where H is the stabilizer of a point of V. Each such subgroup H is called a Frobenius complement of K in G. Gorenstein [4, pp. 38 and 339] showed that every element of $H \setminus \{1\}$ induces an automorphism of K by conjugation which fixes only the identity element of K. For a group-theoretic terminology not defined in this paper, we refer the reader to [4, 9].

^{*}supported by the Natural Science Foundation of China(No. 10571005) and the Doctoral Foundation of Yan Tai University (No. SX03B2)

Given a finite group G and a generating set S of G such that $S = S^{-1}$ and $1 \notin S$, the Cayley graph $\Gamma = \mathcal{C}(G,S)$ on G relative to S has vertex set G and edge set $\{\{g,gs\} \mid g \in G, s \in S\}$. For a graph-theoretic terminology not defined in this paper, we refer the reader to [1, 10]. Fang et al in [3] introduced the G-Frobenius graph Γ as a connected orbital graph of a Frobenius group $G = K \rtimes H$ with Frobenius kernel K and Frobenius complement H. They showed that almost all finite orbital regular graphs are Frobenius graphs and identified a G-Frobenius graph Γ , $G = K \rtimes H$, as a Cayley graph $\Gamma = \operatorname{Cay}(K,S)$ for K and for some Cayley subset S. For a G-Frobenius graph Γ , where $G = K \rtimes H$, we say that Γ has type- (n_1, \ldots, n_d) if G is the diameter of Γ and, for each G is the number of G-orbits of vertices at distance G from the identity element in Γ .

In this paper, I give a class of Frobenius graphs of valency 4 arising from the Frobenius group G, $G = K \rtimes H$ where $K = \mathbb{Z}_{4n^2+1}$ and $H = \mathbb{Z}_4$. As a result, the diameter and the edge-forwarding index of each graph are given (Theorem 3.2).

2 Some known results of Frobenius graphs

Given a permutation group G on a set V, the G-action on V induces a natural action on $V \times V$ by $(x,y)^g = (x^g,y^g)$ for $(x,y) \in V \times V$ and $g \in G$. The orbits of G in the action on $V \times V$ are called *orbitals*. Note that the set $\Delta = \{(x,x) \mid x \in V\}$ is G-invariant as well as the set $\Delta^c = \{(x,y) \mid x,y \in V, x \neq y\}$. A G-orbit in Δ is called a *trivial orbital* and that in Δ^c is called a *nontrivial orbital*. Let Γ be a connected graph with vertex set V, and let $G \subseteq \operatorname{Aut}(\Gamma)$. Then Γ is said to be a G-orbital regular graph if G is regular on each of its orbitals in Δ^c , and there is a nontrivial G-orbital G such that the edge set is $E(\Gamma) = \{\{x,y\} \mid (x,y) \in O\}$. A graph Γ is orbital regular if it is G-orbital regular for some $G \subseteq \operatorname{Aut}(\Gamma)$. Fang et al. [3] introduced a Frobenius graph as follows:

Definition 2.1 Let G be a Frobenius group on a set V. A G-Frobenius graph is defined to be a connected graph Γ with vertex set $V(\Gamma) = V$ and edge set $E(\Gamma) = \{\{x,y\} \mid (x,y) \in O\}$ for some nontrivial G-orbital O in Δ^c .

Let $G = K \rtimes H$ be a Frobenius group on a set V and let Γ be a G-Frobenius graph. Since K is regular on the vertex set V of Γ , we may identify V with K in such a way that K acts by left multiplication.

Example 2.1 For any prime number p, the group $G = \mathbb{Z}_p \rtimes \mathbb{Z}_{p-1}$ is a Frobenius group, where $K = \mathbb{Z}_p$ and $H = \mathbb{Z}_{p-1}$. Here, the group G acts on K in such a way that K acts on itself by translation and H acts on K

by multiplication. Thus G acts regularly on each nontrivial orbital and the G-Frobenius graph is isomorphic to the complete graph K_p .

Lemma 2.1 ([3, Theorem 1.4]) Let $G = K \rtimes H$ be a Frobenius group with Frobenius kernel K and Frobenius complement H. Then a G-Frobenius graph is a Cayley graph C(K, S) for K and for some generating subset S of the form

$$S = \begin{cases} x^H & \text{if } |H| \text{ is even or } |x| = 2, \\ x^H \cup (x^{-1})^H & \text{if } |H| \text{ is odd and } |x| \neq 2, \end{cases}$$
 (1)

where $x \in K$ such that $\langle x^H \rangle = K$. Conversely, if $x \in K$ satisfies $\langle x^H \rangle = K$, then C(K, S) is G-Frobenius with S defined in the equation (1).

Now we turn to the problem of computing the edge-forwarding indices of Frobenius graphs. The load of an edge e in a given routing R of a graph Γ is the number of paths of R going through e. We use $\pi(\Gamma, R, e)$ to denote the load of an edge e in a given routing R of a graph Γ . Heydemann et al defined the edge-forwarding index of (Γ, R) as $\pi(\Gamma, R) = \max_{e \in E(\Gamma)} \pi(\Gamma, R, e)$ and the edge-forwarding index $\pi(\Gamma)$ of Γ as $\pi(\Gamma) = \min_{R} \pi(\Gamma, R)$. As for G-Frobenius graphs, Fang et al gave the following expression for $\pi(\Gamma)$ in terms of the type of Γ .

Lemma 2.2 ([3, Theorem 1.6]) Let $G = K \rtimes H$ be a Frobenius group and let Γ be a G-Frobenius graph of type- $(\delta_1, \delta_2, ..., \delta_d)$, then

$$\pi(\Gamma) = \begin{cases} 2\sum_{i=1}^{d} i\delta_{i} & \text{if } |H| \text{ is even or } |x| = 2, \\ \sum_{i=1}^{d} i\delta_{i} & \text{if } |H| \text{ is odd and } |x| > 2. \end{cases}$$
 (2)

Moreover, |H| is odd and |x| > 2 if and only if $\delta_1 = 2$.

3 A Class of Valency-4 Frobenius Graphs

Lemma 3.1 Let $G = K \rtimes H$ be a Frobenius group, where $K \cong \mathbb{Z}_{4n^2+1}$ and $H \cong \mathbb{Z}_4$. View K as an additive abelian group, then $S = \{\pm 1, \pm 2n\}$ is a Cayley subset of K satisfying Lemma 2.1.

Proof: Assume $H \cong \langle \sigma \rangle$. If $1^{\sigma} = i$ for some integer $1 < i < 4n^2 + 1$, then $1^{\sigma^4} = i^4 \equiv 1 \pmod{4n^2 + 1}$. An easy calculation shows that i = 2n fits for. Thus $S = \{\pm 1, \pm 2n\}$.

As an example of such Frobenius graphs, we refer the reader to Figure 1, where some edges are omitted from the graph. One may refer to [11, 12]

for more information on Frobenius graphs. In a graph Γ , we use $N_i(u)$ to denote the set of vertices in Γ with distance i from a vertex u and d(u, v) the distance between u and v.

Figure 1: A tetravalent Frobenius graph for $n = 2, K = \mathbb{Z}_{17}$ and $H = \mathbb{Z}_4$

Theorem 3.2 Let $G = K \rtimes H$ be a Frobenius group with $K \cong \mathbb{Z}_{4n^2+1}$ and $H \cong \mathbb{Z}_4$. If we choose $S = \{\pm 1, \pm (2n)\}$, then the following statements hold.

- (1) Any vertex $k \in N_i(0)$ of the Frobenius graph $\Gamma = \text{Cay}(K, S)$ can be written uniquely as k = x + 2ny for some integers x, y satisfying |x| + |y| = i;
- (2) the diameter of Γ is 2n-1;
- (3) the type of Γ is (1, 2, ..., n-1, n, n-1, ..., 2, 1) and its edge-forwarding index is $2n^3$.

Proof: Because $K \cong \mathbb{Z}_{4n^2+1}$, one can write K as $K = \{0, \pm 1, \pm 2, ..., \pm (2n^2)\}$. For any $k \in \Gamma$, to find a shortest way in Γ from 0 to k is to express k by the least number of elements in S. Notice that if we choose 1 we don't need to choose -1, and vice versa, in order to acquire the most brief expression. The case is the same for (2n+1) and -(2n+1). So if $k \in N_i(0)$, k can be uniquely expressed as k = x + (2n+1)y for some integers x, y with |x| + |y| = i. On the contrary, a vertex k having an expression k = x + (2n+1)y clearly satisfies $d(k,0) \le |x| + |y|$.

One can see that $N_1(0) = S$. Let $\Lambda_i = \{(x,y) \mid |x| + |y| = i\}$ and $\Delta_i = \{x + 2ny \mid (x,y) \in \Lambda_i\}$, then $N_i(0) \subseteq \Delta_i$. So in order to count the vertices in $N_i(0)$ we need only consider the integer pairs in Λ_i . Define a function $f: \mathbb{Z} \times \mathbb{Z} \mapsto \mathbb{Z}$ which maps the integer pair (a,b) to (a+2nb). A direct

calculation shows that the image set of f on Λ_n is $f(\Lambda_n) = \{\pm 2n^2, \pm (2n^2 - 2n+1), \pm (2n^2 - 2n-1), \dots, \pm (3n-1), \pm (n+1), \pm n\}$. Because $\pm 2n^2 \in N_n(0)$ and when $|x| + |y| \le n$ and $(x, y) \ne (0, \pm n), |x + 2ny \pmod{4n^2 + 1}| < 2n^2$. So, the elements we acquire by now are different from each other and there are 4i elements in $N_i(0)$ for $1 \le i \le n$.

When $i \geq 1$, $f(\Lambda_{n+i}) = \{\pm (2n^2 - 2ni + 1), \pm (2n^2 - 2ni + 2n), \dots, \pm (2n^2 - 2n + i), \pm (2n^2 - i + 1), \pm (2n^2 - i), \dots, \pm (2ni + n), \pm (2ni - n), \pm (2ni - n + 1), \dots, \pm (n - i + 1), \pm (n + i)\}$. But $\pm (2n^2 - 2ni + 1) \in N_{n-i+1}(0), \pm (2n^2 - 2ni + 2n) \in N_{n-i+1}(0), \dots, \pm (2n^2 - 2n + i) \in N_{n+i-1}(0), \pm (2n^2 - i + 1) \in N_{n+i-1}(0), \pm (2n^2 - i) \in N_{n+i}(0), \dots, \pm (2ni + n) \in N_{n+i}(0), \pm (2ni - n) \in N_{n+i-1}(0), \pm (2ni - n + 1) \in N_{n-i+1}(0), \dots, \pm (n-i+1) \in N_{n-i+1}(0), \pm (n+i) \in N_{n-i+1}(0)$. Therefore, the number of elements in $N_{n+i}(0)$ is 4(n-i). Following the preceding discussion, there are 4i elements in $N_i(0)$ for $1 \leq i \leq n$ and 4(n-j) elements in $N_{n+j}(0)$ when $j \geq 1$. However, $1 + \sum_{i=1}^{n} 4i + \sum_{j=1}^{n-1} 4(n-j) = 4n^2 + 1$ which shows that the diameter of Γ is d = 2n - 1. By Lemma 2.2, the type of Γ is $(1, 2, \dots, n-1, n, n-1, \dots, 2, 1)$ and $\pi(\Gamma) = 2n^3$.

References

- [1] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974.
- [2] F.R.K. Chung, E.G. Hoffman, M.I. Reiman and B.E. Simon, The for-warding index of communication networks, *IEEE Trans. Inform. Theory*, 1987, 33: 224-232.
- [3] X.G. Fang, C.H. Li, C.L. Praeger, On orbital regular graphs and Frobenius graphs, *Discrete Math*, 1998, **182**: 85-99.
- [4] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [5] M.C. Heydemann, Cayley graphs and interconnection networks, in Graph Symmetry, Klumer Academic Publications, 1997: 164-224.
- [6] M.C. Heydemann, J.C. Meyer and D. Sotteau, On the forwarding indices of networks, *Discrete Appl. Math*, 1989, 23: 103-123.
- [7] J.G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, *Math. Acad. Sci. USA*, 1959, 45: 578-581.
- [8] J.G. Thompson, Normal p-complements for finite groups, Math. Z, 1960, 72: 332-354.

- [9] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
- [10] Y. Wang and R.Q. Feng, Regular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups, Acta Mathematica Sinica, English Series, 2005, 21, No. 4: 773-778.
- [11] Y. Wang, X.G. Fang and D.F. Hsu, On the Edge-forwarding Indices of Frobenius Graphs, to appear in Acta Mathematica Sinica.
- [12] Y. Wang and J.H. Kwak, Frobenius maps, Discrete Math, 2005, 303: 117-130.
- [13] J.M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.