ON THE SECOND ORDER LINEAR RECURRENCES BY
GENERALIZED DOUBLY STOCHASTIC MATRICES

E. KILIC! AND D. TASCI?

ABSTRACT. In this paper, we consider the relationships between the
second order linear recurrences, and the generalized doubly stochastic
permanents and determinants.

1. INTRODUCTION

The Fibonacci sequence, {F,}, is defined by the recurrence relation, for
n>1
Fopy=F,+F,, (1.1)
where Fy = 0, F; = 1. The Lucas Sequence, {L,}, is defined by the
recurrence relation, forn > 1

Log1=Ln+Lnoy (1.2)

where Ly =2, L, = 1.

The well-known Fibonacci, Lucas and Pell numbers can be generalized
as follows: Let A and B be nonzero, relatively prime integers such that
D = A? — 4B # 0. Define sequences {u,} and {v,} by, for all n > 2 (see
[14]),

Un = Aup—1 — Bup—2 (1.3)
vy, = Avy_1— By, o (1.4)

where g =0, u3 =land vg =2,v1 = A. If A=1and B = —1, then
up = F, (the nth Fibonacci number) and v,, = L,, (the nth Lucas number).
If A=2 and B = -1, then u, = P, ( the nth Pell number).
An alternative is to let the roots of the equation ¢2 — At + B = 0 be, for
n 2 0 n n
=9 -7 — gt An
Up = o and v, = o"+4" (1.5)
There are many connections between permanents or determinants of
tridiagonal matrices and the Fibonacci and Lucas numbers. For example,
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Minc [12] define a nxn super diagonal (0, 1) —matrix F (n, k) forn > k > 2,
and show that the permanent of F (n, k) equals to the generalized order-k
Fibonacci numbers. Also he give some relations involving the permanents
of some (0, 1) —Circulant matrices and the usual Fibonacci numbers.

In [8], the authors present a nice result involving the permanent of an
(-1,0,1)-matrix and the Fibonacci Number F,41. The authors then ex-
plore similar directions involving the positive subscripted Fibonacci and
Lucas Numbers as well as their uncommon negatively subscripted counter-
parts. Finally the authors explore the generalized order-k Lucas numbers,
(see [19] and [7] for more detail the generalized Fibonacci and Lucas num-
bers), and their permanents.

In [9] and [10], the authors gave the relations involving the generalized
Fibonacci and Lucas numbers and the permanent of the (0, 1) —matrices.
The results of Minc, [12], and the result of Lee, (9], on the generalized Fi-
bonacci numbers are the same because they use the same matrix. However,
Lee proved the same result by a different method, contraction method for
the permanent (for more detail of the contraction method see [1]).

In [11], Lehmer proves a very general result on permanents of tridiagonal
matrices whose main diagonal and super-diagonal elements are ones and
whose subdiagonal entries are somewhat arbitrary.

Also in [16] and [17], the authors define a family of tridiagonal matrices
M (n) and show that the determinants of M (n) are the Fibonacci numbers
Fopy2. In [4] and[3), the family of tridiagonal matrices H (n) and the
authors show that the determinants of H (n) are the Fibonacci numbers
F,,. In a similar family of matrices, the (1,1) element of H (n) is replaced
with a 3. The determinants, [2], now generate the Lucas sequence L.

In [5], the authors find the families of (0, 1) —matrices such that perma-
nents of the matrices, equal to the sums of Fibonacci and Lucas numbers.

Recently, in [6], the authors define two tridiagonal matrices and then
give the relationships the permanents and determinants of these matrices
and the second order linear recurrences.

The permanent of an n-square matrix A = (a;;) is defined by

n
perA = Z Hat’a(i)

o€Sy, i=1

where the summation extends over all permutations o of the symmetric
group Sy. Also one can find more applications of permanents in [13].

Let A = [a;;] be an m x n real matrix row vectors a;,ap,...,am. We
say A is contractible on column (resp. row.) k if column (resp. row.) k
contains exactly two nonzero entries. Suppose A is contractible on column
k with ai # 0 # ajx and i # j. Then the (m — 1) x (n — 1) matrix A;;:x
obtained from A by replacing row 7 with a;ra; + a;x@; and deleting row



j and column k is called the contraction of A on column k relative to
rows i and j. If A is contractible on row k with ax; # 0 # ax; and i # j,

T
then the matrix Ag.;; = [A';;';-,k] is called the contraction of A on row k

relative to columns i and j. Every contraction used in this paper will be
on the first column using the first and second rows. We say that A can be
contracted to a matrix B if either B = A or exist matrices Ag, A1,...4;
(t 2 1) such that A9 = A, A; = B, and A, is a contraction of A,-; for
r=1,2,...,t. One can find the following fact in [1]: let A be a nonnegative
integral matrix of order n > 1 and let B be a contraction of A. Then

perA = perB. (1.6)
We also recall the following definitions :

Definition 1. A matriz A = (ai;) of order n is said to be nonnegative if
Qij Z 0, ’i,j = 1,2,...,n.

Definition 2. A nonnegative n x n matriz A is called row stochastic, or
simply stochastic, if all its rows sum 1.

Definition 3. A nonnegative n x n matrix A is called row stochastic, if all
its rows and colums sum 1.

We give the following definitions (see [15] and [18], respectively).

Definition 4. A matriz A = (ai;) of order n is said to be generalized
stochastic if

n
Zakj=s, k=12,...,n
=1
where s is a complex number.

Definition 5. If A = (ax;) is such that

n n
Zakj=8, k=1,2,...,n and Zakj=s, i=12,...,n
—

=1
then A is said to be generalized doubly stochastic matriz.

Note that a generalized stochastic or generalized doubly stochastic ma-
trix need to be nonnegative.

In this paper, we give the relationships between the permanents of some
generalized symmetric doubly stochastic matrices and the second order lin-
ear recurrences.



2. THE MAIN RESULTS

In this section, we define a n x n generalized symmetric doubly stochastic
matrix D, and then show that its permanent equals to the nth term of the
sequence {v, }.

We define a n X n generalized symmetric doubly stochastic matrix D,
withdn = 3%3, dis = 0 for 2 < i < n—1, let n be an even number, dog 2k+1 =

S5 for1 <k<2? dgk_lgk—;_%ﬁ-for1<k_2anddnn=a%5,

and, let n be an odd number, dok 2k41 = ;_;3 and dog—12k = ;_;’_—-ﬁ for

1<k<23, and dyy = ;%. Clearly, if n is an even , then
55 P 0
& 0 3
< 0 £
D= a4t a+f
B
a+pB
0 3
| 0 3—%‘7 a+ﬁ

We note that the rows and colums sums of the matrix D,, equal to 1.
However, in general, since the entries of the matrix Dy, 3 _*_ﬁ and ;_% are
not nonnegative, the matrix D, is a generalized doubly stochastic matrix.
Then we have the following Theorem.
Theorem 1. Let the matriz D, be as before. Then, forn > 2
o™+ 4"
D, = ——.
per n (a + ﬂ)n

Proof. If n = 2, then we have

ﬁ -‘;‘%E a2+ﬂ2

erDy = = — -
PR 5 (a+ B)°
atB otB
If n = 3, then we have
o B
o+B otB
3 3
8 o +ﬂ
perD3 =per | =f8 0 a;:ﬂ' = m
'aL-I-IB' at+p



We suppose that 7 is an even number and let DE be the kth contraction of
D,,1 <k <n — 2. Since the definition of the matrix D,,, the matrix D,
can be contracted on column 1 so that

- 2 a2 0 -
B T
o
a+B 0 355
&
1 a7 0 3
Dl =
[+
a+p
B
0 3
B
Y a+B aiﬂJ

Since the matrix D} can be contracted on column 1,

~ ns -
(oz-H‘i)g (a+8)% 0
a5 0 33
s 0 &
D =
B
a+p
0 4
| o 2 37



Continuing this process, we have, for even number k,
r Qk+l k41 -
@B (@B

B 0 o
a+t8 a+B
2 0
Df, _ at+p atB
e
0 &
L0 ot
for 3 < k <n — 4. Hence,
n-2 00-2 0
@+B)""%  (atB)"~*
(n—-3) _ 8
D=1 s 0 3
0 B -
a+pB atp

which, by contraction of DS,"“}) on column 1, gives
an—l ﬂ"-l

(o:+ﬁ)"“ (a+ﬂ)""1

D1(1n~2)

& 5

By applying (1.6), we have perD, = perD,(,"‘z) = ﬁ:T*ﬂ;L:

When the case n is odd number, the proof easily follows from the above
case n is even number.
So the proof is complete. O

Now we give a relationship between the result of Theorem 1 and second
order recurrence {v,}.

Corollary 1. Let o and B be the roots of the equation t> — At + B = 0.
Then, forn > 2

v
perDy = f’;
where vy, is the nth term of the sequence {v,} and A = a + f.

Proof. For the sequence {v,}, the Binet formula is given by v, = o™ + "
and since Theorem 1, the proof is easily seen. a



For example, when o = 1—*2‘—5 and 8 = -1;,35, by Corollary 1, we have

[ o _B_ 0 ]
atf a+B
a0 3%
5 0 &
per =Ln
7
0 =5
&
L. 0 Ot_-l'ﬁ ;'%E-nxn

where L,, is the nth Lucas number.

Second, we define a n x n generalized symmetric doubly stochastic ma-
trix H, with hy; = a%ﬁ’ hi; =0for 2 <i<n-1,let n be an even
number, hogokr1 = 325 for 1 Sk < 252, hyp 1 gp = G for 1<k < 3
and h,, = ﬁ-, and, let n be an odd number, hykor+1 = 325 and
hok—12k = a—‘_% for 1 <k < %2, and hpp = a—‘_% Clearly, for even
number n, the matrix

[ 24 =% 0 ]
= 0 3
2 0
H,= =8
a—p
o =
| 0 o5 a2

We note that the rows and colums sums of the matrix H,, equal to 1.

However, in general, since the entries of the matrix H,,, a—ﬁﬂ- and a__-ﬁﬁ are

not nonnegative, the matrix H, is a generalized doubly stochastic matrix.
Then we have the following Theorem.



Theorem 2. Let the generalized doubly stochastic matriz H, be as before.
Then, forn > 2

s if n is odd number,
perH, =

” ”n . .
s ifn is even number.

Proof. We consider the first case n is odd number. If n = 3, then we have

3% a5 O

o - B8
perHz = | = 0 = |=
-D:_% a-8 (C! _ ﬂ)3
0 agﬂ _ﬂ
If n = 5, then we have
e =B .
a—-8 a—-f8
& 0 %
_ P
perHs = 2 0 = = .
o * (- B)°
as 0 X
| ==

Let HX be the kth contraction of H,, 1 < k < n — 2. Since the definition
of the matrix H,,, the matrix H, can be contracted on column 1 so that

2 o2 b
(@87 (a-BY

o 8
aB 0

a_—_% 0 =

2
I

b3

f
3
|
3
|
™
L
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Since the matrix H} can be contracted on column 1,

- 03

3

(@=B)° (a-B)®
& 0 35 N
.a;:ﬂ 0 a—8
H: =
=8
a—p
0
-
L a—-8
Continuing this process, we have, for odd number %,
- gr+1 okt
(a=B)FFT  (a-p)*™!
225 o %
=B 0 a
H:: _ a—B a—p5
-
a—8
0
-1
L a—B
for 3 < k£ < n — 4. Hence,
an—2 —ﬂ"-2
(a—ﬁ)"'2 (a—ﬂ)"-2 0
=3) _ - o
HY D= & 0 P
0 B op
(n—4)

which, by contraction of Hy

Hf(tn -2)

ﬂn—l

on column 1, gives

n—1

@81 (@B

[

a—p

=8
a—p3

l

i
w

it

-

By applying (1.6), we have PerH, = perHy" ™2 = z‘f—_"‘;%:
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Now we consider the second case n is even number. If n = 2, then we
have

perH; = ap ;: - 024'52
= | @A

Taking succsessive contrations of the matrix Hy, similarly the above, we
have, for even number k%,

r okt _ﬂk+1 W
(@—BFFFT (@B
-8
o 0 =
HE = e 0 5
=8
0 =5
=B _a
L a—B a—p
for 3 < k < n — 4. Hence,
Bn—2 an—?
@7 @arr O
Hr Y =1 o o =

U =

which, by contraction of H{" ™ on column 1, gives

an—l —an-1
HD @B (=Bt
=8 -
a—f0 a—pf
By applying (1.6), we have PerH,, = perHpy {r=2) = 81 +£" for even number
n.
So the proof is complete. a

Now we give a relationship between the result of Theorem 2 and sequence

{un}.
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Corollary 2. Let a and B be the roots of the equation t2 — At+ B = 0.
Then, forn > 1

@—_’E;;;,—_-r if n is odd number,
perH, =
Za_zzl"T" if n is even number.

where u, and v, are the nth terms of the sequences {u,} and {v,}.

Proof. Considering the Binet formulas for the sequences {u,} and {v,},
and the result of Theorem 2, the proof is easily seen. a

For example, when o = L%@ and 8= 1%@, by Corollary 2, we have

S o
& 0
U __E_
L ()
0 %

for even number n, where F, is the nth Fibonacci number, and

e, 0
=8 0 3Z
s 0 5 i
per - =
0
| 0 ==

for odd number n, where L,, is the nth Lucas number.
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