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ABSTRACT. Let v and 75 be the minus edge domination and
minus star domination numbers of a graph, respectively, and
e, B1, o1 be the edge domination, matching and edge cover-
ing numbers of a graph. In this paper, we present some bounds
on vz and vg and characterize the extremal graphs of even order
n attaining the upper bound % on vg. We also investigate the
relationships between the above parameters.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
For a graph G = (V, E) with vertez set V and edge set E, the open neigh-
borhood of v € V is Ng(v) = {u € Viuv € E} and the closed neigh-
borhood of v is Ng[v] = Ng(v) U {v}. The degree of v in G is denoted
by dg(v), and 8(G) and A(G) denote the minimum degree and maxzi-
mum degree of G respectively. For a subgraph G; of G, we let dg,(v)
denote the number of vertices in G; that are adjacent to v. For e = uv €
E(G), Ng(e) = {¢' € E(G)] € is adjacent to e} is called the open edge-
neighborhood of e in G, and Ngle] = Ng(e) U {e} is called the closed one.
If v € V, then Eg(v) = {uv € E| u € V} is called the edge-neighborhood

*Research was partially supported by the National Nature Science Foundation of
China (No. 60773078), the ShuGuang Plan of Shanghai Education Development Foun-
dation (No. 065G42) and Shanghai Leading Academic Discipline Project (No. S30104).

t Corresponding author. Email address: efshan@steff.shu.edu.cn

ARS COMBINATORIA 93(2009), pp. 105-112



of v in G. If confusion is unlikely, the above notations are denoted by
N(v), N[v], d(v), N(e), N[e] and E(v), respectively. For S C V, G[S] de-
notes the subgraph of G induced by S. The matching number 3,(G) is the
maximum cardinality among the independent sets of edges of a graph G.
A graph G of order n is said to be have a perfect matching if n is even and
B1(G) = %, and have a near-perfect matching if n is odd and 5;(G) = 2=l
For terminology and notation not given here, the reader is referred to [5}.

For a real-valued function f : E — R, the weight of f is w(f) =
Yece f(e). For E' C E, we define f(E') = }_ . f(e), so that w(f) =
f(E). For a vertex v € V, we write d*(v) for 3. g, f(e)-

A function f : E — {0,1} is called the edge dominating function (EDF)
L of Gif 3¢ vgf (e') > 1 for every e € E. The edge domination number
of G is defined as yg(G) = min{w(f) | f is an EDF of G}. For a graph
G without isolated vertices, a function f : E — {0,1} is called the edge
covering function (ECF) of G if d*(v) > 1 for every v € V. Clearly, the set
of edges assigned 1 under f forms an edge cover of G. The edge covering
number of G is defined as a;(G) = min{w(f) | f is an ECF of G}.

Now we generalize the above concepts by changing the weight {0,1}
into {-1,0,+1}.

A function f : E — {~1,0,+1} is called the minus edge dominating
function (MEDF) of G if 3_..cn( f(€') 2 1 for every e € E. The minus

edge domination number of G is defined as yg(G) =min{w(f) | f is an
MEDF of G}. Let G = (V,E) be a graph without isolated vertices. A
function f : E — {—1,0, +1} is called the minus star dominating function
(MSDF) of G if d*(v) > 1 for every v € V. The minus star domination
number of G is defined as v (G) =min{w(f) | fis an MSDF of G}. In par-
ticular, we define vz (G) = 0 and 75 (G) = 0 if G is a totally disconnected

graph.

Similar concepts are signed edge domination and signed star domination
where only labels +1 and —1 are allowed [9]. Other dominating functions
in graphs have been studied in [1-3, 5-9] and elsewhere.

In this paper, we first present some bounds on vz and g for a graph,
which generalize some previous results on signed edge domination due to
Xu [9]. We also characterize the extremal graphs of even order n attaining
the upper bound % on vz. Finally, we investigate the relationships between
these two parameters and other graph parameters such as yg, 08, and o;.
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2 Main results

Firstly, we present bounds on the minus edge domination number vz for
graphs.

Theorem 1 Let G be a connected graph of order n and size m > 1. Then

- —(A-8)(A-2)(n—~
v5(G) > meE=fiE-2(n=d)

Proof. If A = 1, then G = K>, and the assertion obviously holds. We
therefore assume that A > 2. Let f be an MEDF of G such that w(f) =
vg (G). We partition E into three subsets as follows.

B = {e€E(G)|f(e)=0},

E {e€ E(G) | f(e) = +1},

E; = {ecE(G)]|f(e)=-1}
Let G; be the subgraph of G induced by E; (¢ = 1,2). For each vertex
u € V(G), we have d*(u) = dg,(u) — dg,(u). Furthermore, we partition
V into two subsets Vo = {u € V(G) | d*(u) < 0} and V; = {u € V(G) |
d*(u) > 1}.

For any edge e = uv € E(G), we have Ze’eNc.-le] f(e') = 1 by the
definition of MEDF, that is, d*(u) + d*(v) — f(uv) > 1. Then we have
Y de(wd(w) = ) (d'(w)+d'(v)

uweV(G) uv€ E(G)
> D (flww)+1)
w€EE(G)
= 5(G) +m.

and

Y de(u)d*(u) > de(w)d (w) + Y do(u)d*(x)

ueV(G) ueVp uew;

§Y W +A) d'(u)

u€Vp ueVy

= A Y d@+(E-28)) d(u)

weV(G) ueVo

IA

Hence,

AN dW+E-4)) d'w) 2m+v5(G)
ueV(G) veVo
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Note that 3°,cy(g) 4" (4) = 275 (G). Therefore,

(28 = 1)75(G) 2 m+ (A -8) ) d"(u). (1)
ucVy

To complete the proof of the theorem, it is sufficient to prove that
Yuev, @ (u) 2 —(A = 2)(n — 8) by Eq. (1)

If d*(u) = O for each vertex u € Vo, then the desired inequality clearly
holds.

If there is a vertex ug € Vp such that d*(up) # 0, then it must be the
case that Ng(ug) C Vi. Otherwise, there is a vertex vo € Vp such that
uovo € E(G). Note that 3=, v jueve) £(€) = d* (u0) +d*(v0) — f(uowo) 2 1,
we have f(uov) < —2 since d*(up) < —1 and d*(vo) < 0, a contradiction.
Then |V3| > |Ng(uo)| = 4, and thus [Vp| < n —J. Furthermore, we show
that d*(u) > —(A — 2) for each vertex u € Vy. Suppose to the contrary
that there exists a vertex ug € Vp such that d*(ug) < —(A —1). Then
d*(ug) = —A or d*(up) = —A + 1, hence there is an edge e = ugvy € E(G)
such that f(e) = —1. This implies that d*(vo) = dg,(v0) — dg,(v0) <
de(vo) —2 < A —~2. Since 3 .ieng(e f(e') = d*(ug) + d*(vo) — f(e) 2 1,
we have d*(ug) > —(A — 2), a contradiction. Therefore, 3 .y, d*(u) >
—(A - 2)|Vo| = —(A — 2)(n — §) and the desired result follows. [ |

When we apply some little changes to Xu’s proofs of Theorem 2.1 in [9],
then we immediately obtain another sharp lower bound on vz of a graph
in terms of its size and order.

Theorem 2 Let G be a graph of order n, size m and 6(G) > 1. Then
75 (G) 2 n —m and this bound is sharp.

Let G be a connected graph. Obviously, an EDF of G is an MEDF of
G, and each maximal matching of G is also an edge dominating set of G.
So we immediately have

Theorem 3 For a connected graph G of order n, v5(G) < ye(G) <
B(G) < 3.

Next, we characterize the extremal graphs of even order attaining the
upper bound. First, we recall a lemma that will be useful in what follows.

Lemma 4 ([1]) For any connected graph G of even order n, v(G) = 5
a

if and only if G is isomorphic to K, or K3 3, where K,, and K3 3 are
complete graph and a complete bipartite graph respectively.
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In following, we compute the numbers vz (K,) and vz (K 2,2)-
Theorem 5 For any complete graph K, v5(Kn) = 3]

Proof. By Theorem 3, it suffices to prove that 7z(K,) > |2]. Let f be
any MEDF of K, we show that w(f) > [%].

By the definition of MEDF, for each edge e = uv € E(K,), we have
d*(u)+d*(v)—f(uv) 2 1, i.e., d*(v) > 1+ f(uv)—d*(u). We now distinguish
several cases.

Case 1. If there exists a vertex ug € V(K,) such that d*(ug) < —2.
Then we have d*(v) > 3 + f(uov) > 2 for each vertex v of V(K,,) — {uo}.
Hence

= Y f@=5 ¥ d@)2n- 2> |3].

e€E(K,) uEV(K,,)

Case 2. If there exists a vertex up € V(K,) such that d*(ug) = —1.
Then there is a vertex vg € V(K,) — {up} such that f(uowo) = 0 or
f(upwg) = 1, hence d*(vp) > 1 — d*(up). Since d*(v) > 2 + f(uov) > 1
for each vertex v € V(K,) — {uo}, it follows that

wf)= ¥ fl=3 ¥ ¢

e€E(K,) veV(K,.)

Case 3. If there exists a vertex up € V(K,) such that d*(ug) = 0. Let
Vi = {v € N(up) | f(uov) = —1} and Vo = {v € N(up) | f(uov) = +1}.
Then |V2| > |Vi|. For each v € V;, we have d*(v) > 1+ f(upv) = 0 for
each v € V,, we have d*(v) > 1+ f(uov) = 2; for each v € N(up) — V1 - V2,
we have d‘(v) > 1 as f(uov) =0. Then
w(f)=3 3 &) 2 50Ml+n-1-Vil-v) > 22
veV(Kn)

Case 4. If d*(v) > 1 for each vertex v € V(K,). Then 3 gk, fe) =
3 Dvevir,) @) 2 5.

In either case, we have 7z (K,) > | 5], and the desired result follows.
|

Theorem 6 For any complete bipartite graph K, 4, 75 (Kp,q) = min{p,q}.
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Proof. First, we show that v;(Kp,q) > min{p,q}. Let X and Y be a
bipartition of Kpq and let X = {u1,u2,...,up} and Y = {v1,2,... yUg}
Without loss of generality, we may assume p > q. Let f be an MEDF
of Ky 4. As before, we have d*(v) > 1+ f(uv) — d*(u) for each edge
e =uv € E(Kp,q). We consider the following three cases.

Case 1. If there exists a vertex u; € X such that d*(u;) < —1. Then
d*(v) > 2+ f(u1v) > 1 for each vertex v € Y. Note that ) o x d*(u) =

Y ey @°(v). Hence,

wifi= >, flo=5 Y d@=) dw:2|Y|=q

e€E(Kp,q) vEV(Kp,q) veY

N =

Case 2. If there exists a vertex u; € X such that d*(u;) = 0. Then
d*(v) > 1+ f(wv) foranyv €Y. Let Y1 = {v € Y | f(ujv) = —1} and
Yo = {v € Y| f(uyv) = +1}. Then |Y;| < 2 and |Y2| > |Y1]|. For each
vertex v € Y1, we have d*(v) > 0; for each vertex v € Y2, we have d*(v) > 2;
for each vertex v € Y — Y; — Y2, we have d*(v) > 1 as f(ujv) = 0. Hence,

wif)= Y. fle)=) d'v) 22Yel+q-IYi|-|Ya| 2 ¢

€€ E(Kp,q) veY
Case 3. If d*(u) > 1 for each vertex u € X. Then clearly

wi)= Y fl=3 Y d@)=Ydw2r2e

e€E(Kp,q) veV(Kp,q) ueX

On the other hand, we show that vz (Kp4) < ¢. In order to prove it,
we define an MEDF f : E(K, ) — {—1,0,1} as follows:

ey d 1 i=j and 1<i<g,
Fluivs) = { 0 otherwise.

Then it is easy to see that f is an MEDF of K,4. Thus v5(Kp,q) <
2ecE( Kpa) f(e) = q. Consequently, vz (Kp,q) = ¢ = min{p,q}. [ |

For a connected graph G of order n, 75 (G) = l%] implies vg(G) = L%J

by Theorem 3. Combining Lemma 4, Theorem 5 and 6, we obtain the
following result.

Theorem 7 For any connected graph G of even order n, vg(G) = 3 if
and only if G is isomorphic to K, or K3 a.
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Proof. Let H be a complete graph of order n > 2k. We construct a
connected graph G from H by adding n pendant edges on each vertex of
H. Since G contains n? pendant vertices, a;(G) > n?. Define a function
f:E(G) — {-1,0,1} of G as follows:

_f - e€ E(H),

fle)= { 1 otherwise.
Then f is an MSDF of G and 75(G) < Y cp(q) fle) = n? — |E(H)|.
Therefore, 1 (G) — 75 (G) > |E(H)| = 221 > k. n
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