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Abstract

The spanning tree packing number of a connected graph
G, denoted by 7(G), is the maximum number of edge-disjoint
spanning trees of G. In this paper, we determine the minimum
number of edges that must be added to G so that the resulting
graph has spanning tree packing number at least k, for a given
value of k.
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1. Introduction.

We shall use the notation of Bondy and Murty [1], except defined
otherwise. We allow graphs to have multiple edges but not loops. Let
G be a graph. The set E(G*) denotes the collection of edges that are
not in E(G) but both ends of each member in E(G¢) are in V(G). A

*Email: Chen@butler.edu

ARS COMBINATORIA 93(2009), pp. 113-127



maximal connnected subgraph of G is called a component of G. The
number of components of G is denoted by w(G). Let L and H be two
subgraphs of G with V(L)NV (H) # @. Define LNH to be a subgraph
of G with V(LN H) =V(L)NV(H) and E(LNH) = E(L)N E(H).
For a set of edges E C E(G), we define the contraction G/E to be
the graph obtained from G by contracting the edges in E and deleting
all resulting loops. If H is a connected subgraph of G, then G/H
denotes G/E(H). The maximum pumber of edge-disjoint spanning
trees in G is called the spanning tree packing number of G (a
recent survey on spanning tree packing number can be found in [7]),
and is denoted by 7(G). For convenience, we define G/@ = G and
define 7(K) = 0o0. The set of all positive integers is denoted by N.

In [6], Payan considered the following problem: Find an edge
e € E(G) and an edge ¢’ € E(G®) such that G — e + €' is closer to
having k edge-disjoint spanning trees than G does. A partial solution
of this problem has been found in [3], and the general case remains
open.

In this paper, we consider a problem with a similar nature: for a
graph G, and a given integer k£ > 7(G), find the minimum number
of edges X C F(G°®) such that 7(G + X) > k.

We use decomposition and contraction methods to approach the
problem. This decomposition is described in Section 2. The main
result is proved in Section 3.

2. Some properties involving 7(G).

Let X be a nonempty set. A partition (P, P, ..., Py) of X
satisfies:

(@ P#0,1<i<m;

(b) LNP;j=0,i#jand 1<%,j <m;

() UL, B =X.
For an integer » > 1, let 7, denote the family of all graphs G with
7(G) > r. Lemma 2.1 below summarizes some observations.
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Lemma 2.1 Let G be a connected graph, and let 7, 7’ be integers
with 7’/ > 7> 0.

(i) Let H be a subgraph of G and H € 7,+. Then G/H € T, if
and only if G € T,.

(i) fGeT,,and ife € E(G°), then G+e € T,.

(ii) If G € T, and if e € E(G), then G/e € T,.

(iv) If H, and Hj are two subgraphs of G such that H;,Hs € 7,
and V(Hl) N V(Hg) # @, then HiUHy € T,.

Proof: (i) Since H € T+ and since ' > r, H has r edge-disjoint
spanning trees Ti,---,7T,. Since G/H € T,, G/H has disjoint span-
ning trees T7,---,T.. Note that each T} = G[E(T;) U E(T})] is a
spanning tree of G, and so G € 7.

Conversely, suppose that G has r edge-disjoint spanning trees,
say T1, Ts, - --, and T;.. Then T;/(E(T;) N E(H)) is a spanning con-
nected subgraph of G/H (1 < i < 7), and so G/H has r edge-disjoint
spanning trees. Thus, G/H € 7.

(i) Any spanning tree of G is also a spanning tree of G + e.

(iii) Let T3, - -, T be edge-disjoint spanning trees of G. Let T} =
T; ife ¢ E(T;) and T} = Ti/e if e € E(T3), for 1 < i < r. Then

Y ..., T! are edge-disjoint spanning subgraphs of G/e, and so G/e €
T,

(iv) Let G = H; U Hy. Since Hy € T, and by Lemma 2.1(iii),
G/H, € T,. Since Hy € T, and by Lemma 2.1(i), G = H U Hs €
7, 0O

Let G be a nontrivial connected graph. For any r € N, a non-
trivial subgraph H of G is called r-maximal if H € 7, and if
there is no subgraph K of G, such that K contains H properly
and that K € T,. An r-maximal subgraph H of G is called an
r-region if r = 7(H) (See Example 3.5). Call a subgraph H of
G a region if H is an r-region for some integer r. Define £(G) =
max{r | G has a subgraph as an r-region}.

Lemma 2.2 Let H be a nontrivial subgraph of G. If 7(H) =,
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then there is always a region L of G with E(H) C E(L) and with
(L) >r.

Proof: Let L be the union of all r-regions of G each of which
contains H. Then by Lemma 2.1(iv) L € T, and so L is 7(L)-
maximal. O

Lemma 2.3 Let 7,7 € N, let H be an 7’'-region of G, and let K
be an r-region of G. One of the following holds:

(i) VH)NV(K) =8,

(iiyr=rand H=K,

(iii) 7' > r and H is a nonspanning subgraph of K,

(iv) ' < r and H contains K as a nonspanning subgraph.

Proof: Suppose that Lemma 2.3(i) does not hold, and so V(H)N
V(K) # 0. Without loss of generality, we assume ' > r. By Lemma
2.1(i), HUK € T,. Since K is an r-region, H U K is a subgraph
of K, and so H is a subgraph of K. This implies (ii)-(iv) of Lemma
23. 0

Theorem 2.4 Let G be a nontrivial connected graph. Then
(a) there exist an integer m € N, and an m-tuple (i1,42,...,2m)
of integers in N with

T(G) =11 <2 < ... < iy = §(G), (1)
and a sequence of edge subsets
E,C..CEyCE; =E@G) (2)

such that each component of the induced subgraphs G[E};] is an 7-
region of G for some r € N with r > 4; (1 < j < m), and such that
at least one component H in G[E;] is an i;-region of G;

(b) if H is a subgraph of G with 7(H) > i;, then E(H) C Ej;

(c) the integer m and the sequences (1) and (2) are uniquely
determined by G.

Proof: Let R(G) denote the collection of all regions of G. By
Lemma 2.2, R(G) is not empty. Since G is a finite graph,

|R(G)| is finite. (3)
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Define sp(G) as
sp(G) = {r(H): H € R(G) is nontrivial }.

By (3), |sp(G)| is finite. Since G € R(G), |sp(G)| > 1. Let m =
|sp(G)|. We may assume that sp(G) = {i1, g, ...,im} With 41 < i3 <
... < tmp. By Lemma 2.1(i), we have

7(G) = 1. (4)
For each j € {1,2,...,m}, define

E;= |J E#). (%)
T(H)2i;

By the definition of 7,
74237, 0..07;,. (6)

Hence by (5) and (6),

EiDEyD..DE,. (7
By (4),
E= {J EH)= | E#H)=EQ). (8)
T(H)Zi T(H)27(G)

Fix j € {1,2,...,m — 1}. Since i; € sp(G), there is an i;-region K of
G. Since 7(K) = ij < ij+1, B(K) — Ej+1 # 0. Hence, E; # Ejya,
and so (1) and (2) hold.

Fix j € {1,2,...,m}. We prove the following claim first.

Claim A Every component of G|E;] is an r-region of G, for some
7 21, where 1 < j <m.

Let H be a nontrivial component of G[E;]. By (5), we may
assume that there are s regions H, (1 <t < s) such that each H; is
an r¢-region, for some 7, > ¢;, and such that

E(H) = U E(H,).
t=1
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Without loss of generality, we may assume that
r1<r<.<rs.

Since H is connected, if s > 2, then H; must share a common vertex
with some H; for some i > 2, and so by Lemma 2.1(iv), HiUH; € T,,
contrary to the fact that H; is ri-maximal. Hence, we must have
s = 1. Thus, Claim A is proved.

What is left is to show that G[E;] contains an ij-region of G.
Since i; € sp(G), there is an ij-region H of G. By (5), E(H) C E;.
We claim that H is a component of G[E;]. Since H is connected, H
is in a component K of G[E;]. By Claim A, K is an r-region with
r > i;. It follows by Lemma 2.3 that H = K. Thus the claim follows
and so (a) of Theorem 2.4 must hold. Theorem 2.4(b) follows from
Lemma 2.2 and the proof above.

Since R(G) and sp(G) are uniquely determined by G, the integer
m, the m-tuple (i1,%2,...,4m) and the sequence (2) are all uniquely
determined by G. Therefore (c) of Theorem 2.4 follows. This proves
Theorem 2.4. O

Corollary 2.5 If (i1,42, -, %m) is the tuple determined by G as
defined in Theorem 2.4, then (¢1, 2, - - - , 4m—1) is the tuple determined
by G/Ey,. In particular, i,,—1 = {(G/Ep).

Proof: By Theorem 2.4, we know that each component of G[E,;)
is an ip-region. The corollary follows from Lemma 2.1(i) and the
definition of G/E,,. O

Proposition 2.6 Let /,7 € N and let H be an r'-region of G
and K be an r-region of G.

(i) EV(H)NV(K) =0, then (G/H)[E(K)] is also an r-region of
G/H;

(ii) If K contains H as a nonspanning subgraph, then ' > r and
K/H is an r-region of G/H.

Proof: Let vy denote the vertex of G/H onto which the sub-
graph H is contracted.
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(i) Suppose that V(H) N V(K) = @. Then K is a subgraph of
G/H. If K is not a region of G/H, then G/H has a region L' with
(L) >rand K Cc L'. If vy & V(L'), then L' is a subgraph of G,
contrary to the fact that K is a region of G. Hence, vy € V(L'). Let
L = G[E(L')U E(H)]. Then L is a subgraph of G containing both
K and L. If 7' > r, then by Lemma 2.1(i), 7(L) > r and so K is
not a region, a contradiction. Similarly, if r > 7/, then 7(L) > r’ and
so H is not a region, a contradiction. These contradictions establish
Proposition 2.6(i).

(ii) Now suppose that K contains H as a nonspanning subgraph.
By Lemma 2.3(iii), 7/ > r. By Lemma 2.1(i), 7(K/H) > r. If G/H
has a region L' containing K/H with 7(L’) > r, then by Lemma
2.1(i), L = G[E(L')] is a subgraph of G containing K with 7(L) >
r = 7(K). Since K is a region, K = L, and so K/H = L'. This
proves that K/H is an r-region of G/H. O

Corollary 2.7 Let v/, € N and let H be an 7’-region of G, and
denote by vy the vertex in G/H to which H is contracted.

(i) If K is an r-region of G/H not containing vy, then G[E(K)]
is an r-region of G disjoint from H.

(ii) If K is an r-region of G/H containing vg, and if ' > r, then
G[E(K) U E(H))] is an r-region of G.

Proof: (i) Suppose that vy ¢ V(K). Then G[E(K)] = K, and
so K can be regarded as a subgraph of G disjoint from H. Since
7(K) = r, G has an s-region L containing K as a subgraph, where
s>t Then L (if V(L)NV(H) =0)or L/(LNH) (if V(L)NV(H) #
@) is a region of G/H containing K, by Proposition 2.6, and so we
must have L = K.

(i) Let K” = G|E(K) U E(H)] with 7(K") = s. By ' > r, both
KeT,and He T, C T,, and so by Lemma 2.1(i), K” € 7,. This
implies s > r. By Lemma 2.2, there is a region L of G containing
K" as a subgraph with 7(L) > s > r. Note that H is a nonspanning
subgraph of L. Apply Proposition 2.6(ii) to L and H to conclude
that L/H is a 7(L)-region of G/H containing K. Then apply Lemma

119



2.3 to L/H and K to conclude that r > 7(L), where equality holds
if and only if K = L/H. It follows that r = s = 7(L) and K = L/H,
and so K” = L is an r-region of G. O

3. The Main results.
Let G be a graph. The edge arboricity of G, a(G), is the minimum
number of edge-disjoint spanning forests whose union is G.

Theorem 3.1 (Nash-Williams [4], [5], Tutte [8]) Let G be a
graph and let k£ be an integer. Then

. _ |E(H)| '| . :
(i) a(G) = II?&% [T/_H—Tl , Where the maximum is taken over

all induced subgraphs H of G with |V(H)| # 2.
(i) If |B(G)| > k(]V(G)| — 1), then G has a subgraph H with
7(H) > k.
X1

(i) 7(G) = | B8 G = X) —w(C)
over all subsets X C E(G) such that w(G — X) > w(G).

, where the minimum is

Corollary 3.2 a(G) > i > a(G) — 1.

Proof: Let L be a component of G[E,;,]. By Theorem 2.4, every
component of G[E,,] has i, edge-disjoint spanning trees, and no
nontrivial subgraph of G with i, + 1 edge-disjoint spanning trees.
Thus by Theorem 3.1, i, = 7(L) < |E(L)|/(IV(L)| - 1) £ a(G).

By Theorem 3.1(i), there is a subgraph H of G such that |[E(H)| >
(a(GY-1)(|JV(H)|—1). Therefore, by Theorem 3.1(ii), H (and so G)
has a subgraph H’ with 7(H') > (a(G) — 1), and so by Lemma 2.2,
G has a region K with E(H') C E(K) and with 7(K) > (a(G) - 1).
By the definition of ,, in the proof of Theorem 2.4, we know that
im20a(G)-1. 0

Lemma 3.3 Let G be a graph and let k£ be an integer with k& >
7(G). If £ > a(G), then one can find X C E(G°) with |X| =
kE(|V(G)|—1)—|E(G)| such that G+ X is the union of k edge-disjoint
spanning trees.
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Proof: By a(G) < k, there are edge-disjoint spanning forests
F,... Fy such that G = Uf=1F§. Set Xo = 0. For each 7, (1 <i< k),
there is an edge set X; C E((G+ (U_’;-;%,Xj))c) such that F; + X; is a
tree. Let X = UleX j- Then G + X is the union of k edge-disjoint
spanning trees, and so |E(G)| + | X| = k(|V(G)|-1). O

Let G be a graph and let k > 7(G) be an integer. Let f(G,k)
denote the minimum number of edges that must be added to G so
that the resulting graph has k edge-disjoint spanning trees. By The-
orem 2.4, G has a decomposition satisfying (1) and (2). If k£ < i,
define i(k) = min{i; : i; > k and i; € sp(G)}; if k& > im, de-
fine i(k) = oo, and define E, = 0. Let ¢x(G) be the number of
components of G[E;y], and let wx(G) = |V(G[Eyy)])|- Note that
ck(G) = wi(G) = 0 if i(k) = oo.

Theorem 3.4 Let G be a graph and let £ > 7(G). Then
f(G,k) = k([V(G)| — wk(G) + ck(G) — 1) — (IE(G)] — | Eygay|)-

Proof: If £ > a(G), then by Corollary 3.2 and the definition
of i(k), we have i(k) = oo, and so cx(G) = wg(G) = 0. Thus, by
Lemma 3.3, f(G,k) = k(|V(G)| - 1) — |E(G)|. Theorem 3.3 holds in
this case. In the following we assume that k < a(G).

By Theorem 2.4, G has a decomposition satisfying (1) and (2).
Let G' = G/Ey(x). Then

[V(G')| = [V(G)]| = (wi(G) — cx(G)) and |E(C')| = |E(G)| — | Eypy-
(9)

Claim a(G’) < k.

Suppose that a(G’) > k. By Corollary 3.2, we know that G’
has an r-region L’ with r > k. Let H;,---, H; be the components of
G[E;()], and let v; denote the vertex in G’ to which H; is contracted.
By Theorem 2.4,

T(H;) > k, for every i =1,2,--+,c. (10)
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If L’ does not contain any v;, then by Corollary 2.7(i), L' = G[E(L')]
is an r-region of G. Since r > k, and by Theorem 2.4, E(L') C E;),
then L’ cannot be a subgraph of G', a contradiction.

Hence, we may assume that vy,---,v € V(L') and v; ¢ V(L)
for i > t+ 1. Let L = G[E(L') U (UL, E(H;))], and let &' =
mini<i<t 7(H;). Then by the definition of Ej), k' > k. Thus,
min{r,k'} > k. By Lemma 2.1(i), L is a subgraph of G contain-
ing Hi,---,H; as subgraphs, and 7(L) > min{r,k'} > k. There-
fore, by the definition of Ejy), by 7(L) = k, and by Theorem 2.4,
E(L) C Eyy,), contrary to the assumption that L' is a subgraph of
G'. Thus, the claim follows.

By the Claim, G’ satisfies the hypothesis of Lemma 3.3, and so
by Lemma, 3.3, there is an edge subset X C E((G')°) with

1X| = k(IV(G) - 1) - |E(G)], (11)

such that G’+ X is the union of k edge-disjoint spanning trees. Thus,
the number of additional edges represented in (11) is the minimum
number of edges that must be added to G’ to have k edge-disjoint
spanning trees. Note that G'+X = G/Ej)+X & (G+X)/E;(y, and
each component of G[E;)] is an r-region of G with r > i(k) > k. By
Lemma 2.1(i), 7(G + X) > k. By (9) and (11), Theorem 3.4 follows.
O

Example 3.5 Let V(K 3) = {a,v1,v2,v3}, where d(a) = 3, and
d(v;) =1 (1 < i < 3). Let G be a graph obtained from Kj 3 by
replacing each v; in Ki3 by H; = K4(1 < ¢ < 3) as shown be-
low. Obviously, 7(G) = 1, and G itself is a 1-region. Only Hj, Hs
and Hj are 2-regions in G. If » > 3, G has no r-region, and so
£(G) = 2. Therefore, sp(G) = {1,2}. Thus, as stated in Theorem
24, 1 = i3 < 2 = ip are the integers uniquely determined by G.
And E; = U}, E(H;) C E1 = E(G) are the edge subsets uniquely
determined by G.
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H,

Hj H,

Let k = 2. Then i(k) = 2, and so |E,)| = |Es| = 18, cx(G) = 3,
and wi(G) = |V(G[E2])| = 12. By Theorem 3.4, the minimum
number of edges that must be added to G so that the resulting graph
has 2 edge-disjoint spanning trees is

f(G,2) = k(V(G)| - wk(G) +cx(G) - 1) — (IB(G)| ~ | Eixy)
= 2(13-12+3—1)— (21 —18) = 3.

Note that there are more than one way to select three edges to
add to G so that the resulting graph has 2 edge-disjoint spanning
trees. In fact, we can choose an arbitrary vertex vy, from V(H;)
(1 £i<3), and let e; = vy vH,, €2 = vy, VH,, and e3 = VH,VH,
be the three new edges. Then the new graph obtained from G by
adding e;, eo, and e3 has 2 edge-disjoint spanning trees.

Remark. From Theorem 3.4 above, one can see that for a given
graph G and a given integer k, the main task to find f(G, k) is to find
Ej(x). Hobbs [2] developed a polynomial-time algorithm to compute
the number 7, and to locate the subset E,, as defined in Theorem
2.4. Aslong as B, # E(G) and i, > k, by Corollary 2.5, one can ap-
ply Hobbs’ algorithm to the contraction G/E,,. There are at most
m iterations before Ejy) is found. Once Eyy,) is found, it is easy
to compute cx(G) and wi(G), and so by Theorem 3.4 to compute
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f(G,k). Thus, this gives a polynomial-time algorithm to compute
f(G, k).

In the following, we shall derive a different expression, a min-max
formula, for f(G, k).
Define, for each subset X C E(G),

fie(G, X) = klw(G — X) — 1] - | X],
and

Fe(G) = Xrélggcc){fk(G, X)} (12)

Note that Fy(G) > fi(G,0) > 0, and that Fi(K;) =0, for any k& > 1.
We shall show in Theorem 3.10 that Fi(G) = f(G, k).

Lemma 3.6 Assume that X C E(G) is an edge-subset with
fx(G, X) = F(G), and that H is a component of G — X. If Xy C
E(H) is an edge-subset, then

fi(G, X UHx) = fe(G, X) + fu(H, Xn). (13)
Proof: Let X, H and Xy be as assumed. Then

fe(G,XUHx) = klw(G-XUXpy)—1]—|X|-|Xul|
klw(G - X) - 1+ w(H - Xg) - 1] = | X| - | XnH]
= fu(G, X) + fu(H, XH)-

Corollary 3.7 If X C E(G) satisfies Fi(G) = fi(G, X), then for
every component H of G — X, Fi(H) = 0. In particular, 7(H) > k.

Proof: By Lemma 3.6, for any Xy C E(H), fr(H,Xu) =
fi(G, XUXy)—Fi(G) <0, and so Fi(H) = maxx,cpm{fu(H, Xu)} =
0.

To prove that 7(H) > k, we may assume that H # K, since
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7(K1) = co. By the definition of fix(H, Xx), Fi(H) =
maxx, ce#y{fe(H, Xg)} = 0 implies that

Xﬁnfc_l%}(cm{k[w(H —- Xy)—1]—|Xul} =0.

Therefore, for any Xy C E(H) with w(H — Xg) > 1,

| X
> k.
wH-Xpg)—17 k

By Theorem 3.1(iii), 7(H) > k. O

Lemma 3.8 If G is connected, and if Fi,(G) = fr(G, E(G)), then
a(G) <k.

Proof: Let H be an induced subgraph of G. Define Ey = E(G)—
E(H). Since the components of G — Ey are H and |V(G)| — |V (H)|
isolated vertices,

w(G — Eg) = |V(G)| — |[V(H)| + w(H). (14)
By (12),
Fi.(G) > fu(G,Fy) > k(w(G - Eg)—1) — |Ep]
= k(|V(G)| - |V(H)| +w(H)-1) - |E(G)| + |E(H)|
> k(|V(G)| - |V(H)|) - E(G)| + |E(H)|

k(IV(G)| — 1) — |E(G)| + k — (k[V(H)| - |E(H)|)
fx(G, E(G)) - [k(IV(H)| - 1) — |E(H)|]
F(G) - [k(IV(H)| - 1) - |E(H)).

‘ It follows that
0> —k(V(H)| -1)+ |E(H),

and so

|E(H)]|
W 1< "
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By Theorem 3.1(i), a(G) < k. O.

Lemma 3.9 Let G be a graph and let Ey C E(G) be such that
fi(G, Eg) = Fr.(G). Let Go = G/(E(G) - Eo). Then

f1(Go, Eo) = Fi(Go) = Fi(G).

Proof: Note that w(G — Eg) = w(Go — Eyp), and so by the as-
sumption that fx(G, Ep) = Fi(G), we have

Fi(Go) 2 fx(Go, Eo) = fx(G, Eo) = Fi(G).

Choose E; C Ey, such that Fi(Go) = fr(Go, E1). Then since E; C
Ey, w(G — E;) = w(Go — Ey), and so

Fy(G) = fx(G, E1) = f1(Go, E1) = Fi(Go)- O

Next we prove a min-max theorem.

Theorem 3.10 Fi.(G) = f(G, k).

Proof: Let Ey C E(G) be an edge subset of E(G) such that
fi(G, Eo) = Fi(G), and let Go = G/(E(G) — Ep) as defined in
Lemma 3.9. By Lemma 3.9, fk(Go, E(Go)) = Fk(Go) = Fk(G).

By Lemma 3.8, a(Go) < k. Hence, Gy is an edge-disjoint union of
k spanning forests Fy, Fy, - - -, Fy, of Go. Let |E(F;)| = |V(Go)|—1-s;i,
where s; > 0and 1 < ¢ < k. Then one can add s; edges to F; to form a
spanning tree of Gy. Therefore, by adding an edge set X with 22;1 8;
edges to Gy, the resulting graph Go+ X has k edge-disjoint spanning
trees. Note that |E(Go)| = Zf=1 |E(F;)| = k(|V(Go)| - 1) —22;1 ;.
Since Fy(G) = Fu(Go) = fr(Go, B(Ga)) = k(|V(Co)| — 1) — | B(Go)l,
Fi.(G) = Fi(Go) = %, s;. This shows that

Fi(G) = Fi(Go) = f(Go, k). (15)

Let Hy, Hy,---, H. be the components of G — Ey. By Corollary
3.7, 7(H;) > k, 1 < i < c. Note that Go + X = (G + X)/(E(G) —
Eo) = (G + X)/Ui=1 Hi = ((G + X)/Ui=2 Hi)/H1. By repeatedly
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applying Lemma 2.1(i), we have 7(G + X) > k, and so Fi(G) >
f(G,k).

Conversely, let X be a set of f(G,k) edges that must be added
to G such that 7(G + X) > k. Let W; = X N E(Hf), and let
- Hj=H;+W,. Since 7(H;) > k, by Lemma 2.1(ii), 7(H!) > k. Let
X1 =U,;W;, and Xo = X - X;. Then Go+Xo = (G+X)/((E(G)+
X)—(Eo+Xo)) = (G+X)/U; H]. By Lemma 2.1(i), 7(Go+Xo) > k.
Therefore, by (15)

Fi(G) = f(Go,k) < | Xo| £ |X| = f(G,k). O
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Abstract

Let (G,C) be an edge-colored bipartite graph with bi-
partition (X,Y). A heterochromatic matching of G is such
a matching in which no two edges have the same color. Let
N¢(S) denote a maximum color neighborhood of S C V(G).
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