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Abstract

Let (G,C) be an edge-colored bipartite graph with bi-
partition (X,Y). A heterochromatic matching of G is such
a matching in which no two edges have the same color. Let
N¢(S) denote a maximum color neighborhood of S C V(G).
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We show that if [N¢(S)| > |S| for all § C X, then G has

a heterochromatic matching with cardinality at least |'J-}3ﬂ'|
We also obtain that if | X| = |Y| = n and [N¢(S)| > |S]| for
all S € X or S C Y, then G has a heterochromatic matching
with cardinality at least [32].
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1 Introduction and notation

We use [3] for terminology and notations not defined here and
consider simple undirected graphs only.

Let G = (V, E) be a graph. An edge coloring of G is a function
C : E — N(N is the set of nonnegative integers). If G is assigned
such a coloring C, then we say that G is an edge colored graph,
or simply colored graph. Denote by (G, C) the graph G together
with the coloring C and by C(e) the color of the edge e € E. For
a subgraph H of G, let C(H) = {C(e) : e € E(H)}.

A subgraph H of G is called heterochromatic, or rainbow,
or color ful if its any two edges have different colors. There are
many publications studying heterochromatic subgraphs. Very of-
ten the subgraphs considered are paths, cycles, trees, etc. The
heterochromatic hamiltonian cycle or path problems were studied
by Hahn and Thomassen(see [9]), Rodl and Winkler(see [7]), Frieze
and Reed, Albert,Frieze and Reed (see [1]), and H. Chen and X.L.
Li (see [5]). For more references, see (2, 6, 9].

For an uncolored graph the following theorems are well known
in matching theory and have been widely used.

Theorem 1 [10]. Let G be a bipartite graph with bipartition

(X,Y). Then G contains a matching that saturates every vertex
of X if and only if |[V(S)] > |S| for all S C X.

Theorem 2 [3]. A bipartite graph G has a perfect matching if
and only if |[N(S)| > |S| forall SC V.
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A matching is heterochromatic if any two edges of it have
different colors. Unlike uncolored matchings for which the max-
imum matching problem is solvable in polynomial time (see [12]),
the maximum heterochromatic matching problem is N P-complete,
even for bipartite graphs (see [8]). Heterochromatic matchings have
been studied for example in [11] in which by defining N,(S) (see the
definition below) Hu and Li gave some sufficient conditions for the
existence of perfect heterochromatic matchings in colored graphs.

Let (G, C) be a colored graph. For a vertex v of G, let CN(v) =
{C(e) : e is incident with v} and CN(S) = U,esCN(v) for S C V.
For S € V(G), denote N,(S) as one of the minimum set(s) W
satisfying W C N(S)\S and [CN(S)\C(G[S])] C CN(W).

Theorem 3[11]). Let (B,C) be a colored bipartite graph with
bipartition X,Y. Then, B contains a heterochromatic matching
that saturates every vertex in X, if [N.(S)| > |S|, for all S C X.

. Theorem 4[11]. A colored graph (G, C) has a perfect heterochro-
matic matching, if

(1) o(G — S) < |S|, where o(G — S) denotes the number of odd
components in the remaining graph G — S, and

(2) INe(S)| 2 |S) for all § C V such that 0 < |S| < 1€l and
IN(S\S| = 1S].

We define a maximum color neighborhood and study hete-
rochromatic matchings in colored bipartite graphs under a new
condition related to maximum color neighborhoods of subsets of
vertices.

Let (G, C) be a colored bipartite graph with bipartition (X, Y).
For a vertex set S C X or Y, a color neighbourhood of S is defined
as a set T C N(S) such that there are |T'| edges between S and T
that are adjacent to distinct vertices of T and have distinct colors.
A mazimum color neighborhood N¢(S) is a color neighborhood
of S with maximum size. Given a set S and a color neighborhood
T of S, denote by C(S,T) a set of |T| distinct colors on the |T|
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edges between S and distinct vertices of T. Note that there might
be more than one such set C(S,T). If there is no ambiguity, let
C(S,T) be a fixed color set in the following.

Let M be a heterochromatic matching of G, we denote bys =
{¢: ¢ € C(M) and there exists an edge e € E(G — Vi) such that
C(e) = ¢} and denote by (X UY)ys) with Xpr C X, Yy CY, the
set of vertices that are incident with the edges in M.

For a given heterochromatic matching M, an alternating 4-
cycle ACyy is a cycle {zy,yz , = ¥,y z} such that C(zy) = C(z'y)
and C(zy') = C(z'y) ¢ C(M), in which zy € E(M), zy €
E(G - Vu).

The following main results are obtained in this paper.

Theorem 5. Let (G,C) be a colored bipartite graph with bi-
partition (X,Y) and |N¢(S)| > |S]| for all S C X, then G has a
heterochromatic matching of cardinality at least []33{—[].

Theorem 6. Let (G, C) be a colored bipartite graph with bipar-
tition (X,Y) and |X| = |Y|=n. If |N¢(S)| > |S| for all S C X or
S C Y, then G has a heterochromatic matching of cardinality at
least [32].

Under the conditions of Theorem 6, the following example shows
that the best bound can not be better than [§]. Let G = (X,Y)
with X = {xl,mly th 33328} and Y = {yla Y2, '1y2s} be a bipar-
tite graph such that E(G) = {z:yili = 1,2,-+,28} U {zoi—1yaili =
1,2,---,8} U {zoyai—1|i = 1,2,---,s}. The edge coloring C of G
is given by C(x2i—1y2i-1) = C(z2iy2i) = 2i — 1 and C(z2i—192:) =
C(zsy2i—-1) = 2i for i = 1,2, -+, s. Clearly the cardinality of the
maximum heterochromatic matching of (G,C) is s = [%]. This
example shows that the bound in Theorem 6 is not very far away
from the best.

2 Proof of Theorem 5

Let M be a maximum heterochromatic matching of G. Put S =
X — Xp. Let N(S) be a maximum color neighborhood of S. And
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write N°(S) = YpUYp(YpNYg = ¢), where C(S,Yp)NC(M) =
and C(S,Yg) C C(M). Clearly |Yg| < |M|.

If Yp € Y, then there is an edge e € E(X — Xu,Y — Yr)
and C(e) ¢ C(M). Hence M U {e} is a heterochromatic matching
with cardinality |M| + 1, contrary to the maximality of M.

So Yp C Y. Since [N¢(S)| = |Yp| +|Yg| = |S|, it follows that
|M| = [Yu| > [Yp| 2 |S| — [Yol > |X| — |M]| — |M]|. This gives
M| > 115 o

3 Proof of Theorem 6

Let M be a maximum heterochromatic matching of G with ¢ :=
|M]| such that |bys| is maximum. Assume to the contrary that
t< 3z

Suppose that the maximum number of the vertex-disjoint ACyss
inGislh. Clearly 0 < [ <t If l1 > 1, assume that the i-th
alternating cycle ACE, = {x,y,,y,x,,:c,yt,y,a:,} and denote that
C(zy) = C(ziy) = & € C(M),C(zw;) = Clay) = ¢; ¢ C(M),
where zy € E(M), and z; € X — Xu,y; €Y — Y.

Denote

XL, = {3’1,372, Tt a-’czl}aYLl = {y11y27"':yll}’
XMll = {xl)xZa' * '$ml1} < XM)
YMgl = {ylayZa i "yh} Cc YM)

where {z1y1,z2y2, -,z } = E(My,) C E(M).

We define a procedure named breeding as follows.

For i > 1, if there is an edge ziy' € E(M - Ml:+z—1,) such
that zt is adjacent with y¥, y' is adjacent w1th z¥ and C(z'y¥) =
C(z'y'), where z* 6 X - XM XL,+,_1,y €Y =Yy YL 4+i-1;
Moreover, if C(ziy"') € C(M), then C(z'y") € C(My,4i_1) and if
C(z¥y’) € C(M), then C(z'y") € C(Mi,4i—1); Then we do the

i-th breeding (step i) as follows.

. . ., P
Denote ¢}, 1+; = C(z'y*), Thti = T Y +i = yt,mll+i =z WUy =
And let XM11+.' = XM11+;'-1 U {14} YM:,M = YM;,+.’-1 u

il

Y.
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{yll+‘i}! XL1+i = XL1+i—1 U {xi’}’ YL1+i = YL1+i—1 U {yi,} and
M, i = My i1 U {0490 44}

Suppose that after k steps, the breeding procedure stops, which
means that we can not do the breeding again. Let ! = [; + k and
denote X1, = Xr, 4k, YL = Y4k XM, = XM,I.,_k,YM, = YM!1+k'
Denote C; = {c1,¢3,+-,c} and Cp, = {c : ¢ € C(ACj;) and
c ¢ C;,1 <i<1}. Clearly C(M) — C(M;) = C(M — M;). Suppose
ICL) =1,

Claim 1. I < 1.

Proof. In each step (i > 1), we conclude that C(z'y ) € C(M)
or C(z'y) € C(M) Otherwise if C(ziy") # C(z'y?), then
M! = M U {z'y",z"y'} — {z'y'} is 2 heterochromatic matching
with size more than |M I, a contradiction. If C(z'y") = C(z¥'y),
then {ziyf,viz", z%y", 4" '} is an ACyy, it follows that the num-
ber of the vertex disjoint AC)ss is at least I; + 1, a contradiction.
Thus, I' < 1. O

Now denote S; = X — Xy —Xpand Sy =Y — Yy - V5.

Claim 2. (2.1). For any vertex v, € S, if there exists an edge
vzvy such that C(vzvy) ¢ C(M — M), then v, € Yir — Yy,

(2.2). For any vertex y € Sy, if there exists an edge zy such
that C(zy) ¢ C(M — M;), then z € Xpr — X,

Proof. By the symmetry, we only prove (2.1). Suppose, to the
contrary, there exists an edge v, v, such that C(vzvy) ¢ C(M—M;),
in which v, € S, and vy ¢ Yar — Ya,. We distinguish the following
three cases, and in each case we get a heterochromatic matching
with cardinality more than |M|, which is a contradiction.

Case 1. C(vzvy) ¢ C(M). Then let

MU {vyvy, z ,y,} {ziyi} vy € Yu,, W.10.g,suppose v, = ;.

Case 2. C(vzvy) € Crand vy ¢ Yy,. W.0.1.g, suppose C(vyvy) =
c,1<i<1.
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If C(z;y:) ¢ C(M), then let M! = M U {vpvy, 2,3} — {zivi}-
Otherwise, by the breeding rule, we have that C(z;y;) = c;, with
j1 < i. And if C(z 1y,,) ¢ C(M), then let
M = M U {vzvy, T39i, 25,9, } — {@i%, T5, 95, }- Otherw1se, we have
that C(:z:”yjl) = ¢j, with j2 < j1. Then consider C(x 2y”), ‘e
By successively doing this process, we can find jx(1 < jk < Jk—1 <

- < 31 < z) such tha.t C(z ky,k) ¢ C(M), then let M = MU
{'Ux”y’ iyu jlva : ’x]k 1 Yik—11 Jky]k} {zyi, Ti¥i - Tilin k-

Case 3. C(vxvy) € C; and vy € Y)y,. Suppose vy = y;,1 < j <
l. Let M' = MU{z z;4;'} — {z;y;}, then use the same method as in
Case 2, we can get a heterochromatic matching M! with size more
than |M|. o

If bp\Ci # ¢, w.o0.l.g, we assume that by \C) = {c141,¢142,
ci+4} and moreover assume that C(Zi4iyi4+i) = €144, 1 <2< d. And
denote XMd = {xl-}'l’ Ti42y° $l+d}7 YMd = {yl+1, Yiy2, 1yl+d}
and My = {Z1419141, -+ » TidYi+d}-

Claim 3. If there exists an edge v.y; such that C(v;y;) ¢ C(M —
M;), where v, € S; and y; € Yy, then the following two conclu-
sions hold.

(3.1). The edges in E(G — Vi) with color c; are incident with v..
(3.2). If there is an edge z;v,, where v, € Sy, then C(z;v,) €
C(M - M,).

Proof. Since y; € Yy, by the definition of Y)y,, there exists an
edge e € E(G — Vi) such that C(e) = C(z;y;). If e is not incident
with v, we distinguish the following two cases.

Case 1. C(vyy;) € C(M). Then let M = M U {e,vz:} —
{ziy;}. Then M! is a heterochromatic matching M! with |[M!| >
|M|, a contradiction.

Case 2. C(vzy;) € Ci. Suppose C(vzvy) = ¢j,1 <j < L
Similarly as in Claim 2, we can find ji such that C’(a:,kyjk) (or
C(x]kka)) ¢ C(M)’ then let M = MU{e, vy, ,?/J(Or nyJ), ],le
(or xjxy_n)’ T kka(Or x]ky]k)} {Ziyi, Y5 Tjr Vi * *» T Yie }-
Here if e is incident with m;-r, we choose the edge :cj,y;-r, where
0 <r <k and jo = j. Thus, we get a heterochromatic matching
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M? such that |[M}| > |M|+1, a contradiction. This completes the
proof of (3.1).

For (3.2), suppose, to the contrary, C(z;vy) ¢ C(M — M)).
Similarly as in (3.1), the edges in E(G — V) with color C(x;y;)
are incident with vy. Thus C(vzvy) = C(ziw:)-

If C(zivy), C(veyi) ¢ C(M) and C(zivy) # C(vzy;), then M =
MU {z;vy, v;y:} — {ziy:} is a heterochromatic matching such that
|M1| > |M]|, a contradiction.

If C(zivy), C(vzys) ¢ C(M) and C(z;vy) = C(vzy:), then {z;y;,
YiVs, UzVy, Yy } is an ACys. Thus the number of the vertex disjoint
AC)y is at least I; + 1, a contradiction.

Thus we conclude that C(z;vy) € C; and C(vzy;) ¢ C(M) or
C(vzy;) € C; and C(zivy) ¢ C(M) or C(xivy), C(vzy;) € Cy, it fol-
lows that we can continue the breeding procedure, a contradiction.
This completes the proof of (3.2). O

Let Yy, = {v : v € Y, and v is adjacent with a vertex
vz € Sz such that C(vgv) ¢ C(M — M)} and Yy, | = d1. And
define X = = {v:v € S; and v is adjacent with a vertex vy € Yy,
such that C(vyy) ¢ C(M — M)} and |X, /| = d;. By Claim 3,

d’Sdl

For a vertex v € V(G — Vi), let by, (v) = {c: c € C(My)
and there exists an edge e € E(G — Vi) 1ncxdent with v such that
C(e) = ¢}. And for a subset V| C V(G — V), denote by, (V1) =
{bam,(v) : v e V). Let Y’ denote the set V C S, with minimum
sme satisfying bas,(V) = bar,(Sy). Clearly, |Y'| < d. Now denote
YV'=Y-Yy-Y.-Y.

Let N°(Y ) be a maximum color neighborhood of Y And
assume that NC(Y )= XPUXQ(XpﬂXQ @), where C(Y , Xp)N
(C(M) uCp)=¢ and C(Y", Xg) C C(M) UC’L Clearly |Xg| <
t+1, then | Xp| > |Y"|-|Xo| > n—t—I—d— (t+1) > n—2t—2l—d.

Let N¢(S;) be a maximum color neighborhood of S;. And
assume that N°(S;) = Yp UYo(Yp NYg = ¢), where C(Sz,Yp) N
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C(M — M) = ¢ and C(S,, Yg) C C(M — My). Clearly |Yo| < t—1,
then |Yp| > |Sz| = Y| 2n—t—-1-(t-1)>n -2t

Claim 4. d; > 2n -5t - 1.

Proof. By Claim 2, we know that X PSS Xy—Xpm andYp C
Yym — Yu,. By the definition of Y” and Claim 3, it holds that
XpNXpm, =¢. Thus Xp C Xy — Xy, — Xu,. By Claim 3 and
the definition of YMa,, we conclude that ¥Yp N (Y, d\YMd ) =¢. So
we have that Yp C Y — Yar, — (Yr,\Ya,,)-

If | Xp|+|Yp| > [Ym —Ynm, — (YM,\YM, )|, then there is an edge
z;y; € E(M — M; — Mg) such that z; € Xp and y; € Yp. Then
there exist edges z;jvy, vzy; such that C(zjv,) ¢ C’(M YUCy, and
C(vzy;) ¢ C(M — M), in which v; € S; and v, € Y".

If C(v;y;) € Ci, suppose that C(vzy;) = ci(1 < i < !). Use the
same method as in Claim 2, we can find jk such that C(:z:_,kyjk) ¢
C(M), then let M' = M U {vay,vzyJ, 1yh leju ) ,,?/Jk}
{zjv, Tivi, Ty Ysr» -+ » T Vs }- Thus M1 1saheterochromatlc match-
ing such that |M1!| > [M|, which is a contradiction.

If C(vzy;) ¢ Ci and C(vzy;) # C(zjvy). Then M! = M U
{vzy;, zjvy} — {z;y;} is a heterochromatic matching with cardinal-
ity |[M| + 1, a contradiction.

So we conclude that C(v,y;) = C(xjvy). Then let M} = M U
{zjvy} — {zjy;}. It follows that |M?| = |M| and |bpp| > |bu,
which contradicts with the choice of M.

Thus |Xp| + |Yp| < [Yar — Ya, — (Yag,\Yag, )|- 1t follows that
n—92%—2—d4+n—2<t—l—(d—di), thendy >2n—5t—1. O

Similarly, we define Xp,, = {v : v € Xpm, and v is adja-
cent with a vertex v, € S, such that C(v,v) ¢ C(M — M;)} and
| X Md2| = dp. Similarly as Claim 4, we have that dy > 2n — 5¢ — [.
By Claim 3, we know that d; +ds < d.

Let S, = X—XM—XL—Xd:1 and N°(S.) be a maximum color
neighborhood of ;. And assume that N°(S,) = Yp U Yé,(Y,', N
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Y, = ¢), in which C(S, Y,’,) NC(M — M;) = ¢ and C(S, Yé)
C(M My). Clea,rly, |YQ| t —l then IYP| > IS, - |YQ|

Claim 5. |Yar — Yp, — Yo, | 2 n— 2t — d.

Proof. By Claim 2, it holds that YP C Ya —Yu,. And by Claim 3
and the definition of S, it holds that YpNYjy, = ¢. Then it follows
that YP C Yum —Ypm, —Yu,. Thus we have that |Yyr — Yas, — Yag,| >
IYP| >n—2t—d. ]

Now we have that

t 2 |YM—YM1 _YM4|+IYM4|+ |YM1|
>n—2t—di+d+1
>n—-2t+2n—-5t-1+1
>3n-"Tt.

Thus ¢ > %, which is a contradiction. The proof of Theorem 6 is
complete.
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