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Abstract

A )-design on v points is a set of v subsets (blocks) of a v-set
such that any two distinct blocks meet in exactly A points and not
all of the blocks have the same size. Ryser’s and Woodall’s A-design
conjecture states that all \-designs can be obtained from symmetric
designs by a complementation procedure. In a previous paper, the
author established feasibility criteria for the existence of A-designs
with two block sizes in the form of integrality conditions, equations,
inequalities, and Diophantine equations involving various parameters
of the designs. In that paper, these criteria and a computer were used
to prove that the A-design conjecture is true for all A-designs with
two block sizes with A < 90 and A # 45. In this paper, we extend
these results and prove that the A-design conjecture is also true for
all A-designs with two block sizes with A =45 or 91 < A < 150.

1 Introduction

Definition 1.1. Given integers A and v, 0 < A < v, a A-design on v points
is a pair (X, B), where X is a set of cardinality v whose elements are called
points and B is a set of v subsets of X whose elements are called blocks,
such that

(i) for all blocks A,B€ B, A# B, |ANB}=A, and
(ii) there exist blocks A, B € B with |A| # |B|.

A-designs were first defined by Ryser [15], [16] and Woodall [22]. The
only known examples of M-designs are obtained from symmetric designs

by the following complementation procedure. Let (X, .A) be a symmetric
(v, k, p)-design with p # k/2 and fix a block A € A. Put B = {A}U{AAB:
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B € A, B # A}, where A denotes the symmetric difference of sets (we refer
to this procedure as complementing with respect to the block A). Then an
elementary counting argument shows that (X, B) is a A-design on v points
with one block of size k and v — 1 blocks of size 2A, where A = k — u. Any
A-design obtained in this manner is called a type-1 M-design.

The A-design conjecture of Ryser [15], [16] and Woodall [22] states that
all \-designs are type-1. The conjecture was proven for A = 1 by deBruijn
and Erdds [4], for A = 2 by Ryser [15], for 3 < A < 9 by Bridges and
Kramer (1], [2], [13], for A = 10 by Seress [18], for A = 14 by Tsaur (3],
and for A < 34 by Weisz [21]. S. S. Shrikhande and Singhi [20] proved the
conjecture for prime XA and Seress [19] proved it when X is twice a prime.

Investigating the conjecture as a function of v rather than A, Ionin and
M. S. Shrikhande [10], [11] proved the conjecture for v = p+1, 2p+1, 3p+1,
and 4p + 1, where p is any prime, Hein [9] proved it for v = 5p + 1, where
p # 2 or 8 (mod 15) is prime, and Fiala [5], [6] proved it for v =6p+1, p
any prime, and v =8p+ 1, p=1 or 7 (mod 8) prime.

The reader interested in A-designs should consult the last chapter of
[12].

2 Preliminary results

In this section, we collect some results on A-designs that we will need later.
First, we have the following definition.

Definition 2.1. Given a A-design (X, B) and a point z € X, the replication
number of z, denoted by 7, is the number of blocks A € B such that z € A.

Ryser [15] and Woodall [22] independently proved the following theorem
concerning replication numbers of A-designs.

Theorem 2.2. If (X, B) is a A-design on v points, then there exist iniegers
1 > 12 > 1 such that every point has replication number ry or ry and
r+ro=v+1.

Let (X, B) be a A-design on v points. Then Theorem 2.2 implies that
every point has replication number r; or ro for some integers 71 > 7».
Therefore, the set X is partitioned into two subsets, F; and E», of points
having replication numbers r; and ro, respectively. Let |Eij| = e; and
|E2] = e2. Additionally, each block A is partitioned into two subsets,
A’ = AN E; and A* = AN E», of points having replication number r; and
9, respectively.

Theorem 2.8. Let (X, B) be a A-design on v points with replication num-
bers ry and ro and block sizes ki and ky. Then |A’| and |A*| depend only
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on |A| and so we may denote |A’| and |A*| by k! and k}, respeclively, for
|Al = k;, i =1,2. Moreover,

_ M=) —rafra—1)

-T2
_rni(ri—=1) = Av-1)
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Let (X, B) be a A design with block sizes k) and k;. Given a point z,
denote by r. the number of blocks of size k; that contain z and denote by
rx the number of blocks of size ko that contain z.

Theorem 2.4. (7] Let (X,B) be a A-design on v points with replication
numbers r1 and ro, 71 > 1o, vy blocks of size ky, and vy blocks of size ks.
Then v}, and v depend only on rz. In addition, if we denote the number of
blocks of size k;, 1 = 1,2, that contain a fixed point of replication number
rj, 3 =1,2, by v}, v}, r5, and r3, respectively, then

_ (k= N(k2 + Mv = 1))(r1 = 1)(r2 = 1) — Aka = A)(v = 1)2]
Aky —ko)(r1 = 1)(re = 1)

_ (ko = M[A(k1 — N (v — 1) — (k1 + Mo =1))r1 - 1)(r2 — 1)]
- Aky = k2)(r1 = 1)(r2 = 1)
o FL=Nlrilre = 1) — (ks = A — 1)]
(k1 — k2)(r2 — 1) '
oo (k2 — Mk = A)(w = 1) =71 (r2 — 1)]

P (k1 — ko)(r2 = 1) '
(ky = A)[ra(ry = 1) — (ko — M) (v — 1)]

(k1 k2)(1‘1 - 1)
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Given two distinct points z and y, denote by rz,, the number of blocks
containing both z and y. Also, denote by rz, the number of blocks of size
ky that contain both z and y and denote by rz, the number of blocks of

size k2 that contain z and y.

Theorem 2.5. [7] Let (X,B) be a A-design on v points with replication
numbers ry and r9, 71 > ro, and block sizes ky and ky. Letz,y € X,z # y.

Th
T (a-Nala=1) = (=N 1)
= = U —F2)(2 - 1)
d
o o _ U= Nk = Ny =1) = 7y (r2 = 1)
=y = (k1 — ko)(r2 — 1)
.y e By,
TREsS ) (k= A)ray — (k2 = )
Tzy = %y — kg
and

. _ (k2 = A)(k1 — A —72y)
sz = kl —
ifr € B, andy € Fs, and

T" _ (k] - /\)[T:z:y(rl - 1) - (k2 - ’\)(TZ - 1)]

=y (k1 = k2)(r1 — 1)
and
* (k2 — N)[(k1 = A)(r2 = 1) = rzy(ry = 1)]
zy = (k1 — ko)(ry — 1)
ifz,y € Es.

Theorem 2.6. [17] Let (X,B) be a A-design on v points with replication
numbers vy and vy, 7y > r2. Let 21 € By and o € Ea. Then more than
half of the numbers in {rz,y, : y2 € E2} are equal to [ri(ro —1)/(v —1)]
and more than half of the numbers in {rz,y, 1 y2 € Ea \ {x2}} are equal to

[ra(r2 —1)/(v = 1)].

Remark 2.7. Even though rgy, is not necessarily constant for constant
rz and ry, for convenience we set 712 = [ri(re - 1)/(v — 1)] and 7o =

[ro(r2 — 1)/(v — 1)].
3 Sums over pairs of points
In this section, we find the values of various sums over sets of pairs of points

in A-designs with two block sizes. These results can be useful in ruling out
potential designs once we have sets of all possible r;, and r;, values.
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Theorem 3.1. Let (X, B) be a A-design on v points with replication num-
bers vy and rq, *1 > 19, vy blocks of size ki, and vy blocks of size ko.
Then

Z ey = 1Ky (K} — 1), (1)

ahyel‘:l ,I#y
> o, =uky(ky - 1), 2)

z,y€ By ,z#y
Z rhy = vikik}, (3)

z€E,) Y€ Ea
Z r;':y = ‘Uzkék;, (4)
x€EE) ,yEE2

S by =wkikt -1), (5)

E.:‘/EE&I#'.'I
S, =vaki(ks - 1), (6)

z,y€ B2,x#y
>ty =vkikh-1), (7)

z,yEX,x#y
> 12, =uzka(ke — 1), (8)

T, yEX,zF#Yy
Z (rey)? = doy(A = 1)(v1 = 1) — vika (k1 — 1), (9)

z,y€X,x#Y
Do thyrh, =M - 1), (10)
z‘ye'xtx#y
and
D (r2)? = Mva(h = 1)(v2 — 1) ~ vakp(ko — 1). 11)
z,y€X,x#y

Proof. Fori,4,l=1,2, we count in two different ways the number of triples
(z,y, A) € E; x E; x B such that z # y, |A| = k;, and z,y € A. We obtain
(1), (2), (3), (4), (5), and (6).

For i = 1,2, we count in two different ways the number of triples
(z,y, A) € X2 x B such that z # y, |A| = ki, and z,y € A. We obtain (7)
and (8).

For ¢,j = 1, 2, we count in two different ways the number of quadruples
(z,y,A,B) € X2 x BZ such that z # y, A # B, |A| = ki, |B| = k;, and
z,y € AN B. Using (7) and (8), we obtain (9), (10), and (11). a
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Theorem 8.2. Let (X,B) be a A-design on v points with replication num-
bers ry and re, 1 > 1ro. Let ) € By and x2 € Ey. Then more than half of
the numbers in {ry, ,, : y2 € Ea} are equal to

(ky = A)(r12 — (k2 = A))

P ) (12)
more than half of the numbers in {rz ., : y2 € E2} are equal to
Y A=
(k2 = A)(k1 T12) (13)

ki — ko ’

more than half of the numbers in {r, .. :y2 € E2\ {z2}} are equal to

22

(k1 = A)[raa(ry — 1) — (kg — A)(r2 = 1)]
(k1 = k2)(r1 = 1)

and more than half of the numbers in {rz,,, : y2 € E2\ {z2}} are equal to

(k2 — )\)[(kl - A(r2—1) - T9o(r) — 1)]
(ky = k2)(r1 = 1) '

Proof. Apply Theorems 2.5 and 2.6. a

, (14)

(15)

Remark 3.3. Even though r;, and rz, depend on rzy and not just on 7
and ry, for convenience we denote expressions (12), (13), (14), and (15) by
712, 12, T3, and r3,, respectively.

4 Eigenvalues

In this section, we establish some eigenvalue interlacing results that can
help in ruling out possible rz,, and r, values. First, we need the following.

Definition 4.1. Given a real symmetric n x n matrix A, we will denote the
eigenvalues of A (which must be real) by A1(A4) > ... > A (A). If Bisa
m x m matrix with m < n, then we say that the eigenvalues of B interlace
the eigenvalues of A if B has only real eigenvalues and if \;(A) > A\(B) >
A—m+i(A) fori=1,...,m.

Theorem 4.2. [8] Let A be a real symmetric n X n matriz partitioned as

follows:
A 1,1 e A 1,m

=
Il

AT, .. Amm
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where A;; is square for i = 1,...,m. Let b; ; be the average row sum of
Aijfori,j=1,...,m. Let B = (b;;) (we refer to B as the quotient matriz
of A with respect to the partition). Then the eigenvalues of B interlace the
etgenvalues of A.

Let (X, B) be a M-design on v points with replication numbers r, and
r9, 71 > T9, v blocks of size k;, and v blocks of size k3. Let z,y € X,
z # y, such that rz, # 0. Let Nz, be any (v — 2) x rz, matrix whose rows
are indexed by the elements of X\ {z,y} (points in E; coming first), whose
columns are indexed by the elements of B that contain = and y (blocks of
size k; coming first), and whose (2, A) entry is 1 if 2 € A and is 0 otherwise.
Thus,

. ( (k1 = Ny, + (A= 2)Jry, A= 2)Jr e, )
N, Nzy = '
A =2)Jrz, e, (k2 = A)lrz, + (A = 2)Jr,

where I,, denotes the n x n identity matrix, J, denotes the n x n matrix
of all I’s, and Jy, » denotes the m x n matrix of all 1’s. Let

0 Nay
Agy = .
NI 0

The rows of Nz, can be partitioned into E; \ {z,y} and E» \ {z,y} and
the columns of Nz, can be partitioned into the set of blocks of size k; that
contain = and y and the set of blocks of size ks that contain = and y. This
induces a partition of Az, with quotient matrix B, given by

(0 o TR ZER
0 o mM oM
B, = o -
K -2 k 0 0
\ k-2 K 0 o )
ifz,y € F, and e; > 2,
(0 o DD
p_| 0 0 = T
K -1 k-1 0 0
\ k-1 k-1 0 o )
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ifre By, y€ E, and ej,e3 > 1, and

rik riykh
( 0 0 e1 ey 2 \
i (k-2)  r2,(k3-2)
Bzy = 0 0 yezlz _xez -2
K k-2 0 0
\ k, k-2 0 o )

ifz,y € F3 and e3 > 2.

Theorem 4.3. Let (X, B) be a A-design on v points with replication num-
bers ry and r9, 71 > 7o, vy blocks of size ki, and vy blocks of size ko. Let
z,y€ X,z #£y, such thatrzy >0. If (i) z,y € Ey and ey > 2, (ii) z € Ey,
y € By, and e1,e5 > 1, or (ii1) z,y € F2 and ex > 2, then the eigenvalues
of Bzy interlace those of Azy.

Proof. Apply Theorem 4.2. 0

5 Small A

Let (X, B) be a A-design on v points with replication numbers r; and ra,
r1 > 73, vy blocks of size k;, and w2 blocks of size k2, ki > kg. Let
p=(r1—1)/(r2 = 1) = z/y, where ged(z,y) = 1, and d = e; — 3. Then all
of the parameters of the design discussed in this paper can be expressed in
terms of A, y, z, d, ko, and k;. For instance [15], [22],

r=AMp+1)-(d+1)(p-1)

and

L _Ne+D)-dlp-1)

2 = .
p

Furthermore, it can be shown [7], [18], {20] that

y+1<z<2(A-1), (17)
o= Ap+ 1] <ag | 22D, (8)
max{)\+ 1,1‘2} <kgs<ri—-1, (19)
and
ka+1<k <rp. (20)
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Therefore, for a fixed value of A > 1, the set of 6-tuples of the form
(A y,x,d, ko, k) corresponding to A-designs is finite and can be generated
using (16), (17), (18), (19), and (20). In [7], using an algorithm imple-
mented in Maple [14], this set of tuples was generated for 12 < A < 90
and the results of [7] were used to eliminate tuples that must correspond
to nonexistent or type-1 designs. All tuples except for (45,1,4,3,81,90)
and (45,1,4,11,81,90) were eliminated, proving the A-design conjecture
for A-designs with two block sizes with A < 90 and X # 45.

This algorithm was run again for 91 < A < 150. For each tuple that
survived the tests, we used the facts that for all different =,y € X, rgy, 77,
and r;, are integers, 0 < 1y < min{rz,ry}, 0 < Tay < min{r;,r;,r,yg,
and 0 < 3, < min{r}, 7}, 72y}, and Theorems 2.5 and 4.3 to determine sets
of all potential r;, and 7, values in each of the three cases (z,y) € E?,
(z,y) € By x B2, and (z,y) € F2. We then tried to determine if the sums of
Theorem 3.1 could be written in accordance with Theorem 3.2 using only
said values. If this was not possible, then the tuple could be rejected.

For example, take the tuple (45,1,4, 3,81,90). For (z,y) € E?, = # y,
it was determined that r,,, must be 120, 125, 130, 135, 140, 145, 150, 155,
160, or 165. For (z,y) € Ey x Es, it was determined that rz,, must be 35,
40, or 45. For (z,y) € E2, = # y, it was determined that rzy Must be 0, 5,
or 10. Let a;, 2 = 1,2,..., 10, be the number of pairs (z,y) € E?, = # v,
such that rz, =120 +5(i — 1). Let b;, i = 1,2,3, be the number of pairs
(z,y) € E1 x By such that r;, =35+ 5(i — 1). Let ¢;, i = 1,2,3, be the
number of pairs (z,y) € E3, z # y, such that r,,, = 5(i —1). Then (5), (6),

and (9) give us
3

D o =eaer — 1) = 43472, (21)
i=1
3
D 5(i — 1)e: = vaki (k] — 1) = 413820, (22)
=1

and
10 3 3
D 120453 - 1)]%a; + 2> _[35+5(i — 1)) + »_[5(i — 1)]°c; =
=1 =1 i=1

Avi (A = 1)(v = 1) — w1 k1 (k1 — 1) = 84400470. (23)
Solving the linear equations (21), (22), and (23) for ¢, ¢2 and ¢3 we obtain
for ¢
¢o = 576a)+625a2+676a3+729a4+784a5+841ag+900a,+961ag+1024a9+

16052454

1089a;0 + 98b; + 128by + 162b3 — s ,
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which is clearly not an integer.
Since no tuple for A = 45 or for 91 < A < 150 survived this additional
scrutiny, we have the following result.

Theorem 5.1. Al A-designs with two block sizes and A < 150 are type-1.

Remark 5.2. For A = 150, the tuples (150, 1, 6, 102, 225, 250) and (150, 1, 6,
138, 200, 225) survived the first round of tests based on the results in {7].
The latter was eliminated using the results in Section 3 of the present pa-
per, but the former could not be eliminated by any of the techniques in (7]
or in this paper.
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