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Abstract

We give some estimates of the norm of weighted composition operators
from a-Bloch spaces to Bloch-type spaces on the unit ball in ™.

1. INTRODUCTION AND PRELIMINARIES

Let B = B" be the unit ball in the complex vector space C", D = B! the unit
disk in C, and H(B) the class of all holomorphic functions on B. Let z(z) be a
positive continuous function on B (weight) and V f the gradient of the function
f. The Bloch-type space B, = B, (B) consists of all f € H(B) such that

bu(f) = sup u(2) |V £(2)] < co.
z€B

With the norm || fl|s, = |f(0)| + b.(f), Bu is a Banach space. For p(z) =
(1—]2])*, @ > 0, we get the a-Bloch space B> = B*(B), and the quantity b,(f)
and the norm || f||s, are denoted respectively by ba(f) and | flze.

The little Bloch-type space B, o = By o(B) is a subspace of B, consisting of
all f € H(B) such that lim,_,; u(z)|Vf(2)] = 0. For u(z) = (1 - [2])*, « > 0,
we get the little a-Bloch space space B = B§(B).

Let u € H(B) and ¢ = (¢1,. - -, @n) be a holomorphic self-map of B. For f €
H(B) the weighted composition operator is defined by (uC,, f)(z) = u(z)f(¢(2)).
It is of interest to provide function theoretic characterizations when v and ¢
induce bounded or compact weighted composition operators on spaces of holo-
morphic functions. For some recent results related to the case of the unit ball
or to Bloch-type spaces, see, e.g., [1]-[10], [12}-{24] and the references therein.

One of interesting problems is to calculate the norm of the operator uC,.
Majority of papers in the area only find asymptotics of the norm of certain
linear operators. There are a few papers which calculate the norm of these
operators. Recently in [14] we calculated ||[uCy||g1 (or B2)— Hees which motivated
us to find the norms of weighted composition and other closely related operators
between various spaces of holomorphic functions (see {15], [16], [17], [18], [21}).
Motivated by [1] and [22), here we estimate the norm ||uCy||e (or Bg)—B,» & # 1
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We need the next auxiliary result (see also [10] and [11] for related estimates).
Lemma 1. Let f € B*(B), a # 1. Then the following inequality holds

s@Isifo)+ 20 (e 1), )

Proof. Since a # 1, we have

5101 = | [ Suena]=| [ wses,aa
“”/ T aifi(u—lil)a-l"l)' .

MAIN RESULT

IA

Before we formulate the main result, we introduce some notation. Let

1 = p AT (L 1) and 19 = up HNNDC)

Tl a-1 \I-le@N=" e (=le@D*

where |Dp(2)|? = E};; IVe;(2)2.

Theorem 1. Suppose ¢ is a holomorphic self-map of B, u € H(B), a €
(0,00)\ {1}, and u is a weight on B. Then the following inequalities hold

ma {2 (s < 1)} < Gyl -s, < G, lann,
< max {Ilulla,,, '"(_0) | ( a= l<p:0)|)°f-1 - 1) +I{M + z;">}. 2)

Proof. Set fo(z) = 1. Then || folls= = 1 and f € B§. Hence we have
luCollgg -8, = lfolls=lluCpllBg -5, = [[uCpfolls, = lluls, ©)

For each w € B set f,(2) = ai—l(ﬁTz,:uyF—T — 1). Since f,,(0) =0 and
) A< A=zl (- [2)* (1-1z)=
@AV o) = [ < =l <o {1 (ol

it follows that sup,,cp || fwlls= < 1, and f,, € Bf for each fixed w € B.
If ©(0) # 0, then for every r € (0,1) we have

luCplisg -5, = l|uc'¢fr]%§g§[||s 2 [u(O)Ilf, e@ (#(0))]

[u(0)] 1
e 21 (T om= 1) “
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If o(w) = 0, then (4) obviously holds. Letting 7 — 1~ in (4), we get
(0] 1
o > -
IIUC‘P”BO -B, = a—-1 (1 _ |(P(0)|)a_l 1) . (5)
From (3) and (5) the first inequality in (2) follows.
If f € B*, by the Cauchy-Schwarz inequality and Lernma 1 we have that
luCoflls, < |w(O)If (2 (0))] + sup w(2)[Vaul2)| £ (p(2))]

+ilél;#(z)lu(zn|D<P(z)“Vf(‘P(Z))|

Iu(O)l(lf(O)l + 2 ((1 lwzo)l) T 1))

+supu(Z)IVU(2)l(If(0)i+ D=1

le(2)))>-
p(2)[u(2)||De(2)|
1 - le(2)])=

< Wl max { ol 2 (s = 1) + 17 + 57,

from which the third inequality in (2) follows.
From above mentioned inequalities and the following obvious inequality
luCollsg -5, < l[uCyllze—s,, all the relationships in (2) follow, as claimed. O
Note that forn=1
! 1 u(z)lu(Z)sfJ (=2
W = sup p(2)|w'(2)| ( _1) and I(l) .
P ed a—1 \(1-le(z)])e! b (- lp(z))e
Hence, from Theorem 1 we obtain the following corollary:

Corollary 1. Suppose ¢ is a holomorphic self-map of D, v € H(D), o €
(0,00) \ {1}, and p is a weight on D. Then the following inequalities hold

max {llulls,,, [u(0) ((1 — |‘P:0)|)°" - 1)} < luCollsg 5.

u(0 1
< Gl -, < max s, 2 ety —1) + 10 4+ 140},

IA

+ba(f)su
z€B

Remark 1. Theorem 1 can be regarded as a complement and an extension
of Theorems 2.1 and 2.2 in [1], since the case & = 1, u(z) = 1 — |z|2, on the
unit disk I was considered therein. Note that unlike the norm on the Bloch
space B(D) in the present paper, in [1] the authors used a slightly different
norm, that is, | f]lz = |f(0)] + sup,ep(l — |2|2)|5'(2)|, which is more suitable
for the case o = 1. On the other hand, some recent investigations of ours show
that from the practical point of view, for the case o # 1, the norm ||f]lg= =
[£(0)| + sup,p(1 — |2])2|f'(z)] is more suitable (see also Lemma 1 above).
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