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Abstract

In paper [7], S. J. Xu and W. Jin proved that a cyclic group of order pq, for
two different odd primes p and g, is a 3-BCI-group, and a finite p-group is a weak
(p - 1)-BCI-group. As a continuation of their works, in this paper, we prove that a
cyclic group of order 2p is a 3-BClI-group, and a finite p-group is a (p — 1)-BCI-
group.
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1 Introduction

For a graph X, we use V(X), E(X), and A = Aut(X) to denote its vertex set, edge set
and the full automorphism group respectively. A graph X is said to be edge transitive
if the action of A on E(X) is transitive; X is said to be vertex transitive if the action of
A on V(X) is transitive.

For a group G, and a subset S of G such that 1 ¢ §, the Cayley digraph X =
Cay(G,S) of G with respect to § is defined as the graph with vertex set G and arc
set Arc(X) = {(x,sx)|x € G,s € §}. The above subset S is called a Cayley-subset
of G. Each Cayley digraph X admits R(G) as a subgroup of Aut(X), where R(G) acts
with nature action of G on X by right muiltiplication. If S is symmetric, that is, if
S = 8! = {s7!Is € S}, then (x,y) is an arc if and only if (y, x) is an arc. In this
case, Cay(G, S) can be viewed as an undirected graph, called a Cayley graph, simply
by identifying two arcs (x,y) and (y, x) as an undirected edge.

A Cayley-subset S is called a CI-subset of G if for any Cayley-subset T, whenever
Cay(G,S) = Cay(G,T), we have T = S¢ for some a € Aut(G). Then the Cayley graph
Cay(G,S) is called a CI-graph of G. If each Cayley-subset § is a CI-subset, then G is
called a CI-group. Further, for a positive integer m, if each Cayley-subset S of size at
most m is a Cl-subset, G is called a m-Cl-group.

For a finite group G and a subset § < G (possibly, S contains the identity element),
the bi-Cayley graph BCay(G,S) of G with respect to S is the graph with vertex set
G x {0, 1} and with edge set {(x,0), (sx, 1)}, x € G, s € S. Then BCay(G,S) is a well-
defined bipartite graph with two bipartition subsets, say U = G x {0, W = G x {1}.
Further, each g € G induces an automorphism:
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R(g) : (x,0) - (xg8,0),(x, 1) = (xg, 1)

of BCay(G,S). We set R(G) = {R(g)lg € G) < A. Then R(G) acts regularly on both
U and W. Converssely, by [1, Lemma 2.5), a bipartite graph admits a group acting
regularly on both the bipartition subsets must be isomorphic to a bi-Cayley graph.

Let BCay(G,S) be a bi-Cayley graph and T a subset of G. If T = gS§ for some
g € G and @ € Aut(G), then BCay(G,S) = BCay(G,T) (see [4] or [5]). In gen-
eral, the converse is not necessarily holds; for example, G=(a, bla*=b?=1, b~'ab=a™"),
S=(1,a%) and T=(1, b}. Here we quote the following definition

Definition 1 ([7]) Let G be a finite group, S C G( possibly, S contains the identity
element).

(1) S is called a BCI-subset of G, if for any BCay(G, S ) = BCay(G, T) implies that
T = gS°, for some g € G, a € Aut(G).

(2) G is called a BCI-group, if each subset S € G is a BCl-subset.

(3) Let m be a positive integer, G is called a m-BCI-group, if each subset S C G of
size at most m is a BCI-subset.

(4) Let m be a positive integer, G is called a weak m-BCI-group, if each subset
S C G of size at most m such that BCay(G, S) is connected and vertex transitive is a
BCI-subset.

The Cayley isomorphism problem of Cayley graphs, especially determining CI-
graphs, Cl-groups etc., have been an active topic in algebraic graph theory for a long
time, see surveys in [2, 6] on this topic. As a generalization of the Cl-property for
Cayley graphs, S. J. Xu and W. Jin first gave the concept of BCI-subset for bi-Cayley
graphs in [7], where they give a necessary and sufficient condition for a finite group
being a 2-BCI-group, and proved that every cyclic group of order a product of two
distinct odd primes is a 3-BCI-group and that every finite p-group is a weak (p — 1)-
BCI-group.

In the present paper, we shall improve two results in [7] and prove the following
two results:

Theorem 1.1 A cyclic group of order 2p is a 3-BCI-group, where p is a prime.

Theorem 1.2 A cyclic group of order p" is a (p-1)-BCI-group, where p is a prime, n
is a positive integer.

2 Preliminary results

This section collects several known results which will be used in the third section.

Firstly, by [4, 5], we have the following proposition, which allows us assume that §
contains the identity element of the group G if necessary when consider the bi-Cayley
graph BCay(G, S).

Proposition 2.1 Let BCay(G, S) be a bi-Cayley graph. Then
BCay(G,S) = BCay(G, gS*)
Jor g € G and @ € Aut(G).
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By [1), the bi-Cayley graph BCay(G, S) is connected if and only if (SS~!) = G,
which implies the following proposition:

Proposition 2.2 ([4]) Let G be a finite group, and S C G with 1€S. Then BCay(G,S)
is connected if and only if G = (S).

Elements a and b of G are said to be fused if a = b” for some o € Aut(G) and
to be inverse-fused if a = (b™") for some o € Aut(G), see [3]. The following two
propositions are from [7].

Proposition 2.3 ([7])
(1) All finite groups are 1-BCI-groups.

(2) Finite group G is 2-BCI-group if and only if for any two elements of the same
order are fused or inverse-fused.

(3) A cyclic group of order p is a BCI-group where p is a prime.

Proposition 2.4 ([7]) Let X = BCay(G, S) be a finite, connected, and vertex transitive
bi-Cayley graph. Denote U = Gx{0}, W = Gx({1}, A = Aut(X), A*={a€A|U"=U, we=w]}.
Assume that for each o € S ym(V(X)), whenever oR(G)o"' <A*, we have oR(G)o™" is
conjugate in A* 10 R(G). Then S is a BCI-subset of G.

Finally, we quote a result from [8].

Proposition 2.5 ([8]) Let G = {(a, b|a29=b2=l,b"ab=a"') be a dihedral group of or-
der 4p. Assume S G G\ {1} such that |S| = 3. Then we have S is conjugate to
(b,a,a™'} or {b,ba,ba'\(i = 2,3,--- ,p) or {aP,b,ba'} (i = 1,2) under the action of
Aut(G). Further, if (S) = G, then either S is a Cl-subset or conjugate to {b,a,a™'} or
(b, ba, ba?). .

3 Proof of Main Results

In this section, with the same notation as in Section 1 and 2, we give the proofs of
Theorems 1.1 and 1.2.

Note that two graphs are isomorphic to each other if and only if there is a bijec-
tion between their connected components such that the corresponding components are
isomorphic. Then the following lemma holds.

Lemma 3.1 LetG beafinite group, andlet S, T be two subsets of G. Then BCay(G, S )=
BCay(G,T)  fandonly if BCay({S),S)
2=BCay((T), T).
, Proof of Theorem 1.1. Suppose G = Z,, = {(a) is a cyclic group of order 2p where
pisaprime. If p = 2, it is easy to check that Z; is a 3-BCI-group. So suppose p > 2.
Since Aut(G) is transitive on the same order elements of G, then by Proposition 2.3
(1) and (2), G is a 2-BCI-group. Thus, it suffices to show each 3-subset S of G is a
BClI-subset. By Proposition 2.1, we may assume S = {1, x, y}. Then
(i) o(x) = 2,0(y) = p;
(it) o(x) = 2,0(y) = 2p;
(iii) o(x) = o(y) = p;
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(iv) o(x) = o(y) = 2p;

(v) o(x) = p,o(y) = 2p.

If subset S in case (i), we can assume S ={1,a”, a*"}, where n=1,2,--- ,p ~ |. Let
g = a™?, then gS={a~",a”~?", 1}, where a~*" has order p, aP~>" has order 2p, hence
g$ is contained in case (v). Similarly, we also can prove that if subset § in case either
(ii) or (iv), there exists a subset T in case (v) such that T = hS for some z € G.

Recall that for two subsets S’ and T, if there exist g € G and @ € Aut(G) such that
T’ =gS8'®, then S is a BCI-subset of G if and only if T is a BCI-subset of G. Therefore
without loss of generality, we can assume that subset S is contained in either case (iii)
or(v).

Let T € G,|T| = 3. Assume that | € T and BCay(G,S) = BCay(G,T). Then, first,
suppose that S is a subset in case (iii). Since G # (S, by Proposition 2.2, BCay(G, §)
is not connected, and so BCay(G, T) is not connected too. Without loss of generality,
we assume that T belongs to case (iii). Since all elements of order p are a®* where
I=1,2,--, p—1, it follows that we can suppose S ={1, a%, a%), T={1, a*", a®"}, where
i, jym,ne(l,2,--- ,p—1},i # j,m # n. Further, because Auz(G) is transitive on the
same order elements of G, so § is conjugate to {1, a?,a*}, T is conjugate to {1, a?, a*)
where k, r€{2,3, - , p— 1}. Hence, we can assume S ={1,a?, a®*}, T={1,a% a¥), k,r €
{2,3,---,p-11

By the above assumption that BCay(G,S) = BCay(G, T), then by Lemma 3.1, we
have BCay((S),§) = BCay({T),T) and (§) = (T) = Z,. Then by Proposition 2.3
(3), cyclic group Z, is a BCI-group. Thus there exist g € (S),a € Aut({(S)) such that
S = gT°. Further, since (S) is a characteristic subgroup of G, there exists 8 € Aut(G)
such that Bis) = a, it follows that § = gT?. Therefore § is a BCI-subset of G.

Now suppose that S is a subset of case (v). Since G = (S), by Proposition 2.2,
BCay(G, S) is connected, and so BCay(G, T) is also connected.

Since Aut(G) is transitive on the same order elements of G, so § is conjugate to
one of {1,a,a%} where i = 1,2,---, p — 1. Thus we may denote §; = {1,a,a¥), and
X;:=BCay(G,S). Assume G = (a,bla*® = b® = 1,bab = a™"} is a dihedral group of
order 4p. Let T; = bS; = {b, ba, ba¥}, Y;:=Cay(G, T;), then define

¥ V(X)) = V(YD)

80— g
(g. 1) bg,

where ge G,b e G,o(b) = 2. Itis easy to see that ¢ is a bijection from V(X;) to V(Y;).
Further, since for each edge {(g,0), (sg, 1)} of BCay(G,S;) we have {(g,0), (sg, )}¥
={g, bsg)(bseT) which is an edge of Cay(G, T;) , therefore X; = Y.

Further, define o : (x,0) = (x~',1),(x,1) = (x~!,0) where x € G, then o €
Aut(BCay(G, §)), 0o(o) = 2 and R(G)® = R(G). Thus R(G)x{0") = G. Since G char G,
by [7, Theorems 3.11 and 3.12], if 5S is a CI-subset of G, then S is a BCI-subset of G.
By Proposition 2.5, all T; are ClI-subsets of G except T;. Therefore S; are BCI-subsets
except S;. It follows that S is also a BCI-subset. O

In paper (7], authors proved that a finite p-group G is a weak (p — 1)-BCI-group.
When G is cyclic, the following proof improve the result: G is a (p — 1)-BClI-group.
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Proof of Theorem 1.2. Let G = Z,» = (a) where p is a prime, n is a positive
integer. Suppose S € G,|S|=m<pandl€S.

First, if p = 2, then m = |, by Proposition 2.3 (1) that G is a 1-BCI-group. So
we assume p # 2. Let X = Bay(G,S). Denote U = Gx{0} and W = Gx{l} are
the two bipartition parts of X. And denote A = Auz(X), A":(aeAlU"=U, we=w).
If p { |A{ p)\. then G is the Sylow p-subgroup of A*, by Proposition 2.4, that S is a
BClI-subset of G. Thus assume that pIIAa_ml. If ¢(§) = G, then by Proposition 2.2,
BCay(G, S) is connected, thus p { |A(+1,o)| a contradiction. Therefore (§) < G. So
KSH) = pli<nand(S) = (a”'y where =12 ,n- 1. Let X;:=BCay({S), ), and
B = Aul(X,). Since m < p, that p { |B 9, and so S is a BCI-subset of (S ). For any
subset T of G such that | € T and BCay(G, S) = BCay(G, T), by Lemma 3.1, we have
(§) = (T) and BCay({5),S) = BCay((T),T). Since S is a BCI-subset of (S), there
exist g € (S) and @ € Aut({S)), such that T = gS°. Further, since () is a characteristic
subgroup of G, there exists 8 € Aut(G) such that the restriction of 8 to (§) is equal to
a. Therefore, T = gSP and § is a BCI-subset of G. O
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