Two results on BCI-subset of finite groups *

Wei Jin^a and Weijun Liu^{b†}

aSchool of Mathematics, Central South University, Changsha, Hunan, 410075, P. R. China
 bSchool of Science, Nantong University, Nantong, Jiangsu, 226007, P. R. China

Abstract

In paper [7], S. J. Xu and W. Jin proved that a cyclic group of order pq, for two different odd primes p and q, is a 3-BCI-group, and a finite p-group is a weak (p-1)-BCI-group. As a continuation of their works, in this paper, we prove that a cyclic group of order 2p is a 3-BCI-group, and a finite p-group is a (p-1)-BCI-group.

Keywords: bi-Cayley graph; BCI-subset; Isomorphism

1 Introduction

For a graph X, we use V(X), E(X), and A = Aut(X) to denote its vertex set, edge set and the full automorphism group respectively. A graph X is said to be edge transitive if the action of A on E(X) is transitive; X is said to be vertex transitive if the action of A on V(X) is transitive.

For a group G, and a subset S of G such that $1 \notin S$, the Cayley digraph X = Cay(G,S) of G with respect to S is defined as the graph with vertex set G and arc set $Arc(X) = \{(x,sx)|x \in G, s \in S\}$. The above subset S is called a Cayley-subset of G. Each Cayley digraph X admits R(G) as a subgroup of Aut(X), where R(G) acts with nature action of G on X by right multiplication. If S is symmetric, that is, if $S = S^{-1} = \{s^{-1}|s \in S\}$, then (x,y) is an arc if and only if (y,x) is an arc. In this case, Cay(G,S) can be viewed as an undirected graph, called a Cayley graph, simply by identifying two arcs (x,y) and (y,x) as an undirected edge.

A Cayley-subset S is called a CI-subset of G if for any Cayley-subset T, whenever $Cay(G,S) \cong Cay(G,T)$, we have $T=S^{\alpha}$ for some $\alpha \in Aut(G)$. Then the Cayley graph Cay(G,S) is called a CI-graph of G. If each Cayley-subset S is a CI-subset, then G is called a CI-group. Further, for a positive integer m, if each Cayley-subset S of size at most m is a CI-subset, G is called a G-called a G-c

For a finite group G and a subset $S \subseteq G$ (possibly, S contains the identity element), the bi-Cayley graph BCay(G, S) of G with respect to S is the graph with vertex set $G \times \{0, 1\}$ and with edge set $\{(x, 0), (sx, 1)\}, x \in G, s \in S$. Then BCay(G, S) is a well-defined bipartite graph with two bipartition subsets, say $U = G \times \{0\}, W = G \times \{1\}$. Further, each $g \in G$ induces an automorphism:

^{*}Supported by the National Natural Science Foundation of China (Grant No. 10871205) and the Central South University Postgraduate Education Innovation Project (Grant No. 3340-7433400001).

[†]Corresponding author: wjliu6210@126.com

$$R(g): (x,0) \mapsto (xg,0), (x,1) \mapsto (xg,1)$$

of BCay(G, S). We set $R(G) = \{R(g)|g \in G\} \le A$. Then R(G) acts regularly on both U and W. Conversely, by [1, Lemma 2.5], a bipartite graph admits a group acting regularly on both the bipartition subsets must be isomorphic to a bi-Cayley graph.

Let BCay(G, S) be a bi-Cayley graph and T a subset of G. If $T = gS^{\alpha}$ for some $g \in G$ and $\alpha \in Aut(G)$, then $BCay(G, S) \cong BCay(G, T)$ (see [4] or [5]). In general, the converse is not necessarily holds; for example, $G = (a, b|a^4 = b^2 = 1, b^{-1}ab = a^{-1})$, $S = \{1, a^2\}$ and $T = \{1, b\}$. Here we quote the following definition

Definition 1 ([7]) Let G be a finite group, $S \subseteq G(possibly, S contains the identity element).$

- (1) S is called a BCI-subset of G, if for any BCay(G, S) \cong BCay(G, T) implies that $T = gS^{\alpha}$, for some $g \in G$, $\alpha \in Aut(G)$.
 - (2) G is called a BCI-group, if each subset $S \subseteq G$ is a BCI-subset.
- (3) Let m be a positive integer, G is called a m-BCI-group, if each subset $S \subseteq G$ of size at most m is a BCI-subset.
- (4) Let m be a positive integer, G is called a weak m-BCI-group, if each subset $S \subseteq G$ of size at most m such that BCay(G,S) is connected and vertex transitive is a BCI-subset.

The Cayley isomorphism problem of Cayley graphs, especially determining CI-graphs, CI-groups etc., have been an active topic in algebraic graph theory for a long time, see surveys in [2, 6] on this topic. As a generalization of the CI-property for Cayley graphs, S. J. Xu and W. Jin first gave the concept of BCI-subset for bi-Cayley graphs in [7], where they give a necessary and sufficient condition for a finite group being a 2-BCI-group, and proved that every cyclic group of order a product of two distinct odd primes is a 3-BCI-group and that every finite p-group is a weak (p-1)-BCI-group.

In the present paper, we shall improve two results in [7] and prove the following two results:

Theorem 1.1 A cyclic group of order 2p is a 3-BCI-group, where p is a prime.

Theorem 1.2 A cyclic group of order p^n is a (p-1)-BCI-group, where p is a prime, n is a positive integer.

2 Preliminary results

This section collects several known results which will be used in the third section. Firstly, by [4, 5], we have the following proposition, which allows us assume that S contains the identity element of the group G if necessary when consider the bi-Cayley graph BCay(G, S).

Proposition 2.1 Let BCay(G, S) be a bi-Cayley graph. Then

$$BCay(G,S) \cong BCay(G,gS^{\alpha})$$

for $g \in G$ and $\alpha \in Aut(G)$.

By [1], the bi-Cayley graph BCay(G, S) is connected if and only if $\langle SS^{-1} \rangle = G$, which implies the following proposition:

Proposition 2.2 ([4]) Let G be a finite group, and $S \subseteq G$ with $1 \in S$. Then BCay(G, S) is connected if and only if $G = \langle S \rangle$.

Elements a and b of G are said to be fused if $a = b^{\sigma}$ for some $\sigma \in Aut(G)$ and to be inverse-fused if $a = (b^{-1})^{\sigma}$ for some $\sigma \in Aut(G)$, see [3]. The following two propositions are from [7].

Proposition 2.3 ([7])

- (1) All finite groups are 1-BCI-groups.
- (2) Finite group G is 2-BCI-group if and only if for any two elements of the same order are fused or inverse-fused.
- (3) A cyclic group of order p is a BCI-group where p is a prime.

Proposition 2.4 ([7]) Let X = BCay(G, S) be a finite, connected, and vertex transitive bi-Cayley graph. Denote $U = G \times \{0\}$, $W = G \times \{1\}$, A = Aut(X), $A^+ = \{\alpha \in A \mid U^\alpha = U, W^\alpha = W\}$. Assume that for each $\sigma \in Sym(V(X))$, whenever $\sigma R(G)\sigma^{-1} \leq A^+$, we have $\sigma R(G)\sigma^{-1}$ is conjugate in A^+ to R(G). Then S is a BCI-subset of G.

Finally, we quote a result from [8].

Proposition 2.5 ([8]) Let $G = \langle a,b | a^{2p}=b^2=1, b^{-1}ab=a^{-1} \rangle$ be a dihedral group of order 4p. Assume $S \subseteq G \setminus \{1\}$ such that |S| = 3. Then we have S is conjugate to $\{b,a,a^{-1}\}$ or $\{b,ba,ba^i\}$ ($i=2,3,\cdots,p$) or $\{a^p,b,ba^i\}$ (i=1,2) under the action of Aut(G). Further, if $\langle S \rangle = G$, then either S is a CI-subset or conjugate to $\{b,a,a^{-1}\}$ or $\{b,ba,ba^2\}$.

3 Proof of Main Results

In this section, with the same notation as in Section 1 and 2, we give the proofs of Theorems 1.1 and 1.2.

Note that two graphs are isomorphic to each other if and only if there is a bijection between their connected components such that the corresponding components are isomorphic. Then the following lemma holds.

Lemma 3.1 Let G be a finite group, and let S, T be two subsets of G. Then $BCay(G, S) \cong BCay(G, T)$ if and only if $BCay(\langle S \rangle, S) \cong BCay(\langle T \rangle, T)$.

Proof of Theorem 1.1. Suppose $G = Z_{2p} = \langle a \rangle$ is a cyclic group of order 2p where p is a prime. If p = 2, it is easy to check that Z_4 is a 3-BCI-group. So suppose p > 2. Since Aut(G) is transitive on the same order elements of G, then by Proposition 2.3 (1) and (2), G is a 2-BCI-group. Thus, it suffices to show each 3-subset S of G is a BCI-subset. By Proposition 2.1, we may assume $S = \{1, x, y\}$. Then

- (i) o(x) = 2, o(y) = p;
- (ii) o(x) = 2, o(y) = 2p;
- (iii) o(x) = o(y) = p;

(iv)
$$o(x) = o(y) = 2p$$
;

$$(v) o(x) = p, o(y) = 2p.$$

If subset S in case (i), we can assume $S = \{1, a^p, a^{2n}\}$, where $n = 1, 2, \dots, p-1$. Let $g = a^{-2n}$, then $gS = \{a^{-2n}, a^{p-2n}, 1\}$, where a^{-2n} has order p, a^{p-2n} has order 2p, hence gS is contained in case (v). Similarly, we also can prove that if subset S in case either (ii) or (iv), there exists a subset T in case (v) such that T = hS for some $h \in G$.

Recall that for two subsets S' and T', if there exist $g \in G$ and $\alpha \in Aut(G)$ such that $T' = gS'^{\alpha}$, then S is a BCI-subset of G if and only if T is a BCI-subset of G. Therefore without loss of generality, we can assume that subset S is contained in either case (iii) or (v).

Let $T \subseteq G$, |T| = 3. Assume that $1 \in T$ and $BCay(G, S) \cong BCay(G, T)$. Then, first, suppose that S is a subset in case (iii). Since $G \neq \langle S \rangle$, by Proposition 2.2, BCay(G, S) is not connected, and so BCay(G, T) is not connected too. Without loss of generality, we assume that T belongs to case (iii). Since all elements of order p are a^{2l} where $l = 1, 2, \dots, p-1$, it follows that we can suppose $S = \{1, a^{2i}, a^{2j}\}$, $T = \{1, a^{2m}, a^{2n}\}$, where $i, j, m, n \in \{1, 2, \dots, p-1\}$, $i \neq j, m \neq n$. Further, because Aut(G) is transitive on the same order elements of G, so S is conjugate to $\{1, a^2, a^{2k}\}$, T is conjugate to $\{1, a^2, a^{2r}\}$ where $k, r \in \{2, 3, \dots, p-1\}$. Hence, we can assume $S = \{1, a^2, a^{2k}\}$, $T = \{1, a^2, a^{2r}\}$, $k, r \in \{2, 3, \dots, p-1\}$.

By the above assumption that $BCay(G,S) \cong BCay(G,T)$, then by Lemma 3.1, we have $BCay(\langle S \rangle, S) \cong BCay(\langle T \rangle, T)$ and $\langle S \rangle = \langle T \rangle \cong Z_p$. Then by Proposition 2.3 (3), cyclic group Z_p is a BCI-group. Thus there exist $g \in \langle S \rangle$, $\alpha \in Aut(\langle S \rangle)$ such that $S = gT^{\alpha}$. Further, since $\langle S \rangle$ is a characteristic subgroup of G, there exists $\beta \in Aut(G)$ such that $\beta|_{\langle S \rangle} = \alpha$, it follows that $S = gT^{\beta}$. Therefore S is a BCI-subset of G.

Now suppose that S is a subset of case (v). Since $G = \langle S \rangle$, by Proposition 2.2, BCay(G, S) is connected, and so BCay(G, T) is also connected.

Since Aut(G) is transitive on the same order elements of G, so S is conjugate to one of $\{1, a, a^{2i}\}$ where $i = 1, 2, \dots, p-1$. Thus we may denote $S_i = \{1, a, a^{2i}\}$, and $X_i := BCay(G, S_i)$. Assume $\overline{G} = \langle a, b | a^{2p} = b^2 = 1, bab = a^{-1} \rangle$ is a dihedral group of order 4p. Let $T_i = bS_i = \{b, ba, ba^{2i}\}$, $Y_i := Cay(\overline{G}, T_i)$, then define

$$\varphi: V(X_i) \mapsto V(Y_i)$$

$$(g,0) \mapsto g$$

$$(g,1) \mapsto bg,$$

where $g \in G$, $b \in \overline{G}$, o(b) = 2. It is easy to see that φ is a bijection from $V(X_i)$ to $V(Y_i)$. Further, since for each edge $\{(g,0),(sg,1)\}$ of $BCay(G,S_i)$ we have $\{(g,0),(sg,1)\}^{\varphi} = \{g,bsg\}(bs\in T)$ which is an edge of $Cay(\overline{G},T_i)$, therefore $X_i \cong Y_i$.

Further, define $\sigma: (x,0) \mapsto (x^{-1},1), (x,1) \mapsto (x^{-1},0)$ where $x \in G$, then $\sigma \in Aut(BCay(G,S_i)), o(\sigma) = 2$ and $R(G)^{\sigma} = R(G)$. Thus $R(G) \rtimes \langle \sigma \rangle \cong \overline{G}$. Since G char \overline{G} , by [7, Theorems 3.11 and 3.12], if bS is a CI-subset of \overline{G} , then S is a BCI-subset of G. By Proposition 2.5, all T_i are CI-subsets of \overline{G} except T_1 . Therefore S_i are BCI-subsets except S_1 . It follows that S_1 is also a BCI-subset. \square

In paper [7], authors proved that a finite p-group G is a weak (p-1)-BCI-group. When G is cyclic, the following proof improve the result: G is a (p-1)-BCI-group.

Proof of Theorem 1.2. Let $G = Z_{p^n} = \langle a \rangle$ where p is a prime, n is a positive integer. Suppose $S \subseteq G$, |S| = m < p and $1 \in S$.

First, if p=2, then m=1, by Proposition 2.3 (1) that G is a 1-BCI-group. So we assume $p\neq 2$. Let X=Bay(G,S). Denote $U=G\times\{0\}$ and $W=G\times\{1\}$ are the two bipartition parts of X. And denote A=Aut(X), $A^+=\{\alpha\in A|U^\alpha=U,W^\alpha=W\}$. If $p\nmid |A^+_{(1,0)}|$, then G is the Sylow p-subgroup of A^+ , by Proposition 2.4, that S is a BCI-subset of G. Thus assume that $p|A^+_{(1,0)}|$. If $\langle S \rangle = G$, then by Proposition 2.2, BCay(G,S) is connected, thus $p\nmid |A^+_{(1,0)}|$ a contradiction. Therefore $\langle S \rangle < G$. So $|\langle S \rangle| = p^i, i < n$ and $\langle S \rangle = \langle a^{p^i} \rangle$ where $j=1,2,\cdots,n-1$. Let $X_1:=BCay(\langle S \rangle,S)$, and $B=Aut(X_1)$. Since m< p, that $p\nmid |B_{(1,0)}|$, and so S is a BCI-subset of $\langle S \rangle$. For any subset T of G such that $1\in T$ and $BCay(G,S)\cong BCay(G,T)$, by Lemma 3.1, we have $\langle S \rangle = \langle T \rangle$ and $BCay(\langle S \rangle,S)\cong BCay(\langle T \rangle,T)$. Since S is a BCI-subset of $\langle S \rangle$, there exist S exists S

Acknowledgments

The authors thank the referee for giving help and advice about the revised version of this paper.

References

- [1] S. F. Du, M. Y. Xu, A classification of semi-symmetric graphs of order 2pq, Com. in Algebra 28 (2000), 2685-2715.
- [2] C. H. Li, On Isomorphisms of finite Cayley graphs a survey, *Discrete Math.* 256 (2002), 301-334.
- [3] C. H. Li, C. E. Praeger, The finite simple groups with at most two fusion classes of every order, *Comm. Algebra* 24 (1996), 3681–3704.
- [4] Z. P. Lu, On the automorphism groups of bi-Cayley graphs, Acta Scientiarum Naturalium Universitatis Pekinensis 39 (1), 2003, 1-5.
- [5] Z. P. Lu, C. Q. Wang, and M. Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_n, Ars Combinatoria 80 (2006), 177-187.
- [6] C. E. Praeger, Finite transitive permutation groups and finite vertex-transitive graphs, in *Graph Symmetry: Algebraic Methods and Applications, NATO ASI* Ser. C 497 (1997), 277-318.
- [7] S. J. Xu, W. Jin, Q. Shi, Y. Zhu, and J. J. Li, The BCI-Property of the bi-Cayley graphs (in Chinese), J. of Guangxi Normal University: Natural Science Edition 26 (2008) 33-36.
- [8] S. J. Xu, J. J. Qin, Y. P. Deng, Connected cubic Cayley graphs of dihedral groups of order 4p (in Chinese), Submitted.