A NOTE ON GLOBAL DOMINATION IN GRAPHS

S. ARUMUGAM

Department of Mathematics

Arulmigu Kalasalingam College of Engineering

Anand Nagar, Krishnankoil-626190

INDIA.

E-mail: s_arumugam_akce@yahoo.com

and

R. KALA

Department of Mathematics

Manonmaniam Sundaranar University

Tirunelveli - 627 012

INDIA.

Abstract

Let G=(V,E) be a graph. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. A global dominating set is a subset S of V which is a dominating set of both G as well as its complement \overline{G} . The domination number (global domination number) $\gamma(\gamma_g)$ of G is the minimum cardinality of a dominating set (global dominating set) of G. In this paper we obtain a characterization of bipartite graphs with $\gamma_g=\gamma+1$. We also characterize unicyclic graphs and bipartite graphs with $\gamma_g=\alpha_0+1$, where α_0 is the vertex covering number of G.

Keywords: Domination; Domination Number; Global Domination Number; Domsaturation Number; Global Domsaturation Number.

2000 Mathematics Subject Classification: 05C

1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [6].

Let G = (V, E) be a graph. A subset S of V is called a dominating set of G if every vertex in V - S is adjacent to at least one vertex in S. A dominating set S of G is called an independent dominating set of G if no two vertices of S are adjacent in G.

Sampathkumar [9] introduced the concept of global domination in graphs. Brigham and Dutton [4] introduced the concept of factor domination which includes global domination as a special case. A subset S of V is called a global dominating set of G if S is a dominating set of both G and \overline{G}

The domination number γ of G is defined to be the minimum cardinality of a dominating set in G. In a similar way, we define the independent domination number γ_i and the global domination number γ_g . Several fundamental results relating to domination in graphs are given in Haynes et al. [7]. A survey of results on global domination is given in Brigham et al. [5].

In this paper we obtain a characterization of connected bipartite graphs with $\gamma_g = \gamma + 1$. We also characterize connected unicyclic graphs and bipartite graphs with $\gamma_g = \alpha_0 + 1$, where α_0 is the vertex covering number of G. We need the following definition and theorems.

Definition 1.1. A vertex v of a graph G which is adjacent to a pendant vertex is called a support vertex.

Theorem 1.2. [7] For any graph G with a pendant vertex, $\gamma_g \leq \gamma + 1$.

Theorem 1.3. [4] If G is a triangle-free graph, then $\gamma \leq \gamma_g \leq \gamma + 1$.

2. Main Results

It follows from Theorem 1.3 that for any bipartite graph $\gamma_g = \gamma$ or $\gamma + 1$. The following theorem gives a characterization of all bipartite graphs for which $\gamma_g = \gamma + 1$.

Theorem 2.1. Let G be a connected bipartite graph with bipartition X, Y and $|X| \leq |Y|$. Then $\gamma_g = \gamma + 1$ if and only if either G is isomorphic to K_2 or every vertex in X is adjacent to at least two pendant vertices and there exists a vertex in Y which is adjacent to all vertices in X.

Proof. Let $\gamma_g = \gamma + 1$. We claim that $\delta = 1$. Suppose $\delta \geq 2$. Let S be a γ -set of G. If $\gamma < |X|$, then $S \cap X \neq \phi$ and $S \cap Y \neq \phi$. If $\gamma = |X|$, since $\delta \geq 2$, it follows that $S = (X - \{u\}) \cup \{v\}$, where $u \in X$ and $v \in N(u)$ is a γ -set of G with $S \cap X \neq \phi$ and $S \cap Y \neq \phi$. Since in G any vertex in G dominates all the vertices in G and any vertex in G dominates all the vertices in G, it follows that G is a global dominating set of G, so that G is a G-set of G. Further G is a G-set of G.

since otherwise any γ -set S has non-empty intersection with both X and Y, so that S is a global dominating set of G and hence $\gamma_g = \gamma$, which is a contradiction. If $|X| = \gamma = 1$, then $G = K_{1,n}$ for some $n \geq 1$, which satisfies the conditions of the theorem. Suppose $\gamma \geq 2$. If there exists a vertex $u \in X$ such that N(u) contains at most one pendant vertex, then $D = (X - \{u\}) \cup \{v\}$, where $v \in N(u)$ and v is chosen to be a pendant vertex, if it exits, is a global dominating set which is a contradiction. Hence every vertex of X is adjacent to at least two pendant vertices. Since X is not a global dominating set of G, there exists a vertex in Y which is adjacent to all the vertices in X. Conversely, if G satisfies the conditions of the theorem, then X is the only γ -set of G so that $\gamma_g = \gamma + 1$.

As a corollary to Theorem 2.1 we get the following theorem of Rall [8].

Corollary 2.2. [8] Let T be a tree. Then $\gamma_g = \gamma + 1$ if and only if T is a star or T is a tree of diameter 4 which is constructed from two or more stars, each having at least two pendant vertices, by connecting the centers of these stars to a common vertex.

Sampathkumar [9] has proved that for any graph G, $\gamma_g \leq \alpha_0 + 1$, where α_0 is the vertex covering number of G. We characterize unicyclic graphs and bipartite graphs with $\gamma_g = \alpha_0 + 1$.

Theorem 2.3. Let G be a connected unicyclic graph with cycle C. Then $\gamma_g = \alpha_0 + 1$ if and only if every vertex in $V(G)\backslash V(C)$ is either a pendant vertex or a support vertex and G is isomorphic to one of the graphs given below.

- (i) $C = C_3$, every vertex not on C is a pendant vertex and exactly one vertex of C has degree 2.
- (ii) C = C₃, there exists at least one support vertex not on C, all the support vertices not on C are adjacent to the same vertex u on C, u is not a support vertex, the other two vertices on C are support vertices and there exist at least two pendant vertices adjacent to each support vertex.
- (iii) $C = C_4$, every vertex not on C is a pendant vertex, two non-adjacent vertices of C have degree 2 and the remaining two non-adjacent vertices of C have degree ≥ 4 .
- (iv) C = C₄, there exists at least one support vertex not on C, all the support vertices not on C are adjacent to the same vertex u on C, u is not a support vertex, the vertex on C which is non-adjacent to u is the only vertex on C with degree 2 and there exist at least two pendant vertices adjacent to each support vertex.

Proof. For the unicyclic graphs given in the theorem $\gamma_g = \alpha_0 + 1 = r + 3$, where r is the number of support vertices not on C.

Conversely, let G be a unicyclic graph with cycle C and $\gamma_g = \alpha_0 + 1$. Let S_1 be the set of all support vertices of G. Let S be an α_0 -set of G. Without loss of generality we may assume that $S_1 \subseteq S$. Since $\gamma_g = \alpha_0 + 1$, S is not a global dominating set of G. However S is a dominating set of G. Hence S is not a dominating set of G, so that there exists a vertex G which is adjacent to all the vertices of G. Since G is unicyclic, it follows that G lies on G and G and G and G are G as a function of G which is neither a pendant vertex nor a support vertex, then G contains two vertices G which is a contradiction. Hence every vertex not on G is either a support vertex or a pendant vertex.

Case i. Every vertex not on C is a pendant vertex.

Since S is not a global dominating set of G, it follows that exactly two vertices on C are support vertices and these two support vertices have a common neighbor and hence are non-adjacent if $C = C_4$. Also, if $C = C_4$ and if a support vertex has degree 3, then $\gamma_g = \alpha_0 = 2$ and hence it follows that every support vertex is adjacent to at least two pendant vertices. Hence G is of the form (i) or (iii).

Case ii. There exists a support vertex not on C.

Since exactly two support vertices lie on C and all the support vertices are adjacent to a common vertex u, the two vertices adjacent to u on C are support vertices. If there exists a support vertex v with exactly one pendant vertex w adjacent to it, then $(S\setminus\{v\})\cup\{\omega\}$ is a global dominating set which is a contradiction. Hence it follows that every support vertex is adjacent to at least two pendant vertices. Hence G is of the form (ii) or (iv).

The following theorem shows that Theorem 2.1 is true if γ is replaced by α_0 .

Theorem 2.4. Let G be a connected bipartite graph with bipartition (X,Y) and $|X| \leq |Y|$. Then $\gamma_g = \alpha_0 + 1$ if and only if either $G = K_2$ or every vertex in X is adjacent to at least two pendant vertices and there exists a vertex in Y which is adjacent to all vertices in X.

Proof. Suppose $\gamma_g = \alpha_0 + 1$. If $\alpha_0 = 1$, then $\gamma_g = 2$ and in this case $G \cong K_{1,n}$ for some n. Suppose $\alpha_0 > 1$. If G has an α_0 -set D which intersects both X and Y, then D is a global dominating set so that $\gamma_g \leq \alpha_0$, which is a contradiction. Hence X is an α_0 -set in G. Since X is not a global dominating set, there exists a vertex in Y which is adjacent to all vertices in X. If there exists a vertex u in X such that N(u) contains at most one pendant vertex v, then $D = (X \setminus \{u\}) \cup \{v\}$, where $v \in N(u)$ and v is chosen

to be a pendant vertex, if it exists, is a global dominating set of G which is a contradiction. Hence it follows that every vertex in X is adjacent to at least two pendant vertices. The converse is obvious.

Corollary 2.5. Let G be a connected bipartite graph with bipartition (X,Y) and $|X| \leq |Y|$. Then the following are equivalent.

- (i) $\gamma_q = \gamma + 1$.
- (ii) $\gamma_q = \alpha_0 + 1$.
- (iv) $G \cong K_2$ or every vertex in X is adjacent to at least two pendant vertices and there exists a vertex in Y which is adjacent to all vertices in X.

П

Proof. Follows from Theorem 2.1 and 2.4.

Corollary 2.6. Let G be a connected bipartite graph with p vertices. Then $\gamma + \gamma_g = p + 1$ if and only if $G \cong K_2$.

Proof. Since $\gamma \leq \beta_0$ and $\gamma_g \leq \alpha_0 + 1$, $\gamma + \gamma_g = p + 1$ if and only if $\gamma = \gamma_i = \beta_0$ and $\gamma_g = \alpha_0 + 1$ and hence the result follows.

Acharya [1] introduced the concept of domsaturation number ds of a graph. The least positive integer k such that every vertex of G lies in a dominating set (connected dominating set) of cardinality k is called the domsaturation number (connected domsaturation number) of G and is denoted by ds(G) ($ds_c(G)$). Several results concerning domsaturation number and connected domsaturation number are given in Arumugam et al. [2, 3].

The concept of domsaturation number can be naturally extended with respect to global domination.

Definition 2.7. For any graph G, the least positive integer k such that every vertex of G lies in a global dominating set of cardinality k is called the global domsaturation number of G and is denoted by ds_g .

If S is a γ_g -set of G, then for any vertex $u \in V \setminus S, S \cup \{u\}$ is a global dominating set of G and hence it follows that $ds_g = \gamma_g$ or $\gamma_g + 1$.

Theorem 2.8. Let G be any graph with $\gamma_g = \gamma$ and $ds = \gamma + 1$. Then $ds = ds_g$.

Proof. Since $ds = \gamma + 1$, there exists a vertex u which does not lie in any γ -set. Since $\gamma_g = \gamma$ and any γ_g -set is also a γ -set, u does not lie in any γ_g -set and hence $ds_g = \gamma_g + 1 = \gamma + 1 = ds$.

Theorem 2.9. For any connected bipartite graph $G \neq K_2$, $ds = ds_a$.

Proof. Let (X,Y) be a bipartition of G and let $|X| \leq |Y|$. In view of Corollary 2.5 and Theorem 2.8, it is enough to consider the case where $\gamma_g = \gamma$ and $ds = \gamma$. In this case $|X| \geq 2$. Let $x \in X$. Since $ds = \gamma$, there exists a γ -set D such that $x \in D$. If $D \cap Y \neq \phi$, then D is a global dominating set containing x. Otherwise D = X. Since $ds = \gamma$, every support vertex in X is adjacent to exactly one pendant vertex. Let $y \in X, y \neq x$ and $D_1 = (X \setminus \{y\}) \cup \{v\}$ where $v \in N(y)$ and v is chosen to be a pendant vertex if y is a support vertex. Then D_1 is a global dominating set of cardinality γ_g containing x. Similarly every vertex in Y also lies in a minimum global dominating set. Hence $ds = ds_g$.

The following are some interesting problems for further investigation.

- **Problem 1.** Characterize graphs for which $ds_g = \gamma_g$ or $ds_g = \gamma_g + 1$.
- **Problem 2.** Characterize graphs for which $ds = ds_g$.
- **Problem 3.** Characterize graphs for which $\gamma_g = \alpha_0 + 1$.

References

- [1] B. D. Acharya, The Strong Domination number of a graph and related concepts, *Jour Math. Phy. Sci.*, 14(5) (1980), 471-475.
- [2] S. Arumugam and R. Kala, Domsaturation number of a graph, *Indian J. Pure appl. Math.*, 33(11) (2002), 1671-1676.
- [3] S. Arumugam and R. Kala, Connected domsaturation number of a graph, *Indian J. pure appl. Math.*, **35**(10) (2004), 1215 1221.
- [4] R.C. Brigham and R.D.Dutton, Factor domination in graphs, *Discrete Math.*, 86 (1990),127-136.
- [5] R.C. Brigham and J.R. Carrington, Global Domination in T.W. Haynes et al. ed. Domination in graphs: Advanced Topics, Chapter 11, Marcel Dekker, Inc., 1997.
- [6] F.Harary, Graph Theory, Addison Wesley, Reading, Mass, 1972.
- [7] T.W. Haynes, S.T.Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., 1997.
- [8] D.F. Rall, Dominating a graph and its complement, Cong. Numer., 80 (1991), 89-95.
- [9] E. Sampathkumar, The Global Domination Number of a graph, Jour. Math. Phy. Sci., 23(5) (1989), 377-385.