MATRIX REPRESENTATION OF THE SECOND ORDER
RECURRENCE {u,}
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ABSTRACT. In this note, we consider a generalized Fibonacci se-
quence {un} . Then give a generating matrix for the terms of sequence
{urn} for a positive integer k. With the aid of this matrix, we derive
some new combinatorial identites for the sequence {uxn}.

1. INTRODUCTION

Let r be a nonzero integer such that D = /72 + 4 # 0. The generalized
Fibonacci and Lucas sequences {u,} and {v,} are defined by the following
equations

Upt1 = TUp + Un-1 (1.1)
and

Un4l = TUp + Un—1 (12)
where ug = 0, u; = 1 and vg = 2, v; = r, respectively.

When r = 1, u, = F, (the nth Fibonacci number) and v, = L, (the
nth Lucas number).

If o and B are the roots of the equation 2 — rz — 1 = 0, then the Binet
formulas of the sequences {u,} and {v,} have the forms

Uy = “;:ﬁ" and v, = o™ + 8%,
respectively.

Matrix methods are very convenient for deriving certain properties of
linear recurrence sequences. Some authors have used matrix methods or
other methods to derive some identities, combinatorial representations of
linear recurrence relations etc. {3, 5, 9, 13, 14, 15, 18, 22|. In [23], the
author formulate the nth power of an arbitrary 2 x 2 matrix. In [1], the
author considers functions over 2 x 2 matrices other than addition and
multiplication and then he proves that any positive integer power of such
a matrix could be expressed as a linear combination of the matrix and the
identity matrix. In [3], the author considers a 2 X 2 companion matrix and
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he derives some known relations involving Fibonacci numbers as well as
many new relations. In {18], the author gives a new formula for the nth
power of an arbitrary 2 x 2 matrix and derive various matrix identities
and formulae for the nth power of particular matrices to obtain various
combinatorial identities.

Recently some authors gave an interesting relationships between the spe-
cially multiplicative functions and the second order recurrence {u, } by con-
sidering their matrix representations. It is worth noting that the specially
multiplicative functions satisfy a matrix recurrence relation similar to the
sequence {uy } . For more details, we refer to [7, 19]. For similar connections
between kth order linear recurrences and rational arithmetical functions are
also derived in [21, 12].

In [16], the authors derive the following recurrence relations for the se-
quences {ugs} and {vin} for £ >0 and n > 1,

Ukn = Viti(n—1) + (1) ug(n_2) (1.3)
and

Ukn = VkVk(n—1) + (_1)k+lvk(n—2)
where the initial conditions of the sequences {uky} and {vin} are 0 and uy,
and 2 and vy, respectively.

If o (k) and B (k) are the roots of equation 2 — vxz + (=1)* =0, then
the Binet formulas of the sequences {uxn} and {vk.} are given by

win = s S E08" and ven = (k)" + B (K)"

respectively. It is clear that a(l) = « and §(1) = B. From the Binet
formulas, one can see that

U—kn = (_l)kn+lukn and Ugkn = VknUkn- (1.4)

2. MATRIX REPRESENTATIONS FOR THE SEQUENCE {ukn}

In this section, we define a 2 x 2 matrix A and then we give some new
results for the sequence {ux,} by matrix methods.
Define the 2 x 2 matrix A as follows:

A [ vlk (_13k+1 ] .

By an inductive argument and using (1.3), we get

an= L [ uknar) (=1 ugn ] )
we | ke (“1)FFlugpon

Clearly the matrix A™ satisfies the recurrence relation: for n > 0
An+1 = ,van + (_1)k+1An—1’ (2.1)
where A% = I, A! = A.
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If we use the equation (2.1), we can write

oA — (»v,% _ (-1)’“) Ar 4 A2 =, (2.2)
From the (1,1)-entries of the matrix equation (2.2), we get
vt (4 - (—1)f) Bty Hemn o, (2:3)

Thus we have
V= (('U]% - (_1)"’) Uk(n+1) — uk(n-l)) /uk(n+2). (2.4)

The simple form of equation (2.4) can be found in [10, 11].
For n > 0, if we consider the fact that det (A") = (det A)", then we
obtain the generalized Cassini identity:

(-1)*"w2  if kis odd,
Yk(nt1)Uk(n—1) = kn = (- l)lm'"1 u? if k is even.

For example, for k =7 = 1, we get F41F,—1 — F2 = (—1)" (see page 74,
(17]).

By the Binet formulas, one can see that
ur(nt) + (1) iin) = UiVin. (2.5)
The eigenvalues of A™ are the roots of the equation
WA — uk(uknan) + (1) o)A + (1) uf =0
or by (2.5), we may rewrite it as
A — e d 4 (1) =0.

Thus the characteristic roots of A™ are given by

Aa = (v;m + /o2, + 4(-1)’”"“) /2.

Now we shall derive some results for {ux,} by matrix methods.

Theorem 1. For alln,m € Z, ‘
UkUk(ntm) = YkmUk(nt+1) + (= 1) Ug(m_1ytkn. (2.6)
Proof. Since A®*™ = A" A™ and after some simplifications, we obtain

k+1
n+m _ u Uk(n+2) (_1) Uk(n+1)
A El [ Ukntr) (1) ukn

sem=y) | (—1) +uk(n+1) Ukn ]
T [ (G Ve P T
Thus we obtain
UpA™™ = wp AP 4 (1) g ) A™ (2.7)
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which, by equating (2, 1)-entries of (2.7), gives the conclusion. 0
When m = n in (2.6), we obtain

UkUakn = Ukn (Uk(nr1) + (=1 o)) (2.8)

which, by (1.4), gives the equality in (2.5) for ux, # 0. By equating (1,1)-
entries of the equality (2.7) and by taking m = n, we obtain

UkUie(2n+1) = Ugni1) + (—1)F+1aZ . (2.9)
From the above results, we obtain
up A% = g A 4 (=1)FH Ukn—1)A"

and so the general cases of the well known divisibility properties for the
Fibonacci numbers (see [17]):

Ukn | U2kn 80d Vkn | Ugkn- (2.10)
Theorem 2. For k>0 andn € Z,
1 { Wi + 23:%,, +ud,_y, ifk is odd,

Uk(2n+1) + Uk(2n-1) = e uIZc(n“) — U1y if k is even,
(2.11)
and
1 uz(n-u) - ui al) if k is odd,
Uk(2n+1) — Uk(2n—-1) = u—k { W) — 2u%n + u?c(n—l) if k is even.
(2.12)

Proof. Considering the (1,1) and (2,2)- entries of the matrix equation
A% = (A™)?, we get

UglUg(2n+l) = uﬁ(n_,_l)-i-(—l)k“ui,,, (2.13)
UgUk(2n-1) = u%n+(_1)k+lui(n—l)‘ (2.14)

By adding and substracting of (2.13) and (2.14) side by side, we have the

conclusion.
g

Corollary 1. Fork >0 andn € Z,

UgkUgkn = Upny1) = Yh(no1)- (2.15)

Proof. If we combine the equalities (2.11) and (2.12) , then we can write

Uk (uk(2n+l) + (_l)kuk(2n—1)) = U(n41) = Uk(n—1)- (2.16)
Using the recurrence relation {ux,} in (2.16), we obtain
uk (VkUzkn) = Ui (ns1) — Ukno1)- (2.17)
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The conclusion is clear from (1.4). O

For any integer p, A" = A™*PA"~P, Here if we consider the (2, 1)-entries
of the product A®*?A"~? and the matrix A%", we get

UkUZkn = Uk(n+p)Uk(n—p+1) T (_1)k+luk(n+p—l)uk(n—p)-

Since det A # 0, we can write the matrix A" as A?"*™A~™ and then by
equating (2, 1)-entries of this equation, we have

Uglzkn = Ug(2ntm)U—i(m—1) + (1) Uk@ntm—1))Uekm. (2.18)
Since u_gm = (—1)™+1yy,.. we can write
UkUzkn = Uk(antm)ti—m) + (=1 " Dugon 1)) tkm. (2.19)
By a similar argument, we may obtain
Uk@ntmyUi(i—m) + (1 Dugon o ytkm
= Upntmhin-m+1) T (~DE Vg imo1yhnomy.  (2:20)
3. SOME NEW COMBINATORIAL REPRESENTATIONS FOR {ukn}

In this section, we consider the binomial expansion of A™ for some n
and then derive some new combinatorial representations for the sequence

{ukn } .

Theorem 3. Forn >0,

- 0 if n is odd
n ny(__1\yn—t+1,t = i
2::1 (t)( 1) VpUk(n—t) { 2ukn ifn is even, (3.1)
and
- 0 if n is odd,
Yoo ()M gy = { %y ifniscven 5D

Proof. If we consider the matrix relation
ar = (ol + (-1 A-l)”
= Tieo ()(-1)EHDe=tyL gt (33)
and equating (2, 1)-entries of the equality (3.3), we get

Ukn = D g (’t‘) (—1)"_t+lv,tcuk(n_,).

Thus one can easily obtain (3.1).
Similarly, equating the (1, 2)-entries of the equality (3.3), we get (3.2).
This completes the proof. a

Theorem 4. Forn,k > 0,

uzkn = Lgeg (7) (D)D",

185



Proof. If we write A?® in the form

AT =37 (ftl) (_1)(Ic+1)(n—t)v,rtc At (3.4)
then, by equating the (2,1)-entries of the equality (3.4), we have the con-
clusion. O

Theorem 5. Forn > 0,

Uk(2n+1) = Dt (?:11) (—1)EHDm=tly 4 (1) Dy, (3.5)
Proof. Since A%"+! = AA?" for any n € Z and using (3.4), we get ‘
A2ntl o Z?—O ('rtt) (—1)(n-t)(k+1)v)tcAt+l, (36)
which yields
Uk(ans1) = Stmo (1) (1) E Dvtuy ey,
which yields
Uk(an+1) = E?:o (rtli-ll) (_1)(k+1)(n—t)v,tc+1ukt + (—1)"(’°+1)Uk-
Thus the proof is complete. a

Relation (3.5) can also be obtained by iterating A?**! = v A%" 4
(~=1)*+142"-1 Thus we get

A2+l — 'vaz" + (_1)k+1A2n—1
= va2n + (_1)k+1 (vaZn—2 + (_1)k+1A2n—3)

= v i (i (n—t)) (_1)(k+l)(n—p),U£Ap+ (_1)(k+1)(n+1)A—1'
P
p=0 \t=0

From [20], it is well known that
Yieo (57 = Gi1)»

so we obtain

A+l 2:=0 (;1-:) (—1)(’°+1)(""")vz+1A” + (_1)(k+1)(n+1)A—1. (3.7
From (3.7), we get (3.5).
Theorem 6. Forn >0 and t,s € Z,

Uk(enta) = Lopeg (1) (1) PE DR _ayntaip) (3:8)
Proof. We consider the following matrix relation:
Atnts . An(t=2)+s g2n _ gn(t-2)+s Z;;o (;)(_1)(n—p)(k+1)v£ AP

= T (D)) R kD g Dntatp

which gives us (3.8). Thus the proof is complete. O
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Theorem 7. Let k be an odd integer and p > 0,

Uk(pnt1) + Ukpn = Uk D pey Ukt + Uk. (3.9)
Proof. For p > 0, consider
AP — T =(A-T)(AP" T+ AP 24 L+ AP+ A+ (3.10)
Thus

(A+ DA -1) = (A2-D)(AP* 1+ AP 24+ A2+ A+
= v AAPTTI AP L A2+ A+D)
= e Yo AL
Equating the (2, 1)-entries of this matrix relation, we get equation (3.9).
This completes the proof. a

Theorem 8. Forn > 0,

n n—1 . .
_ | ukentyy Fuk+23 07 k@) i k is even, 311
v Ugkt = e .
ktgl 20t { Up(2n+1) — Uk if k is odd, (3.11)
and
- _f uakn +2507 uke  if k s even,
k tgl Uk(2t-1) = { Ugkn if k is odd. (3.12)

Proof. By the recurrence relation of {A™}, we can write
Uk z;;l Azt + (_1)(k+l) E?:l A2t_1 = Z?:l A2t+l

o Ty A% + ()™ A+ T AT = T AT g g
Considering required entries of the equation just above, the proof is com-
plete. (]

For arbitrary integers p and g such that p? + 4q # 0, the sequence {w,}
is defined by
Wp = PWn—1 + qWn—2
for wo =a, w; =band forn > 1.
In [10], the authors considered the sequence {w,} and gave the following
result:

wn (a,6,9,¢) = a XTI (-1)*(")p" et
+(b—pa) TG (-1 (") (3.13)
Then we have the following result.
Corollary 2. For n,k >0,
Ukn = Uk Ztl(;a—l)/ﬁj (n—tl—t) (_1)t(k+1),u;:—1—2t

Proof. The proof directly follows from (3.13). (]
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Let C be an arbitrary 2 x 2 matrix, 7 and D denote the trace and
determinant of C, respectively. For the distinct eigenvalues o and 8 of
matrix C, the following result can be found in [18, 6):

Lemma 1. If
Zn 1= f:é_ = gy 21['(:51)/21 (2":1+1)Tn—2m—1 (T2 —4 D)"'
then C" = an — zn_1DI5, where I is the identity matriz of order 2.
As a consequence of Lemma 1, we obtain that
_ _ i
e = g DG (1 )or % (- 4(-1Y) . (B1g)

From also [18], let g be a complex number such that g2 +Tg+D # 0,9 # 0
and let n be a positive integer. Then

"= (mtm) T2 06 (B) B'c. @

Therefore we get the following result of equality (3.15).

Theorem 9. For n > 0 and any every complex number g different from

0,1/2 and (vk *1/v} +4(—-1)k+1) /2,

n(_qyen ¢ kit t2i
Tt CIFT Z})E) (D (2) (~DHE g 2y

Let the k x k companion matrix is as follows:

cF € ... Cg-1 Ck
1 0 ... O 0
A = o 1 ... O 0
0 0 ... 1 0

Consider the kth order recurrence {z,} defined by 2, = ¢1zn—1+C22n—2+
vo.4CrzZn_i for n > k—1 and z;’ s are arbitrary for 0 <7 < k—1. Thus it
follows that

T
[Znthets Zntk—2s - s Zn) " = AP [2ke1, Zk=2,- - ., 20]" -
Thus the power A7 determines the solution to the recurrence {z,} in terms

of the initial conditions zp, 21,- .., Zk—1-
We find the following Theorem in [4].

Theorem 10. The (i,7) entry af]) in the matriz A} is given by the fol-
lowing formula:

(n) tittipat... e t1+tat.. ik cte
‘3] E titz+...+tg x( 21,82, bk cl Ck (3'16)

(t1,t2,.0etr)
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where the summation is over nonnegative integers satisfying t1 +2t2+...+
kt, =n—1i+j and the coefficients in (3.16) is defined to be 1 if n =i — j.

When a; = v and a; = (—1)**! in the sequence {z,} and consider-
ing the recurrence {u,} and its companion matrix, we give the following
Corollary.

Corollary 3. For n,k >0,
Ukn = Uk D (¢, 1) (tzl,-;t:)”ltcl (—1)%*

where the summation is over nonnegative integers satisfying t1+2t =n—1
and the coefficients in (3.4) is defined to be 1 if n =1 — j.

Similarly one can find the basic multinomial formula for kth order lin-
ear recurrences in [8]. Also applying the results of recent studies [2, 18]
on the similar topics, many various combinatorial representations for the
recurrences {ux,} and {vg,} can be derived.

‘We should note that one can apply many earlier results for our matrix A
to obtain some different results. Also considering the results of the present
paper, many analogue formulas for the generalized Lucas sequence {vgn}
can be derived by considering and extending the simple relation between
the vector of Lucas sequence and generating matrix of Fibonacci sequences:

Lnpy | _ | Fann Fy 1
Ly F, F, 2 |-
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NEWTON’S IDENTITIES
FERNANDO SZECHTMAN

The elementary symmetric polynomials in the n commuting variables
Xi, ..., X, are defined

0'1=Z X, og= Z XiXj, o3= Z XiX;i Xy, on=X1X2- Xq.

1<i<n 1<i<j<n 1<i<j<ksn

For k > 1 let py = X¥ + XF + ... Xk. With this notation Netown’s
identities read

0= pr — 01pk—1 + O2pr—2 — O3pK—3+ -+
vt (=15 top1py + (=1)Fkor, 1<k <n, (1)

0=pjin —01Pj4n-1 + 02Pj4n-2 — O3Pj4n-3+---
o (=1)" 1o 1pj14+(=1)"0nps, 21 (2).

Various classical proofs are known, and new ones are still being pub--
lished. The most recent seems to be [M]. We furnish the following extremely
simple proof.

Let f denote the right hand side of (1). Then f is symmetric and homo-
geneous of degree k. Thus f = 0 if and only if no monomial X§!' X532 --- X5,
withe; +es+---+e, =kand ey > e3 > --- > e,, appears in f. The only
such monomials possibly present in f are

X{c, Xf_l){g, X{C_2X2X3, ...,X12X2X3 e Xp1, X1 X2 X3+ X

Now X¥ appears once in py and o3 pk—1, Without appearing in any other
summand of f. As py and o1px—1 have opposite signs in f, the coefficient
of XF in fis 0. Likewise if 1 < ¢ < k — 2 then XF X, .- X;,, appears
once in o;p—; and ;41 pk—i—1, and does not appear in any other summand
of f. Since o;pk—; and ;11 pk~i—1 have opposite signs in f, the coefficient
of X7 ~X5---X;;1 in fis 0. Finally X; X2 X3 - -+ X), appears once in oy, k
times in o101, namely in the forms (X2 X3 - - - X} X3, (X1 X3+ - - X)) Xo, ..,
(X1 X2--- Xg—1)Xk, and does not appear in any other summand of f. The
definition of f ensures that the coefficient of X; X5X3--- Xi in f is 0.

For completeness we include the standard proof of (2). Let X be another
variable and let g(X) = (X — X1)(X — X2) - - - (X — X5,). According to the
very definition of the elementary symmetric polynomials we have g(X) =
Xt —o X" 4+ (-1)" o1 X + (~1)"0y, sO

0=g(X;) =X =1 X} '+ +(-1)"top1 Xi +(-1)"0,, 1<Zi<n.
Multiplying this by X{ and adding the resulting n equations, we obtain

(2).
[M] J. Mindc, Newton’s identities once again/, Amer. Math. Monthly 110 (2003),
232-234.
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