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Abstract

A packing of a graph G is a set of edge-disjoint 4-cycles in G and a max-
imum packing of G with 4-cycles is a packing which contains the largest
number of 4-cycles among all packings of G. In this paper, we obtain the
maximum packing of certain graphs such as Ko, — H where H is a 2-
regular subgraph, Ks,, — F where F is a spanning odd forest of Ko,, and
2Ks,, — L where L is a 2-regular subgraph of 2Kj,,.

1. Introduction

A packing of a graph G is a set of edge-disjoint 4-cycles in G and the
graph induced by the edges in G but not in any 4-cycle of the packing is
called the remainder graph of the packing or the leave of the packing. If
a packing has a leave which has the minimum number of edges, we call it
a minimum leave. A maximum packing of G (with 4-cycles) is a packing
which has a minimum leave. Clearly, if B(G) can be partitioned into sets
which induce 4-cycles, then the leave is an empty graph and we say that G
has a 4-cycle decomposition.

A 4-cycle decomposition of K, is also known as a 4-cycle system of order
v. It is folk-lore now a 4-cycle system of order v exists if and only if
v =1 (mod 8), and the maximum packing of K, is also known.

Theorem 1.1.[7] The maximum packing of K, can be depicted as in the
following table.

vmod8) JJO|1]2]3 [4]5 7
Leave [|F|@|[F|[Cs|[F[Es|F]|Cs

F is a 1-factor, C3 and Cj are cycles of length 3 and 5 respectively, and Fg
is an even graph with 6 edges.

As to the packing of a more general graph, it is not an easy task at all.
For example, let H be an arbitrary r-regular subgraph of Kop, 1 where 7 is
an even integer. Then, for which », Kom.+1— H has a 4-cycle decomposition
is left unknown. So far, if r» = 2, then we have

| 6 |

Theorem 1.2.[5] Let H be a 2-regular subgraph of Kop,41 such that
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(®%+1) — |E(H)| is a multiple of 4. Then Kam41 — H has a 4-cycle de-
composition.
Two similar works are obtained for Ko,y

Theorem 1.3.[4] Let F' be a spanning odd forest of K3p, such that (2;") -
|E(F)] is a multiple of 4. Then K3, — F has a 4-cycle decomposition.

Theorem 1.4.[2) Let F be a spanning odd graph with A(F) < 3. Then
Kom — F has a 4-cycle decomposition if and only if 4|(%*) — | E(F)| and for
m = 4, F is not one of the following two graphs in Figure 1.

0x

Figure 1.

In this paper, we shall extend the study of Theorem 1.2 and Theorem
1.3 to consider the maximum packing of Kom4+1 — H and K., — F respec-
tively in section 2 and 3. It is worth noting that the proofs in this paper
do not use the results obtained in [4,5]. Finally in section 4, we consider
2K, — L where L is a 2-regular subgraph of 2Kap,.

2. Packing K2m+1 —H

We start our main results with the maximum packing of Koyn41 — H
where H is a 2-regular subgraph of Kam1, i.€., H is a vertex-disjoint union
of cycles. For convenience, we shall use G V G2 to denote the join of two
graphs G; and Ga. Recall that V(G1 V G2) = V(G1) UV(Gy), V(G1)N
V(G2) = @ and E(G; V G3) = E(G1) U E(G2) U {wvju € V(G1) and
v € V(G2)}. The following lemmas are essential to the proof of the first
main theorem. Since the second one is easy to see, we omit the proof.

Lemma 2.1. (K> U K3)V C3, (K2 U K3) VCs and (K2 U K3) V B can
be packed with 4-cycles such that the leaves are C5, C3 and & respectively.
Here, B is called a bowtie which is obtained by attaching two Cgls together
at a common vertex.

Proof. Let V(K2 U K3) = {a,b,c,d}, E(K2 U K3) = {ab,cd}, C3 =
(1,2,3), Cs =(1,2,3,4,5) and B = (1,2,3;3,4,5). Then the packing of

(K2UK3)VCs is {(a,b,2,1), (b,1,d,3), (c, 1,3,2)} with leave (a,2,d,c,3),
the packing of (K2UK2)VCs is {(c, 1,2,3), (d,3,4,5), (¢,d,1,5), (c,2,4,4),
(a,2,b,3), (a,4,b,5)} with leave (1,a,b), and the 4-cycle decomposition of
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(Ko UK2) V Bis {(e,1,3,b), (c,3,5,d), (¢,1,2,3), (a,3,4,5), (b,1,¢,2),
(b,4,¢c,5), (a,2,d,4)}. [

Lemma 2.2. Let s and ¢ be two positive even integers. Then, K, ; has a
4-cycle decomposition.

It is worth of mentioning that the above lemma is a special case of the
well-known Sotteau’s Theorem on even cycle decomposition of complete
bipartite graphs.

Theorem 2.3.(8] Let s and ¢ be two positive even integers not less than k.
Then, K, has a 2k-cycle decomposition if and only if 2k|st.

Now, we are ready to prove the first main result. For simplicity, we
shall use bowtie B for Eg throughout section 2 and 3.

Theorem 2.4. Let H be a 2-regular subgraph of Kopm41. Then Kopyg —H
has a maximum packing with leaves L; if and only if (2";"'1) - |E(H)| =
1 (mod 4) Here, Lo = 9, L= 05, Lo = B and L3 = Cj.

Proof. The proof follows by Theorem 1.1 if |E(H)| = 0. So, let |E(H)| > 0
and the proof is by induction on m. First, it is easy to see that the assertion
is true for small m’s. Assume that the assertion is true for m < k and let H
be a 2-regular subgraph of Kz, such that (2";' )= |E(H)| = i (mod 4) and
H contains a cycle of maximum length ¢+1, (ao, a1, a2, ..., a¢), where t < 2k.
Now, if ¢ = 2, let H' = H \ {ag,a1}. Then |E(H')| = |E(H)| — 3. Since
() = |E(H)| =i (mod 4), (*57) - |B(H")| = S=UED _ (15(H)| -
32 =2k?—3k+1—|E(H)|+3 = 2k? + k— |E(H)| +4 (mod 4). Therefore,
( "2' l) — |E(H")| = i (mod 4). By the induction hypothesis, Kor_; — H'
can be packed with leave L;. Since Koxt1 — H = K3 ok—2 U (Kak—1 — H'),
and K 22 can be decomposed into 4-cycles (by Lemma 2.2), we conclude
that Kory1 — H can be packed with leave L;.

On the other hand, if t > 5, then delete ap and ay from H and add
the edge asa; to obtain a graph H'. Now, |[E(H)| = |E(H')| + 3 and
H' is a subgraph of Ky;_; defined on V(Kar41) \ {ao,a2}. By a similar
argument as above, we have (*;!) — |E(H")| = i (mod 4). Therefore, by
the induction hypothesis, Kaor_1 — H’ has a maximum packing with leave
L;. This implies that a maximum packing of K1 — H can be obtained
by combining the packing of Kar—1 — H’, (ao,as3,a:,a2) and the 4-cycle
decomposition of K3 ax_» where the two partite sets of Ko 254 are {ag,az}
and V(Kar41 \ {a0, a2, 01, a3,a:}).

It is left to consider the cases when ¢ = 3 or 4. First, if £ = 3, then
set C = (ag,a1,a2,a3) and H' = H — C. By counting, (*}) — (*,%) =
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2 (mod 4). Therefore, if (%}') — |E(H)| = i (mod 4), then (*7%) —
|E(H')| = i +2 (mod 4). Since Kax_3 — H' has a maximum packing with
leave L;;3(mod 4), We conclude that Kok1 — H has a maximum packing
with a leave which is obtained by a maximum packing of (K2 U K32)V L;ya.
Here, K3UKG is {ao, a2}U{a1, a3s}. Now, from Lemma 2.1, (K2UK2)V Li12
can be packed with leave L;, thus the proof follows.

Finally, we consider the case where ¢t = 4. First, delete {ao,21,a2,a3
from V(Kok41). Then, let H' = H — (ao, a1, @32,0a3,a4). Hence, if (2";1) -
|E(H)| = i (mod 4), (*7°) - |E(H) = (*5°) - |E@E@) +5 = (*5") -
|E(H)| +7 = i + 3 (mod 4). Now, by the induction hypothesis, Kax_3 —
H' has a maximum packing with leave L;;3(moq 4)- Clearly, if i = 1,
then Koi_3 — H’' has a 4-cycle decomposition. Also, K4ok-4 = (4, B)
(where A = {aq,a1,a2,a3} and V(Kak41) \ {a0,01,02,a3,a4}) has a 4-
cycle decomposition. Thus, Kary1 — H has a maximum packing with
leave (aq,a1,a3,a0,a2). This is L) as we expect to have. On the other
hand, if ¢ = 2, 3 or 4, the leave will be obtained by packing the graph
(04 V Liys — K41) U (a4, 01,03, 00,02) see Figure 2 if a4 is not on Lyy3.
(Here, Oy is the empty graph with four vertices ap,a1,a2,03, and Ky is
defined on {ao, a1, az,a3} U {z}, = € V(Lit3)).

In case that a4 is on L;.3, the proof follows by taking z = a4.

(1) Lita=Cs (i=2)
Let Cs = (1,2,3,4,5) and 5 is not adjacent to ag,a;,a2 or az. Then
the packing is {(a1,1, a2, a4), (a0, 2,01,a3), (a2,2, 1, ao), (a3, 1,5,4),
(a2,3,a0,4)} and its leave is (a3, 2, 3; 3, a1, a4) which is Ly. This con-
cludes the proof of the case i = 2.

(ii) Liys =B (1 =13)
Let B=(1,2,3;3,4,5) and 5 is not adjacent to ap, as, a2 or a3. Then
the paCkiDg is {(a'la 1’ az, 04), (a01 2’ 0:1,0'3), (a2, 2! 17 a’O)y ((13, 1» 31 2)’
(a1,3,5,4), (a2, 3,a0,4)} and its leave is (a3, 3,4) which is L3 as we
expect.

(iti) Liy3=Cs (i =4)
Let C3 = (1,2,3) and 3 is not adjacent to ap,a1,az or az. Now, the
packing is {(az, 1,a1,a4), (a0,2,a1,03), (a2,2,1,a0), (a3,1,3,2)} and
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its leave is an empty graph, i.e. Lo. This concludes the proof of this
case and the theorem. u

3. Packing K,,, — F
A graph is an odd graph if every vertex of the graph is odd.

Theorem 3.1. Let F be a spanning odd forest of Ks,,. Then K,,, — F has
a maximum packing with leave L; if and only if (%) — |E(F)| = i (mod 4)
where i =0,1,2,3. Here, Lo = &,L; = Cs,Ly = B and Lz = C;.

Proof. The proof will be by induction on m and it is easy to see the
assertion is true when m is small. So, assume that the assertion is true
for m < k and let F' be a spanning odd forest of Kox. First, if all vertices
of F are of degree 1, then F is a perfect matching. The proof follows by
Theorem 1.1. Here, Ko — F has a 4-cycle decomposition. So, let v be a
vertex of degree not less than 3 and v and w are two pendant vertices of
F which are adjacent to v. Now, delete © and w from Ko, and obtain a
spanning odd forest F’ of Kor_s. By induction, Koo — F' has a maximum
packing with leave Ly, provided that (%) — |E(F)| = i (mod 4). We start
with i = 1.
@ :i=1
The leave of the maximum packing of Koy_o — F' is Ly i.e. B. Let
B =(1,2,3;3,4,5), then the packing of K, UBU K3 3 (without using
1 and 5) is {(,3,5,4), (w,2,1,3)} with leave (u,w,4,3,2) which is
L, as expected. Note that Ko or—¢ has a 4-cycle decomposition where
one partite set V (Kar—2) \ {v,2,3,4} is of size 2k — 6 and the other
partite set is {u, w}. We shall use this result again in the following
two cases where ¢ = 2 and i = 3.

(i) i=2
The leave of the maximum packing of Kgx_o — F’ is (1,2,3). Thus
the maximum packing of Ko — F is {(u,w,3,2)} and the leave is
(w,2,1;1,4,3) if v ¢ {1,2,3}. In case that v = 3 (W.L.O.G.), let
z ¢ {1,2,3}. Then, the packing is {(w,1,3,2)} and its leave is
(z, w,u;u,
1,2).

(iii) i =3
Since the maximum packing of Kor—o — F' has empty leave, the max-
imum packing of Ko — F' has leave Lz which is easy to see.
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(iv) e=0
The proof follows by packing K V Cs where Cs = (1,2,3,4,5). The
packing is {(, 1, 2,3), (v, 3,4,5), (4, 5,1, w), (4,2, w,4)} with empty
leave. Hence we have the proof of this case. By induction, we conclude
the proof of this theorem. ]

4. Packing 2Ks,, — L

For convenience, we use G1C]G3 to denote the graph (G1VG2)UK|g, |, 16|
i.e., all the edges between G; and G will be of multiplicity 2. The following
lemmas will be useful later.

Lemma 4.1. C30C3 has a 4-cycle decomposition.

Proof. Note that the first result is a special group divisible 4-cycle de-
sign, see (3]. For completeness, we give a proof here.

Let C3 = (1,2,3) and C3 = (4,5,6). Then, a 4-cycle decomposition is
{(1,2,6,5),(2,3,5,4),(1,3,4,6), (1,4,2,5),(2,5,3,6),(1,4,3,6)}. |

Lemma 4.2. C30Cs, C3003 and C300(D U O;) have a maximum pack-
ing with leaves D, Cs and Cj respectively. Here, D is a set of double edges.

Proof.

(i) C,0Cs
Let C3 = (1,2,3) and Cs = (a,b,c,d,e). Then, the packing is
{(1,2,b,a),
(c,1,3,2),(3,b,¢,d),(2,d,e,a),(a,1,d,3),(2,¢,3,¢),(1,¢,3,¢), (2,0,3,b),
(1,d,2,¢e)} with leave a set of double edges D = {{1,b},{1,5}}.

(i) C300s
Let C3 = (1,2,3) and Os = {a,b,c} (three isolated vertices). Then
the packing is {(a,1,2,3), (a,2,5,3),(b,1,¢,2), (b, 1,¢,3)} with leave
Cs = (¢,2,a,1,3).

(iii) C3D(D V0,
Let C3 = (1,2,3) and D U O; be the union of (a,c) and an isolated

vertex b. Then the packing (from the above case) is {(a, 1,2, 3}, (a,2, ), 3),
(b,1,¢,2),(b,1,¢,3),(1,a,c,3)} with leave C3 = (a,2,¢). |

Before we prove the main result, we also need the following lemma. For
convenience, in what follows, we shall use H; UH; — G1UG> to denote the
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statement that by combining two graphs H; and H, together with V(H;)
and V(H;) preassigned we can decompose H; U Hj into two edge-disjoint
graphs G; and G2. We note here that the minimum leave L, is no longer
B in multigraphs, it is D, the double edge, see [1] for reference.

Lemma 4.3. C5UCs - C4UB, CsUCs — C4,UC,UD, CsUB —
CiUCLUC;, Cs5UCy - C4UCy, BUB — CiuCyUCy, BUC; —
CsUCy, C3UC3=Band C3UC3 - C4UD,

Proof. Since we can assign the vertex set of H; and Hj, the decomposi-
tion will be easier. For example, we can let Cs = (1,2, 3,4,5) and another
Cs = (1,3,5,2,4), then Cs UCs is in fact K5 and the decomposition fol-
lows. The results Cs UCs - C4UC3UD, CsUC3 = CyuUCy, BUC;3 =
Cs5UCy, C3UCs — C4UD and C3UC3 — B are also trivial. Here, we
prove two nontrivial cases.

(i) CsUB - C4UCyUC,
Let Cs = (1,4,2,5,3) and B = (1,2,3;3,4,5). Then the decomposi-
tion is {(4,1,3,2),(5,2,1,3),(3,4,5)}.

(ii) BUB - CyUCLUCy
Let one B = (1,3,2;2,4,5) and the other B = (1,2,4;4,3,5). Then
the decomposition is {(2, 3, 5,4), (1,2,4,3),(1,4,5,2)}. [ ]

Theorem 4.4. Let L be a 2-regular subgraph of K»,,. Then 2K5,, — L has
a maximum packing with leave L; if and only if 2(2;") —|E(L)| = i (mod 4).
Here, Ly =@, Ly = Cs, Ly = D and L3 = C3.

Proof. The proof is by induction on m and it is easy to check that the
assertion is true for small m. Let the assertion be true for m < k and L
be a 2-regular subgraph of Ky. First, if L has a cycle C of length not less
than 5, let C' = (ag, a1, a2, ...,at), t > 4. Now, delete ap and a; from 2K
and add an edge aza,. Clearly, we have a 2-regular graph L' of 2K, _3. By
induction, 2Ko;_o— L’ has a maximum packing with leave L;. Observe that
2(%) - IB(L)| = 2(*;%) — |E(L')| + (8k — 6) — 2 = i (mod 4). Therefore,
the proof follows by partitioning the edges in 2K5; — L which are not in
2Kok_o2 — L' into 4-cycles. Clearly, the edges mentioned above induce the
union of (ao, a1, as, a2), (@o, az, a1, 02) and 2K3 24 where the two partite
sets are {ap,a;} and V(Kazi) \ {ao, a1,a2,a:}. Since 2K5 2.4 has a 4-cycle
decomposition, this concludes the proof of this case.
So, we have two cases left.

(i) There exists a 4-cycle in L.
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Let the 4-cycle be (ag, a1, az, a3), and delete {ag, a1, a2, a3} from
V(Kak). Then L' = L — (ag,a1,a2,a3) is a 2-regular subgraph in
2Kak—4. Since 2(¥) — |E(L)] = 2(35*) - |E(L')| (mod 4),2K, —
(a0, a1, az, as) has a 4-cycle decomposition and 2K 24 has a 4-cycle
decomposition, the leave of the maximum packing of 2Kasr — L can
be obtained by the leave of the maximum packing of 2K, 4 — L'.

(ii) All cycles in L are 3-cycles.

Let one 3-cycle of L be (ap, a1, az), and delete {ag, a1,az} from
V(Kar). Then L' = L — (ag,a1,az) and L' is a 2-regular graph in
2Kop.3. Clearly, L' is also a subgraph of Kak_3. Therefore, the
maximum packing of 2K5,_3 — L’ can be obtained from the max-
imum packing of Koi_3 and Kor_3 — L’ respectively (by Theorem
2.4) and then combine them together by using Lemma 4.3. Since, the
leaves of the above packings are &, Cs, D and Cj3 respectively, it fol-
lows by using C30Cs, C300(D U0, ), C303C5 and C3003 to obtain the
leaves of the maximum packings of 2Ks,, — L. Note here that both
2K3 ox-s and 2K3 9x_g have a 4-cycle decomposition. By Lemma 4.1
and Lemma 4.2, we have the desired leaves. This concludes the proof.
|

Concluding Remark

It was conjectured by Nash-Williams that if H is a graph of order n with
maximum degree A(H) < %, then K,, — H has a 3-cycle decomposition if

and only if each vertex of K, — H is of even degree and 3|(3) - |E(H)|. By
observation, this upper bound of maximum degree may also be correct for
4-cycle decomposition. In [2], the authors presented a couple of examples,
see Theorem 1.4, to show Kz — H can not be decomposed into 4-cycles

where A(H) = 3 which is larger than z So, it is reasonable to pose the
following conjecture on 4-cycle decomposition.

Conjecture

Let H be a graph of order n with maximum degree not greater than 2

Then K,, — H can be decomposed into 4-cycles if and only if K,, — H is an
even graph and 4(3) — |E(H)|.
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