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Abstract

A list-assignment L to the vertices of G is an assignment of a set
L(v) of colors to vertex v for every v € V(G). An (L, d)*-coloring is a
mapping ¢ that assigns a color ¢(v) € L(v) to each vertex v € V(G)
such that at most d neighbors of v receive color ¢(v). A graph is
called (k, d)*-choosable, if G admits an (L, d)*-coloring for every list
assignment L with |L(v)|] > k for all v € V(G). In this note, it
is proved that: (1) every toroidal graph containing neither adjacent
3-cycles nor 5-cycles, is (3,2)*-choosable; (2) every toroidal graph
without 3-cycles, is (3,2)"-choosable.
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1 Introduction

Graphs considered in this paper are finite, simple, and undirected.

A torus is a closed surface (compact, connected 2-manifold without
boundary) that is a sphere with a unique handle, and a toroidal graph is
a graph embedable in the torus. For a toroidal graph G, we still use G to
denote an embedding of G in the torus.

Let V, E and F denote the set of vertices, edges and faces of G, respec-
tively. A face of an embedded graph is said to be incident with the edges
and vertices on its boundary. Two faces are adjacent if they share common
edges. In particular, two adjacent 3-faces are often referred as adjacent
triangles. The degree of a face f of G, denoted by dg(f)(or simply d(f)),
is the length of the walk bounding the face.
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A k-vertex (or k-face) is a vertex (or a face) of degree k, a k™ -vertex
(or k~-face) is a vertex (or a face) of degree at most k, and a k*-vertex (or
k*-face) is defined similarly.

For f € F(G), we write f = [ujug -+ up] if u;,us, -+, u, are on the
boundary of f in the clockwise order. A k-faceis called an (mq,ma, - - -, myg)-
face if d(u;) = m; for ¢ = 1,2,.--, k. We use Fi(z) and Vi(z) to denote
the set of all k-faces and k-vertlces that are incident or adjacent to =z,
respectively.

A k-coloring of G is a mapping ¢ from V(G) to a set of size &k such that
&(z) # ¢(y) for any adjacent vertices z and y. A graph is k-colorable if it
has a k-coloring.

A graph G is k-colorable with deficiency d, or simply (k, d)*-colorable, if
the vertices of G can be colored with k colors so that each vertex has at most
d neighbors receiving the same color as itself. An (k, 0)*-coloring is an or-
dinary k-coloring. Given a list assignment L, an L-coloring with deficiency
d, or an (L, d)*-coloring of G, is a mapping ¢ : V(G) — U,ev (g) L(v) such
that ¢(v) € L(v) and every vertex has at most d neighbors receiving the
same color as itself. A graph G is called (k, d)*-choosable, if there exists an
(L, d)*-coloring for every list assignment L with |L(v)| = k for all v € V(G).

The concept of list improper coloring was first introduced by Skrekovski
[8], and Eaton and Hull [5], independently. They proved that every planar
graph is (3, 2)*-choosable and every outerplanar graph is (2, 2)*-choosable.
Let g(G) denote the girth of a graph G, i.e, the length of a shortest cycle.
Skrekovski (10} proved that every planar graph G is (2,1)*-choosable if
9(G) 29, (2,2)*-choosable if g(G) > 7, (2, 3)*-choosable if g(G) > 6, and
(2,d)*-choosable if g(G) > 5 and d > 4. In [5], Skrekovski proved that
every plane graph without 3-cycles is (3, 1)*-choosable. In [7] it was proved
that every planar graph without 4-cycles and l-cycles for some ! € {5,6,7}
is (3,1)*-choosable. In [14], Dong and Xu proved that every plane graph
without 4-cycles and I-cycles for some [ € {8,9} is (3,1)*-choosable. In
[12], it is proved that every plane graph without neither adjacent triangles
nor 5-cycles is (3, 1)*-colorable. Interested readers may read [6], [11] for
more results and references.

For toroidal graphs, in [3], it is proved that every toroidal graph is
(5,1)*- and (3,2)*-colorable. In [13], Xu and Zhang proved that every
toroidal graph without adjacent triangles is (4, 1)*-choosable.

In this note, we make some investigations on (3,2)*-choosability of
toroidal graphs.

2 Toroidal graphs without triangles

We first prove a lemma on the structure of triangle-free toroidal graphs.
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Lemma 2.1. Let G be a triangle-free toroidal graph. Suppose that 6(G) >
3, each 3-vertez is adjacent to only 5% -vertices, and each 5-vertez is adja-
cent to at most three 3-vertices. Then

(1) A(G) £ 6, and G contains no 5% -faces.

(2) Each 6-vertez of G is adjacent to six 3-vertices if A(G) = 6; and each
5-vertez is adjacent to exact three 3-vertices if A(G) = 5.

Proof : Assume to the contrary that the theorem does not hold.

In the beginning, each vertex v is assigned a charge w(v) = d(v) — 4
and each face f is assigned a charge w(f) = d(f) — 4. By applying Eulers
formula |V| + |F| — |E| = 0 for toroidal graphs, we have

Teevaure)w(z) L 0.

If we obtain a new weight w*(z) for all z € V U F by transferring
weights from one element to another, then we also have ) w*(z) < 0.
If these transfers result in w*(z) > 0 for all z € V U F, then we get a
contradiction and the theorem is proved.

The new charge function w*(z) is obtained by following discharging
rules given below:

(R;) : For every vertex v with d(v) > 5, we transfer % from v to each
incident 3-vertex.

Let v be a k-vertex of G. f k=3, w*(v) =3-4+3x 1 =0.

Ifk=4, w(w)=wv)=4-4=0.

Ifk=5w'(v)>5-4—-3x%x3=0.

If k=6, we have w*(v) > k—4—-6x 3 =0.

Ifk>7 wehave w*(v) =k —4—-kx3>0.

Let f be a h-face of G. Since G is triangle-free, h > 4, w*(f) > 0.

Thus, w*(z) > 0 for each z € V(G) U F(G). If G contains a 7*-vertex
or a 5*-face, Loev(g)ur(e)w™*(x) > 0. If A = 6 and there exists a 6-vertex
z adjacent to at most five 3-vertices, L ecv(cureyw*(z) > 0. fA =5
and there exists a 5-vertex = adjacent to at most two 3-vertices, w*(z) > 0.
Also we have Z.cv(gur(cyw(z)* > 0. This contradiction completes the
proof. |

Theorem 2.1. Every triangle-free toroidal graph is (3,2)*-choosable.

Proof : Assume to the contrary. Let G be a counterexample with the
fewest vertices, i.e., there exists a list assignment L with |L(v)| = 3 for all
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v € V(G) such that G is not (L, 2)*-choosable, but any proper subgraph of
Gis.

If 8(G) < 3, let v be a 2™ -vertex of G. Then, G\{v} is (3,2)*-choosable
by the choice of G. Since in any (L, 2)*-coloring of G — v, there must exist
a color in L(v) that is not used by any neighbors of v, any (L, 2)*-coloring
of G — v can be extended to a (L, 2)*-coloring of G, a contradiction. So we
assume that 6(G) > 3.

If G contains two adjacent 3-vertices, say « and v, then by the choice of
G, G\{u,v} is (3, 2)*-choosable. In any (L, 2)*-coloring of G\{x, v}, there
exists a color in L(u) that is not used by any neighbors of u in G\{u,v},
and the same holds for v. Applying the same argument as above, we see
that G is (L, 2)*-choosable, a contradiction.

If G contains a 3-vertex u adjacent to a 4-vertex v, there is an (L, 2)*-
coloring of G\{u}. If v has two neighbors which received the same color
as itself, then the number of distinct colors used by the neighbors of v in
G\{u} is at most 2. Then we recolor v such that the color of v is distinct
to those of it neighbors. So we assume that in any (L, 2)-coloring of G\ {u}
at most one neighbor of v receives the same color as v. We may color u so
that, among all neighbors of « in G, only v may have the same color as u.
to establish an (L, 2)*-coloring of G.

If G contains a face f with the boundary vjvs - - - v3vy vk, where d(v;) =
4,1 <i < k. Let H = G\V(f). By the choice of G, H admits an (L, 2)*-
coloring ¢. For w € V(f), let L'(w) = L(w)\{¢(v)|lv € Ng(w)}. Then,
|L'(w)] > 1. It is easy to verify that vjvs---vsvsvx admits an (L/,2)*-
coloring. This together with ¢ leads to an (L, 2)*-coloring of G.

Now we suppose that § > 3 and A > 5, each 3-vertex is adjacent to 5%-
vertices. If G contains a 5-vertex v adjacent at least four 3-vertices, let z;
for i = 1,2,3,4, 5, be the neighbors of v in clockwise and d(z;) = 3 for i =
1,2,3,4. By the choice of G, G’ = G\{v, z1, %2, Z3,Z4} is (3, 2)*-choosable.
Let ¢’ be an (L,2)*-coloring of G’. Take any list assignment |L(v)| = 3,
let L'(u) = L(u) for u € V(G)\{v,z1, %2, 23,24} and L'(u) = L(u)\¢'(u)
for u € {v,x1,22,73,24}. L'(v) > 2 and L'(z;) > 1 for i = 1,2,3,4. We
color z; for i = 1,2,3,4 with a color in L’(z;). Then, there exists a color
a € L'(v) that is assigned to at most two of z1,z2,z3,z4. By coloring v
with «, we get an (L, 2)*-coloring of G.

Suppose that 6 > 3 and each 3-vertex is adjacent to 5+-vertices and
each 5-vertex is adjacent to at most three 3-vertices, by lemma 2.1, G
contains neither 7*-vertices nor 5+-faces. So we assume that G contains
only 6~ -vertices and each face of G is degree 4.

If A = 6, then each 6-vertex of G is adjacent to six 3-vertices. As-
sume that v is a 6-vertex and z; for ¢ = 1,2, 3,4, 5,6, be the neighbors of
v in clockwise and d(z;) = 3 for i = 1,2,3,4,5,6. By the choice of G,
G' = G\{v,N(v)} is (3,2)*-choosable. Let ¢’ be an (L,2)*-coloring of
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G'. Let L'(u) = L(u) for u € V(G)\{v, 21,22, T3, 24,75,76} and L'(u) =
L(u)\¢'(u) for u € {v, 21, 2,23, Z4%5, T6}. It is easy to extend an (L, 2)*-
coloring of G\{v, z1, z2, z3, T4, Ts, T6} to an (L', 2)*-coloring of G.

Finally assume that A = 5. By Lemma 2.1, each 5-vertex of G is
adjacent to exact three 3-vertices. Since each 3-vertex is adjacent to 5-
vertices, G contains a cycle C = v vg- - v; - - - Uop~1 U2k such that d(v;) =5
if ¢ is odd and d(v;) = 3 if i is even. We assume that w; is the other
neighbor of v; for even i. By the minimality of G, H = G\{vg,v4," -, vk}
admits an (L, 2)*-coloring ¢’. Note that dy(v;) = 3 for odd ¢, and we can
always color them such that the color ¢/(v;) appears at most once in those
of Ny (v;).

then we color v; for even i with a color in L(v;)\{¢'(vi-1), ¥’ (w:)} to
extend ¢’ to the whole graph G. This completes the proof of Theorem 2.1.
|

3 Toroidal graphs without adjacent triangles

Let G denote the family of toroidal graphs which contain neither adjacent
3-cycles nor 5-cycles, Our next main result shows that every graph in G is
(3,2)*-choosable.

In this section, a 4-face is called bad if it contains two 3-vertices. A face
f is called light if each vertex on its boundary has degree at most 4.

Lemma 3.1. Let G be a graph in G. Then one of the following must hold:
(1) 6(G) < 3.
(2) G contains a 3-verter adjacent to some 4~ -vertex.
(3) G contains a 5-vertex adjacent to at least four 3-vertices.
(4) G contains a 6-vertex adjacent to just siz 3-vertices.
(5) G contains a light face.
(6) G contains a (3,5,3,5)- face.

Proof : Assume to the contrary that the conclusion does not hold.

In the beginning, each vertex v is assigned a charge w(v) = d(v) — 4
and each face f is assigned a charge w(f) = d(f) — 4. By applying Eulers
formula |V| + |F| — |E] = 0 for toroidal graphs, we have

zevoureyw(z) £ 0.

If we obtain a new weight w*(z) for all x € V U F by transferring
weights from one element to another, then we also have ) w*(z) < 0.
If these transfers result in w*(z) > O for all z € V U F, then we get a
contradiction and the conclusions proved.

Let 7, be the number of 3-faces incident with v.
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By the choice of G, we have the following observations.

(01): G contains neither adjacent 3-faces nor a 3-face adjacent to a
4-face.

(02): my £2if d(v) = 5.

(Os): [Va(N) < |d(£)/2] for all f € F(G).

The new charge function w*(z) is obtained by following discharging
rules given below:

(R1) : For every vertex v with d(v) > 5, we transfer 3 from v to each
incident 3-face.

(R2) : For every vertex v with d(v) > 5, we transfer 1 5 to each bad 4-face,
transfer 2 § toeach 1nc1dent 4-face containing just two 5%-vertices and
a unique 3-vertex, i § to each incident 4-face containing three 5+-vertex
and a unique 3-vertex.

(R3) : For every 4~ -face f, we transfer -:1; from f to each incident 3-vertex.

(R4) : For every face f with d(f) > 6, we transfer } from f to each incident
3-vertex, a.nd from f to each adjacent 3-face.

Let v be a k-vertex of G. If k = 3, by R3 and R4, w*(v) = 3-4+3x ] =
0.

Ifk=4, w @) =wlw)=4—-4=0.

If k = 6, by the choice of G, each 6-vertex is adjacent to at most five
3-vertices, and r, < 3. We have w*(v) > 6—-4—7r, x —:1; —-(6-2r,— 1)% >0
by RA.

If k> 7, we have w*(v) =k —4—k x £ >0 by R4

Suppose that £ = 5. Let v be a 5-vertex and z,,x2, 3, T4, s be the
neighbors of v in clockwise. By (O2), we have w*(v) =5—-4—-2x % > 0if
Ty = 2, since v is not adjacent to any 4-faces at this situation.

Ifr,=1, w“(v) =5-4-1x3%—-2x 3 > 0. Moreover, w*(v) =
5-4—-1x -5—2 X 3 L > 0 if v is not incident to any bad 4-faces.

If r, = 0, since v is adjacent to at most three 3-vertices, v is incident
to at most two bad 4-faces. By R1 and R2, we have the following cases:

(1) v is incident to two bad 4-faces. Obviously, the two bad 4-faces
are adjacent and v is adjacent to three 3-vertices. Assume that d(a:l) =
d(z2) = d(z3) = 3. If d(z4) = d(zs) =4, w*(v) 25-4-2x3-2x} >0.
If d(z4) = 4 and d(zs) > 5, w*(v) > 5—4 — 2x§—1x§—1xé>0 If
d(z4) > 5 and d(z5) > 5, w*(v) > 5-4— 2x——3x%>0

(2) v is incident to just one bad 4-face. w*(v) > 5—4—-1x -—4x >0

(3) v is not incident to any bad 4-faces. w*(v) > 5—4 — 5 x3>0.

Let f be an h-face of G.
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£k > 6, by (Os), (Rs) and (Ry), w*(f) = h—4= |Va(f)| x § = [Fa(f)] x
3 2 0, noting that |Va(f)] + |Fa(f)| < k.

If h = 3. By assumption, G contains no light faces. f is incident with
at least one 5%-vertex, and at most one 3-vertex. By Rl, R3 and R4,
w*(f) =w(f) +4x 3 — 3 =0if |V3(f)| = 1. If f is not incident with any
3-vertex, then w*(f) > w(f)+3x 1+ 3>0.

If h = 4, by the choice of G and (O3), |V3(f)| < 2 and |F5(f)| =0. By
R2 and R3, we have the following:

If |Va(f)] = 2, since G contains no light faces, f is incident to two
5*-vertices, we have w*(f) > h—-4—-2 X % + 2 x -:1; > 0.

If |V3(f)| = 1, since G contains no light faces, f is incident to at least
two 5%-vertices, we have w*(f) >4 —-4—1x % +2x % > 0or w*(f) 2
4-4-1x3+3x5>0.

If [Va(f)| = 0, w*(f) 24 -4 =0.

Thus, w*(z) > 0 for each z € V(G) U F(G). If G contains 6*-vertices,
w*(z) > 0, the conclusion is proved. So we assume that A(G) = 5. By the
hypothesis, G contains no (3,5, 3, 5)-face, G contains no bad 4-faces. Let
v* be any 5-vertex, w*(v*) > 0.

We have 0 < Z,evur w*(z) = Lzevur w(z) < 0, which completes the
proof. |

Theorem 3.1. Every graph in G s (3,2)*-choosable.

Proof : Assume to the contrary. Let G be a counterexample with the
fewest vertices, i.e., there exists a list assignment L with |L(v)| = 3 for all
v € V(G) such that G is not (L, 2)*-choosable, but any proper subgraph of
Gis.

If 6(G) < 3, let v be a 2-vertex of G. Then, G\{v} is (3, 2)*-choosable
by the choice of G. Since in any (L, 2)*-coloring of G — v, there must exist
a color in L(v) that is not used by any neighbors of v, any (L, 2)*-coloring
of G —v can be extended to a (L, 2)*-coloring of G, a contradiction. So we
assume that 6(G) > 3.

If G contains two adjacent 3-vertices, say u and v, then by the choice of
G, G\{u,v} is (3,2)*-choosable. In any (L, 2)*-coloring of G\{u, v}, there
exists a color in L(u) that is not used by any neighbors of u in G\{x, v},
and the same holds for v. Applying the same argument as the above, we
see that G is (L, 2)*-choosable, a contradiction.

If G contains a 3-vertex u adjacent to a 4-vertex v,there is an (L,2)*-
coloring of G\{u}. If v has two neighbors which received the same color
with itself, then the number of distinct colors used by the neighbors of v in
G\{u} is at most 2. Then we recolor v such that the color of v is distinct
to those of it neighbors. We may color u so that, among all neighbors of u
in G, only v may have the same color as u. to establish an (L, 2)*-coloring
of G.
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If G contains a 5-vertex v adjacent at least four 3-vertices, let x; for i =
1,2, 3,4, 5, be the neighbors of v in clockwise and d(z;) =3 fori =1,2,3,4.
By the choice of G, G\{v, z1,z2,z3, x4} is (3,2)*-choosable. Take any list
assignment |L(v)| = 3, let L'(u) = L(u) for u € V(G)\{v, z1, 72, Z3, 74}
and L'(u) = L(u)— A(u) for u € {v, z1,%2, 3,24}, where A(z;) denotes the
colors assigned to the neighbors in the (L, 2)*-coloring of G\{v, z1, z2, z3, T4}.
L'(v) > 2 and L(z;) > 1 for i = 1,2,3,4. It is easy to extend an (L, 2)*-
coloring of G\ {v, z1,z2,z3,z4} to an (L', 2)*-coloring of G.

If G contains a 6-vertex adjacent to six 3-vertices, assume that v is a
6-vertex and x; for i = 1,2,3,4,5,6, be the neighbors of v in clockwise
and d(z;) = 3 for i = 1,2,3,4,5,6. By the choice of G, G\{v,N(v)}
is (3,2)*-choosable. Take any list assignment |L(v)| = 3, let L'(u) =
L(u) for u € V(G)\{v, 21, %2, %3, T4, 75,76} and L'(u) = L(u) — A(u) for
u € {v, 11, T2, T3, TaTs, Te }, Wwhere A(z;) denotes the colors assigned to the
neighbors in the (L,2)*-coloring of G\{v, z1, %2, Z3, %4, 5,26} L'(v) > 2
and L(z;) > 1 for i = 1,2,3,4,5,6. It is easy to extend an (L, 2)*-coloring
of G\{v, r1, T2, z3, %4, Ts5, 6} to an (L', 2)*-coloring of G.

Now we assume that G contains a light face f with the boundary
vyvg - U3y Uk, Where d(v;) < 4,1 < i < k. Let H = G\V(f). By
the choice of G, H admits an (L,2)*-coloring ¢. For w € V(f), let
L'(w) = L(w)\{¢(v)|v € Ny(w)}. Then, |L'(w)] > 1. It is easy to verify
that v vg - - - v3v4vx admits an (L', 2)*-coloring. This together with ¢ leads
to an (L, 2)*-coloring of G.

Finally assume that f = [vzouz,] be a bad 4-face of G, and let v,u
be 5-vertices and d(z;) = 3 for i = 1,2. Assume N(z;) = {u,v,w},
N(z2) = {u,v,w2}. By the choice of G, H = G\{z1,22}, H admits an
(L, 2)*-coloring ¢. Note that dg(u) = dg(v) = 3, and we can always color
u ( and v) such that the color ¢(u) (and ¢(v)) appears at most once in
those of Ny (u) (and Np(v)).

If ¢(v) = ¢(v), then we color z; with a color in L(z;)\{¢(u), p(w:)}
for i = 1,2 to extend ¢ to the whole graph G. If ¢(u) # ¢(v), we
can color z; with a color in L(z;)\{¢(u), #(w1)} and z2 with a color in
L(z2)\{p(v), #(w2)} to extend ¢ to the whole graph G.

This contradiction completes the proof of the theorem. |
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