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Abstract

A graph G is called uniguely k-list colorable, or UkLC for short, if
it admits a k-list assignment L such that G has a unique L-coloring.
A graph G is said to have the property M (k) (M for Marshal Hall) if
and only if it is not UkLC. The m-number of a graph G, denoted by
m(G), is defined to be the least integer k such that G has the prop-
erty M(k). After M. Mahdian and E.S. Mohmoodian characterized
the U2LC graphs, M. Ghebled and E.S. Mohmoodian characterized
the U3LC graphs for complete multipartite graphs except for nine
graphs in 2001. Recently, W. He et al. verified all the nine graphs
are not U3LC graphs. Namely, the USLC complete multipartite
graphs are completely characterized. In this paper, complete multi-
partite graphs whose m-number are equal to 4 are researched and
the U4LC complete multipartite graphs, which have at least 6 parts,
are characterized except for finitely many of them. At the same time,
we give some results about some complete multipartite graphs whose
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number of parts is smaller than 6.

Keywords: List coloring, UALC graphs, property M (4), complete
multipartite graphs

1 Introduction

We consider undirected, finite, simple graphs. For the necessary definitions
and notation we refer the reader to standard texts, such as [1]. In this
paper, we use the notation K., for a complete r-partite graph in which
each part is of size s. Notation such as K., etc, are used similarly.

For a graph G = (V,E) and each vertex u € V(G), let L(v) denote
a list of colors available for v. L = {L(u)|u € V(G)} is said to be a list
assignment of G. If |[L(v)| = k for all v € V(G), L is called k-list assignment
of G. A list coloring from a given collection of lists is a proper coloring ¢
such that ¢(v) is chosen from L(v). We will refer to such a coloring as an
L-coloring.

The idea of list colorings of graphs is due independently to V.G. Vizing
[13] and to P. Erdds, A.L. Rubin, and H. Taylar [3]. For a survey on
list coloring we refer the interested reader to D.R. Woodall [14] and Ch.
Eslahchi, M. Ghebleh, and H. Hajiabolhassan [4]. Here we mention some
definitions and results about list colorings which are referred throughout
the paper.

The concept of unique list coloring was introduced by J.H. Dinitz and
W.J. Martin [2] and independently by E.S. Mahmoodian and M. Mahdian
[10], which can be used to study defining set of k—coloring [11] and critical
sets in Latin squares [8]. Let G be a graph with n vertices and suppose that
for each vertex v in G, there exists a list of k& colors L(v), such that there
exists a unique L-coloring for G, then G is called uniquely k-list colorable
graph or a UKLC graph for short. For a graph G, it is said to have the
property M (k) (M for Marshal Hall) if and only if it is not uniquely k-list
colorable. So G has the property M (k) if for any collection of lists assigned
to its vertices, each of size k, either there is no list coloring for G or there
exist two list colorings. The m-number of a graph G, denoted by m(G), is
defined to be the least integer k such that G has the property M (k).

In 1999, M. Mahdian and E.S. Mahmoodian characterized uniquely 2-
list colorable graphs. They showed that

Theorem 1.1 ([9]). A connected graph has the property M (2) if and only if
every block of G is either a cycle, a complete graph, or a complete bipartite
graph.

It seems that characterizing UkLC graphs for any k& is not easy. M.
Ghebleh and E.S. Mahmoodian have characterized U3LC graphs for com-
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plete multipartite graphs except for finitely many of them. They showed
that

Theorem 1.2 ([5]). The graphs K333, Kosa, Ko3s, K229, Ki222,
Ki1,2,3, K1,1,1,2,2) Kixa,6, K155, and K1.46,4 are USLC.

Theorem 1.3 ([5]). Let G be a complete multipartite graph that is not
K2,2,T’ fOT T =4, 5,... 78: K2.3,4: K1t4,4: K1t4,5, or Kl*5,4 then G is USLC
if and only if it has one of the graphs in Theorem 1.2 as an induced subgraph.

Recently, Wenjie He et al. [6, 7, 15, 12] researched the exempted graphs
in Theorem 1.3 and they have showed that all these exempted graphs have
the property M(3). Then they gave an improved version of Theorem 1.3
as follows.

Theorem 1.4 ([12]). Let G be a complete multipartite graph, then G is
U3LC if and only if it has one of the graphs in Theorem 1.2 as an induced
subgraph.

In this paper, complete multipartite graphs whose m-number are equal
to 4 are researched and the U4LC complete multipartite graphs, which have
at least 6 parts, are characterized except for finitely many of them. At the
same time, the property M (4) of some complete multipartite graphs whose
number of parts is smaller than 6 are investigated. In section 2, we give
some propositions about complete multipartite graphs whose m-number
are equal to 4, and these propositions will pave the way to prove our main
results. In section 3 and section 4, we investigate U4LC complete k-partite
graphs for kK > 7 and for k = 6 respectively. In section 5, we give some
results about of some complete k-partite(k < 5) graphs which will pave
the way in characterization of U4LC complete k-partite(k < 5) graphs. In
section 6, we give some open problems.

2 Some propositions about complete multi-
partite graphs whose m—number are equal
to 4

In order to characterize U4LC complete multipartite graphs by using the
method of characterizing U3LC complete multipartite graphs in [5], it is
clear that we must determine all the maximal complete multipartite graphs
G with m—number 4, where the maximality means that, for any com-
plete multipartite graphs H, if G is a proper induced subgraph of H, then
m(H) > 4.

As a preparation, in the following we give some complete multipartite
graphs whose m—number are equal to 4.
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Lemma 2.1 ([5]). If G is a complete multipartite graph which has an
induced UkLC subgraph, then G is UKLC.

Lemma 2.2 ((10]). If L is a k-list assignment to the vertices in the graph
G, and G has a unique L-coloring, then ||J, L(v)] > k + 1 and all these
colors are used in the unigque L-coloring of G.

Lemma 2.3 ([5]). For any integer s,v, K, s, has the property M(3).
Lemma 2.4 ([5]). If G has n vertices, then m(G) < [n/3] + 1.

Proposition 2.1. If G is a graph which has the property M(3), and v is
a vertez which does not belongs to V(G), then the union graph GV {v} has
the property M(4).

Proof. Let H = GV {v}. Suppose L is a 4-list assignment to H which
induced a list coloring c. Let ¢(v) = a. We introduce a 3—llst assignment L’

to G as follows. For every vertex u in G, ifa € L(u) then L'(u) = L(u)\{a},

otherwise L' (u) = L(u)\{b} where b € L(u) and b # c(u). Since L induce a
list coloring ¢ for H, G has exactly one L’-coloring, namely the restriction
of c on G. By the property M(3) of G, we can obtain a new L'-coloring of
G, which can be extended to H. Thus, H has the property M(4). O

Proposition 2.2. For every r > 1, K1.r5 has the property M(4), and if
r>35, m(Klms) =4.

Proof. For G = Kj.,5, denote its r+1 parts by V; = {v;} fori =1,2,.
and U = {uy,us,...,us}, and let ¢ be a 4-list coloring of G with a given
4-list assignment L.

Case 1. c(u1),c(u2),- .., c(us) are pairwise different.

Add new edges between any two vertices in {u1,us,...,us}, the result-
ing graph is G’ = K..,5. Note that c is also a proper L—coloring of G’, and
G’ has the property M(2) by Theorem 1.1, so we can obtain another color-
ing of G', which is a legal L—coloring for G, and hence G has the property
M(4).

Case 2. In {u;,uy,...,us}, there are at least two assigned a common
color.
Let the common color be a and X = {u|c(u) = a,u € {u;,uz,...,us}}.

Consider the graph H = G — X, clearly, H is a subgraph of Kj.r3. Let
L'(v) = L(v)\{a} for every v € V(H). It is obvious that |L!(v)] > 3 for
every v € V(G) and the restriction of ¢ on G’ is a L'-coloring of G'. By
Theorem 1.4, K1.r3 has the property M(3), so H also has the property
M (3). By the property M(3) of H, we can obtain a new L’—coloring of H,
which can be extended to G. Thus, G has the property M (4).

If r > 5, G is USLC by Theorem 1.4. Therefore m(Kj.rs) = 4. O
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. Proposition 2.3. For every r > 1, K15 has the property M(4), and if
r 25, m(Kis,r) = 4.

Proof. For G = K5, denote its 6 parts by V; = {v;} fori = 1,2,...,5
and U = {u3,u,...,u,}, and let ¢ be a 4-list coloring of G with a given
4-list assignment L. Put C = {c(u;)]i = 1,2,...,r}. Without loss of gen-
erality, write ¢(v;) =4 for ¢ = 1,2,...,5. If there are two vertices u; and
u; such that c(u;) € L(uj)\e(u;) (4,7 = 1,2,...,7), a new L-coloring can
be found easily. Now it is supposed that c(u;) ¢ L(u;)\c(u;) for each
4, (4,5 = 1,2,...,7). By Lemma 2.2, we know that (L(u;)\c(u;)) C
{c(v1),e(v2),. .., c(vs)} = {1,2,...,5}.

Case 1. |L(v;)NC| <2 forany i =1,2,3,4,5.

Denote G’ = G[vy,v2,...,v5] and let L'(v;) = L(v;)\(L(v:) N C) for
every v; for i = 1,2,...,5. Clearly, |L'(%)| > 2. As G' = K; and K has
the property M(2) by Theorem 1.1, we can obtain a new L’-coloring of G/,
which can be extended to G. Thus, G has the property M(4).

Case 2. In {v;,vs,...,vs}, there exists at least one vertex v such that
[IL(v)nC| > 3.

Without loss of generality, say |L(v1) N C| 2 3, namely, L(v;) = {1, a,,
bi1,¢1}, where a;,b),¢ € C and they are pairwise different. Denote C; =
{1} U C and consider L(v3), L(vs), L(vs4) and L(vs). If |L(v;) N C;| < 2 for
any i = 2,3,4,5, similar to the discussion in Case 1, by the property M(2)
of K4 we can obtain a new L”—coloring of G” = G|vg, vs, v4,v5] = K4, which
can be extended to G. Thus, G has the property M(4). Otherwise, there
exists at Jeast one vertex v in {vy, ..., vs} such that |L(v)NC;| > 3. Without
loss of generality, say |L(vg) N Ci| 2 3. Namely, L(v2) = {2,a2,b2,ca},
where ap € C, ba,c2 € C. Denote Cy = {1,2}UC and consider L(v3), L(v4)
and L{vs). If |L(v;) N Cq| < 2 for any ¢ = 3,4, 5, similar to the discussion
above, by the property M(2) of K3 we can obtain a new L"—coloring of
G" = Glus,vs,vs] = Ks, which can be extended to G. Thus, G has
the property M(4). If in {vs,vq,vs}, there exists at least one vertex v
such that |L(v) N C2| > 3, without loss of generality, say |L(vs) N Ca| >
3. Namely, L(vs) = {8, as,bs,ca}, where {a3,b3} C Ca, c3 € C. It is
clear that we can choose a color from {bg, ¢y}, say cg, such that ¢; # cs.
Furthermore we can choose a color from {ai, b1, ¢}, say ¢, such that cs, co
and c; are pairwise different. Note that (L{u;)\c(u:)) C {1,2,3,4,5} for
i=1,2,...,r, we have (L(u;)\c(ui)) N {1,2,3} # ® fori = 1,2,...,7. So
we can let ¢ (vy4) = c(vy), ¢ (vs) = ¢(vs), ¢/(v1) = e1, ¢ (v2) = c2, ¢ (v3) = c3
and ¢/(u;) € ({1,2,3} N (L(ui)\e(us))) for ¢ =1,2,...,r. Thus ¢ is a new
L-coloring of G and hence G has the property M (4).

If r > 5, K145,r is UBLC by Theorem 1.4. Therefore m(Kyur5) =4. O
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Proposition 2.4. For everyr > 1, K143 3 has the property M(4), and if
r>2, m(Klt"‘,3,3) =4.

Proof. For G = Kiur3as, let V; = {v;},i = 1,2,...,7, W,U be the two
parts of G which contain three vertices. Suppose that, for each v € V(G),
there is assigned a color list L(v) of size 4 and G has an L-coloring c.

Case 1. |[{c(w):we W} <2or [{c(u):ue U} <2

Without loss of generality, it is supposed that |[{c(w) : w € W}| < 2.
Then there exist at least two vertices in W which are assigned the same
color. Say the color is a, and denote X = {wje(w) = a,w € W} and
G’ = G - X. Then it is obvious that G is a subgraph of Kyu(r41),3- For
every v € V(G'), let L'(v) = L(v)\{a}. Clearly, |L'(v)| > 3 for every
v € V(G') and the restriction of ¢ on G is an L -coloring of G'. By the
property M (3) of Kyy(r+1),3 (by Theorem 1.4), we can obtain a new L-
coloring of G’ which is extendible to G.

Case 2. |{c(u):ue W}|=|{c(u):ue U}| =

Add new edges between any two vertices in W and any two vertices
in U. The resulting graph is K15, which has the property M(4) by the
Theorem 1.1. So we obtain a new L-coloring which is a legal L-coloring for
G. In sum, G has the property M(4).

If r > 2, G is a U3LC graph by Theorem 1.4, so its m-number is equal
to 4. O

Proposition 2.5. m(K1.s,2,4) = 4

Proof. For G = K1.5,2,4, denote its 7 parts by V; = {v;} fori =1,2,...,5,
U = {u1,u2} and W = {w;, wa, w3, ws}. Let c be a 4-list coloring of G
with a given 4-list assignment L.

Case 1. c(u1) = c(ug).

Let G’ = G—{u1,uz2}, L'(v) = L(v)\c(w) for every v € V(G’). Clearly,
|L!(v)| > 3 for every v € V(G’). Note that Ki.s 4 has the property M(3)
by Theorem 1.4, then we can obtain a new L'—coloring of G’, which can be
extended to G. Thus, G has the property M(4).

Case 2. c(u1) # c(uz).

Add an edge between u; and ug, and the resulting graph is G’ = Kj.7 4.
Since Kj.7,5 has the property M(4) by Proposition 2.2, then Kj.7,4 has the
property M(4) by Lemma 2.1. Thus we can obtain an L-coloring of G’,
which is a legal L—coloring for G. Thus, G has the property M (4).

Note that K.5,2,4 is a USLC graph by Theorem 1.4, then we know that
m(K145,2,4) = 4. a
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Proposition 2.6. m(K.4,34) = M(K143,2,2,2) = Mm(K1a4,2,5) = 4.

Proof. Obviously, K1*4,3,4, K1,3,2,2,2 and K1.4,2‘5 are U3LC from Theo-
rem 1.4, then it is only to prove that they have the property M(4). From
Lemma 2.4, we have that m(K1*3,2,2,2) < rg] + 1 = 4. Namely K1.3,2'2,2
has the property M(4). From Proposition 2.2 and Theorem 1.4, we know
that K).e,s has the property M(4) and K .45 has the property M(3). With
a similar way with the way used in Proposition 2.5, we obtain that Kj.425
has the property M(4). From Proposition 2.2, Lemma 2.1 and Theorem
1.4, we know that Ki.7,4 has the property M(4) and K}.s,4 has the prop-
erty M(3). With a similar way with the way used in Proposition 2.4, we
obtain that K1.434 has the property M(4). m|

3 On complete k-partite(k > 7) graphs

In this section, the U4LC complete k-partite(k > 7) graphs are character-
ized except for finitely many of them.

Theorem 8.1. The graphs K1.4,22,2, K1+5,2,5, K146,2,4, K146,20 and K1.12,6
are UALC.

Proof. 1) For Kjup222, let {w1}, {v2}, {vs}, {va}, {vs,us}, {ve,us},
{v7,u7} be the parts. We assign the following lists for the vertices of
Kiu222: L(v) = {4,5,6,7} for i=1,2,3,4, L(v;) = {4,5,6,7} for i=5,6,7
and L(w;) = {1,2, 3,4} for i=5,6,7. It is obvious that every part must take
a common color, then the last three parts must take 5,6 and 7, respectively.
Hence the colors of other vertices are determined uniquely in turn.

2) Consider the following 4-list assignment for Ky.5,25:

{{1678}, {2678}, {3678}, {4678}, {5678},
{1236, 4567},
{1267, 4567, 2368, 1348, 1568} }.

Obviously, the last part must take two colors, then the sixth part must take
one color, and 6 is the unique choice. Therefore the last part has to take
the colors 7 and 8. After colors 6, 7 and 8 are used, the colors of other
vertices are determined uniquely afterwards(the colors in the list coloring
are marked by underlines).

3) Consider the following 4-list assignment for K.6,2,4:

{{1789}, {2789}, {3789}, {4789}, {5789}, {6789},
{1237, 4567},
{1278, 5678, 3479, 1259} }.

209



Using a method similar to the method in 2), a unique list coloring can be
found from the given list.

4) Consider the following 4-list assignment for K} .¢,20:

{{1780}, {2789}, {3789}, {4789}, {5789}, {6789},
{1238,1248, 1259, 1269, 1347, 1357, 1368, 1459, 1467, 1567,
2347, 2357, 2369, 2458, 2467, 2567, 3459, 3469, 3568, 4568} }.

Obviously, the last part must take 3 colors, and {7, 8,9} is the only choice
after checking. The colors of other vertices are determined sequentially.

5) We use the hexadecimal counting method here. Consider the follow-
ing 4-list assignment for Ki.12.6:

{{LDEF}, {2DEF}, {3DEF},{4DEF}, {5DEF},{6DEF},
{1DEF},{8DEF},{9DEF},{ADEF},{BDEF},{CDEF},
{123D, 456 D, 123E, 789E, 789F, ABCF}}.

The last part must take the colors D, E and F, then the colors of the other
vertices are uniquely determined. O

Theorem 3.2. Let G be a complete multipartite graph which has at least
7 parts. If G is not Kyurs for 6 <7 <11 and 6 < 5 < 19, Kius53,4 or
K145,4,4, then G is UALC if and only if it has one of the graphs in Theorem
3.1 as an induced subgraph.

Proof. If G has one of the graphs in Theorem 3.1 as an induced subgraph,
then it is U4LC by Lemma 2.1. On the other hand, assume that G is not
one of the graphs mentioned in the statement and it does not have any one
of graphs in Theorem 3.1 as an induced subgraph. We will show that G is
not U4LC. As G is a complete k-partite(k > 7) graphs, there are two cases
to be considered.

(i) G has at most one part whose size is greater than 1, namely G =
Kjurs(r > 6). Since G does not contain Kj.6,20 or K1.12,6, and G is not
Kiurs for 6 <r <11 and 6 < 5 < 19, we must have s < 5. Thus G is not
U4LC from Proposition 2.2 and Lemma 2.1.

(ii) G has at least two parts whose sizes are greater than 1. Since G
does not contain a Kj.q,2,2,2, G has exactly two parts whose size are greater
than 1. Since it does not contain K.5,2,5 or K624, then it must be one
of K145,3,4, K1s5,4,4, K145,2,4 and Kpsr e (r>5,2<s<3and2<t < 3).
The first two graphs are exempted and the last two graphs are not U4LC
from Proposition 2.5 and Proposition 2.4. O
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4 On complete 6-partite graphs

In this section, the U4LC complete 6-partite graphs are characterized ex-
cept for finitely many of them.

Theorem 4.1. K1.3,2,2’3, K1.4,2,7 and Kl#4,4,6 are UALC.

Proof. (i) Consider the following 4-list assignment for Ki.s2,2,3:
{1234}, {1235}, {2346}, {1234, 2356}, {1234, 1356}, {1234, 1256, 1456} }.

Note that {1,2,3,4} are contained in all the lists of first part, the fourth
part, the fifth part and the sixth part, so the second part and the third part
have to take the colors 5 and 6, respectively. Since there are only 6 colors
in total, each part can only take one color. Then the sixth part must take
the color 1, the fifth part must take the color 3, the fourth part must take
the color 2 and the first part must take the color 4. Thus K.3,2,2,3 is U4LC.

(ii) Consider the following 4-list assignment for Ki.4.2,7:

{{1567}, {2567}, {3567}, {4567},
{1235, 4567},
{1236, 1256, 1356, 1457, 2357, 2457, 3456} }.

Note that there are only 7 colors in total and the sixth part must take two
colors, then the fifth part has to take one color and the color 5 is the unique
choice. Therefore the last part has to take the colors 6 and 7, and the colors
of other vertices are uniquely determined afterwards.

(iii) For K144,4,6, give a list as follows:

{{1567}, {2567}, {3567}, {4567},
{1578, 2578, 3467, 1268},
{4567, 2367, 3458, 1368, 1248, 1257} }.

Each of the last two parts must take two colors obviously. The last part has
to take the colors 7 and 8, then the fifth part has to take the colors 5 and
6. And the colors of other vertices are uniquely determined afterwards. O

Theorem 4.2. Let G be a complete 6-partite graph. If G is not K. 26,
Kiu435, Kiea,3,6) Kiuaa,4) K1aaa5, Kieass, Ki1,1,2¢4, K1,205 and Koue,
then G is U4ALC if and only if it has one of the graphs in Theorem 4.1 as
an induced subgraph.

Proof. If G has one of the graphs in Theorem 4.1 as an induced subgraph,
then it is U4LC by Lemma 2.1. On the other hand, assume that G is not
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one of the graphs mentioned in the statement and it does not have any one
of graphs in Theorem 4.1 as an induced subgraph. We will show that G is
not U4LC. As G is a complete 6-partite graphs, there are three cases to
be considered.

(i) G has at most one part whose size is greater than 1, namely, G =
Kj.s,r. From the Proposition 2.3, G has the property M(4).

(ii) G has exactly two parts whose size are greater than 1. Since G does
not contain Kj.4,3,7 or Kiuq,4,6, and G is not Ki.a2,6, K144,35, Ki1xa,36,
Ki44,4,4) K144,4,5, K1e4,5,5, then it must be Ki.q34, K144,2,5 Or their in-
duced subgraphs. From Proposition 2.6, they have the property M(4).

(iii) G has at least three parts whose size are greater than 1. Since G
does not contain K1*3,2,2'3, then it must be K1*3,2,2‘2, K1,1,2,4, K1,2‘5 or
Kj.6. From Proposition 2.6, Ki.3,2,2,2 is not U4LC. The last three graphs
have been exempted. a

5 Some results about some complete k-partite
graphs(k < 5)

In this section, we state some results which will pave the way in character-

ization of U4LC complete k-partite(k < 5) graphs.

Theorem 5.1. K1,2,2,2_3 and K1,1_2,3,4 are U4LC.

Proof. For K 2232 3, consider the following 4-list assignment:

{{1234}, {1234, 2567}, {1234, 3567}, {1234, 4567}, {1235, 1236, 1237} }.
For K1,2,3,4, consider the following 4-list assignment:
{{1234}, {1234, 2345}, {1234, 1345, 2345}, {1234, 1345, 1245, 2345}, {1235} }.

Obviously two unique list colorings for K; 2223 and for K; 1234 can be
found from the above given list assignments respectively. O

Theorem 5.2. K 2.4, K1,1,2,2,3, K1,1,1,3,3, K1,1,1,2,-(r 2 1) have the prop-
erty M(4). If r > 3, the m-number of all of them are equal to 4.

Proof. From Lemma 2.4, it can be easily found that the first three graphs
have the property M(4). From Proposition 2.3 and Theorem 1.4, we know
that K.5, has the property M(4) and K1, has the property M(3).
With a similar way with the way used in Proposition 2.5, we can obtain
that K1'1,1,2’r are not U4LC.

If r > 3, all the graphs are U3LC by Theorem 1.4, so their m~-numbers
are equal to 4. O
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Theorem 5.3. K, s:, K122 have property M(4). If r > 2, then
m(K1,2,2,r) =4.
Proof. From the Lemma 2.3 and Proposition 2.1 it is obviously that K7 ; s
has the property M(4). From Proposition 2.3 and Theorem 1.4, we know
that K.s,, has the property M(4) and K 2 has the property M(3). With
a similar way with the way used in proposition 2.5, we obtain that Kj 22,
are not U4LC.

If r > 2, Ky 22, are U3LC by Theorem 1.4, so its m-number is equal
to 4. O

Theorem 5.4. K3,4,4,4, K2,3)4,6, K3,3'3,6, K1,3,4,10 are U4ALC.

Proof. One can check that all the graphs have unique list coloring from
the lists assignments as follows respectively:

For K344.4: {{1358,1467, 2357}, {1237, 1457, 3567, 1246},
{1367, 1457, 2357, 1246}, {1347, 1357, 2457, 1456} }.

For K 346: {{1356,2478}, {3567,1248, 4567}, {1578, 2678, 3467, 2358},
{4567, 2367, 3458, 1368, 1248, 1257} }.

For K336 {{1347,1357, 2458}, {1237, 1457, 3568}, {1367, 1457, 2358},
{4567, 2367, 3458, 1368, 1248, 1257} }.

For Ky 34100 {{1467}, {1256, 1357, 3467}, {1467, 2467, 3567, 1235},
{1236,1246, 1257, 1347, 1356, 1456, 2347, 2357, 2457, 3456} }.
O

6 Some open problems

The following problems arise naturally from the work.

Problem 1. Determine whether the graphs Ki.r s for 6 < v < 11 and
6<s<19, K1‘5’3'4 and K.5,4,4 are UALC or not.

Problem 2. Determine whether the graphs Ki.a 26, Kixa3,5, Kiea36,
K144, K1va a5, Kieas,5, K1,1,244, K1,245 and Kaug are U4LC or not.

Problem 3. Characterize the UALC complete k-partite graphs for k < 5.
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