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For a positive integer r, a perfect r-code in a simple graph G = (V(G), E(G))
is a subset C of V(G) that has the property that each vertex in G is within
distance r of exactly one vertex in C. The distance between vertices u
and v in G, denoted by dg(u,v), is the number of edges in a shortest path
from u to v. A vertex u in C is said to r-dominate a vertex v in G if
0 < dg(u,v) < r. Perfect r-codes were first introduced by Biggs [2] and
generalize the notion of perfect codes. We note that a perfect code is sim-
ply a perfect 1-code. Perfect 7-codes have numerous applications in efficient
resource placement in networks and error correcting codes. The dark ver-
tices in Figures la and 1b represent a perfect 2-code and perfect 3-code
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Perfect r-codes have been studied in several standard product graphs; the
Cartesian product [9, 3, 4], the direct product [6, 7, 8, 10] and the strong
product [1]. In this paper we are interested in perfect r-codes in the final
standard product, the lexicographic product. In particular, we will deter-

mine the relationship between perfect r-codes in the lexicographic product
of two graphs and perfect r-codes in the two factors.

(o}

The lexicographic product of graphs H and G is the graph HoG whose vertex
set is the Cartesian product V(H) x V(G) and whose edges are the pairs
(h,g)(K,g’) of distinct vertices where one of the following holds:

1. hh' € E(H) or
2. h="FH and g¢' € E(G).

We will refer to the graphs G and H as factors of the product. Figure 2
shows Py o P3, where P, denotes a path on n vertices.

P

O O

XA
X

P

Figure 2

The lexicographic product is sometimes referred to as composition or sub-
stitution. The name composition comes from the familiar notion of com-
position of functions. We compose two graphs in much the same way that
we compose two functions. Notice that P4 o P; is obtained from P; by
substituting a copy of P, denoted by (Ps),, for each vertex v in Py and
by joining all vertices of (P3), to all vertices of (P;), whenever uv is an
edge in Py. Just as with function composition, the lexicographic product
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is associative, but in general is not commutative. In fact, HoG = Go H
only when one of the following is true [5, Theorem 6.9]:

1. Both H and G are complete
2. Both H and G are totally disconnected, or

3. Both H and G are powers of the same graph (with respect to the
lexicographic product).

For nontrivial graphs H and G, the product H o G is connected if and
only if H is connected. We will denote by 7y (7 respectively) the usual
projection function from V(H o G) to V(H) defined by ny(h,g) = h. For
any v € V(H), the fiber in H o G above v is the set 75'(v) = {(v,9)|g €
V(G)}. The dark vertices in Figure 3 show the fiber in P, o P, above the

vertex v.
P, I E Pyo Py

0_8 Py
Figure 3

We make one important observation that follows from the definition of the
lexicographic product. For distinct vertices (h,g) and (k’,¢’) in the same
connected component of H o G, we have dg(h,h’) < dyoc((h,g), (H',g')).
If (h,g) and (h’,g’) are in the same fiber, then h = &' and dgy(h,h’') =0 <
duoc((h,g), (K, g')). If they are not in the same fiber, then dyo.c((h,g),
(h',g")) = dy(h,h’). Thus every (h,g)-(#',¢') path in H oG projects to an
h-h' path in H of length dg(h,k’). In Figure 4 the path of dark edges in
H o G projects to the path of dark edges in H. For a survey of properties
of the lexicographic product see [5).

PQI mﬂ ”

o O o P,
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2 Results

In this section we examine the relationship between perfect r-codes in HoG
and perfect r-codes in the factors H and G. One might hope for a resuit
that guarantees the existence of a perfect r-code in the product provided
there are perfect r-codes in each of the two factors, and vice versa, as is
true for the strong product [1]. As it turns out, it is a bit more subtle
and requires some careful consideration. We begin by considering the case
where 7 > 2.

Theorem 2.1 Let G be any graph and let H be a graph with no isolated
vertices. Then forr > 2, H oG has a perfect r-code if and only if H has a
perfect r-code.

Proof. Suppose that H o G has a perfect r-code C. We claim that Cy =
ny(C) = {h € V(H)|(h,g) € C} is a perfect r-code in H. Let h be any
vertex in H. Choose any vertex in the fiber above h, say (h,g). Then
the vertex (h,g) must be within distance r of some vertex (c,c’) in C.
But this implies that dy(h,¢) < r. Hence h is r-dominated by ¢. Since
¢ € Cy = wy(C) we see that each vertex in H is r-dominated by a vertex
in Cy.

Now suppose that h is r-dominated by two distinct vertices ¢ and ¢ €
Cy = wy(C). This means that the fibers above ¢ and ¢’ each contain a
vertex in C. If h = c (or ), then each vertex in the fiber above h is within
distance r of each vertex in the fiber above ¢/. Thus two vertices in C are
within distance r of each other. This is a contradiction since C is a perfect
code in H o G. If h # ¢, then each vertex in the fiber above h is within
distance r of each vertex in the fibers above ¢ and ¢’. Thus every vertex
in the fiber above h is r-dominated by two distinct vertices in C, again a
contradiction. Thus h is -dominated by exactly one vertex in Cy and Cy
is a perfect r-code in H.

Conversely, suppose that H has a perfect r-code C. We claim that we can
form a perfect r-code in H o G in the following way. For each vertex c € C
we choose exactly one vertex (c,g) in H o G in the fiber above c. Let D
denote this subset of vertices in H o G.

Let (h,g) be any vertex in H o G. Then either h € C, and k dominates
itself, or h is r-dominated by some ¢ € C. Suppose that A € C. Since H has
no isolated vertices, h must be adjacent to another vertex h' in H. This
means that every vertex in the fiber above h is adjacent to every vertex
in the fiber above h'. Since the fiber above h contains a vertex in D we
see that (h,g) is at most distance two from a vertex in D. Since r > 2
we see that (h,g) is r-dominated by a vertex in D. Now suppose that h
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is r-dominated by some ¢ € C. Then the fiber above ¢ contains exactly
one vertex in D and every vertex in the fiber above ¢ is within distance r
of every vertex in the fiber above h. Thus (k,g) is r-dominated by some
vertex in D.

Now suppose that (h,g) is r-dominated by two distinct vertices (k/,g’)
and (h”,g") in D. This implies that »’' and h” are vertices in C. Thus
dp(h,h') < 7 and dy(h,h"”) < r and h is r-dominated by two vertices in C.
This is a contradiction since C is a perfect r-code in H. Therefore every
vertex in H o G is r-dominated by exactly one vertex in D. Hence D is a
perfect r-code in H o G.

Theorem 2.1 is illustrated in Figure 5 where the dark vertices indicate the
vertices in a perfect 2-code. Observe that any one of the vertices in the fiber
above each dark vertex in H could have been chosen to form the perfect
2-code in H o G. Thus we can imagine lifting a perfect 2-code in H to a
perfect 2-code in H o G.

G Q 0 q 5
RN

HoQG

oO———e—0—90 ¢———o0—0H
Figure 5

Notice in Theorem 2.1 that perfect r-codes in H o G depend only on the
graph H. In Figure 6 we see that HoG has a perfect 2-code, take any vertex
in the fiber above the dark vertex in H, but the factor G has no perfect
2-code. (For simplicity, we only draw the three copies of G appearing in
H oG and not all of the horizontal edges connecting the adjacent copies of
G)

G o HoG
—0——0H
Figure 6
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The fact that G may not have a perfect r-code is precisely why H is not
allowed to have isolated vertices, for then we would get isolated copies of G
appearing in H o G. If we allow H to have isolated vertices, then in order
for H o G to have a perfect r-code, it must also be the case that G has a
perfect r-code. In this situation we get the following weaker result.

Theorem 2.2 Let G and H be graphs. Forr > 2, if H and G have perfect
r-codes then H o G has a perfect r-code.

The proof of Theorem 2.2 follows by a similar argument from that of Theo-
rem 2.1 where the perfect r-code for H o G is D, together with the vertices
that form a perfect r-code in each isolated copy of G. Theorem 2.2 is
illustrated in Figure 7.
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Figure 7

Unfortunately, Theorems 2.1 and 2.2 do not just carry over to the case
where » = 1. For example, in Figure 8 we see that H and G have perfect
codes, however, the product H o G does not.

G HoG

o—e H
Figure 8

It is not hard to see that in order for H o G to have a perfect code, we
are going to have to put a restriction on the graph G. In particular, G
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must have radius one (or zero). The following observation is simple, but
nonetheless stated as a lemma.

Lemma 2.1 Let G be a graph. Then G has a perfect code consisting of a
single vertez if and only if G has radius one or zero.

Proof. Clearly the radius of G is zero if and only if G is the trivial graph.
Suppose that G is not the trivial graph and that G has perfect code C =
{e} € V(G). Then dg(c,g) < 1 for all g € V(G). Thus the eccentricity
of the vertex c is one and the radius of G is one. Conversely, suppose that
G has radius one. Then G has a vertex v of eccentricity one. This means
that max,cv(g)d(v,v) = 1. Hence the vertex v dominates every vertex in
G and C = {v} is a perfect code in G. m

Theorem 2.3 Let G and H be graphs. Then H o G has a perfect code if
and only if H and G have perfect codes and the perfect code in G consists
of a single vertex.

Proof. Suppose that C is a perfect code in H o G. We claim that Cy =
7 (C) is a perfect code in H. Let h be any vertex in H. Then the vertex
(h,g) in H o G must be dominated by some vertex (c¢,¢’) € C. Since
duoc((h,g),(c,c’)) < 1, we have dy(h,c) < 1. Thus h is dominated by
c.

Suppose now that 4 is dominated by two distinct vertices ¢ and ¢’ € Cy.
Then the fibers above ¢ and ¢’ each contain a vertex in C. If h = ¢ (or
c’) then each vertex in the fiber above & is adjacent to each vertex in the
fiber above ¢/. Thus we have two vertices in C adjacent to each other in
H o G. This is a contradiction since C is a perfect code in Ho G. If h # ¢,
then each vertex in the fiber above h is adjacent to each vertex in the fibers
above c and ¢/. Thus every vertex in the fiber above h is dominated by two
distinct vertices in C. This is again a contradiction. Hence Cy is a perfect
code in H.

Showing that the factor G has a perfect code requires a little more thought.
If G is the trivial graph, then certainly ng(C) is a perfect code in G.
Suppose that G is not the trivial graph. Let h be any vertex in H. Let
K denote the connected component of H o G containing the fiber above h.
We claim that Cg = n¢(C N V(K)) is a perfect code in G. Let g be any
vertex in G. Then the vertex (h,g) is either in C, in which case g € Cg,
or (h,g) is dominated by some (c,¢’) € C. If the latter, then either h = ¢
and g’ € E(G), giving g adjacent to an element in Cg, or hc € E(H).
Suppose that he € E(H). Since two adjacent fibers in H o G cannot both
contain vertices in C, the fibers above h and ¢ cannot both contain vertices
in C. Thus dg((c,c'),(c,g")) < 1 for all ¢’ € V(G). This implies that
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¢ is a vertex of eccentricity one in G and that G has radius one. Hence
9¢ € E(G) and Cg = {c'} is a perfect code in G.

Conversely, suppose that H and G have perfect codes Cy and Cg respec-
tively. Suppose also that Cg = {¢'}. We claim that the Cartesian product
of Cy and Cg, denoted by Cg x Cg, is a perfect code in H o G.

Let (h,g) be any vertex in H o G. Then h is dominated by some ¢ € Cy
and g is dominated by the vertex ¢/. Since dy(h,c) <1 and dg(g,¢') < 1,
it follows that dgo.g((h,g),(c,¢’)) < 1. Hence every vertex in H o G is
dominated by some vertex in Cyg x Cg.

Suppose now that (k, g) is dominated by two distinct vertices (¢, '), (¢,¢') €
Cy x Cg. Note that these vertices must differ in the first coordinate as Cg
consists of a single vertex. Since dyoc((h,9),(c,¢')) < 1 and dyoc((h,9),
(¢,¢)) <1, it follows that dy(h,c) < 1 and dy(h,¢) < 1. Thus the vertex
h in H is dominated by ¢ and ¢. This contradicts the fact that Cp is a
perfect code in H. Hence Cy x Cg is a perfect codein Ho G. =

Theorem 2.3 is illustrated in Figure 9. Notice that the perfect code in the
product projects to a perfect code in H, but not in G. We need only look
at the projection onto G of the perfect code from one connected component

S —

o9 o—e o—eoH

Figure 9

It is easy to show that any two perfect r-codes in a graph have the same
cardinality, but in general it is not easy to determine the number of perfect
r-codes in a graph. In the case of the lexicographic product however, we
can determine the number of perfect r-codes in the product based on the
number of perfect r-codes in the factors. First we consider the case where
7 2 2. If H has no isolated vertices, then for each perfect r-code C in H,
we can form |V (G)|!€! perfect r-codes in H o G. Thus if H has n perfect
r-codes, then H o G will have a total of n|V(G)|!! perfect r-codes. If H
has z isolated vertices and G has m perfect r-codes, then H o G will have
n|V(G)|(C1=2)m* perfect r-codes. Finally, if r = 1 it is not possible to
determine the number of perfect codes in the product based on the number
of perfect codes in the factors (Figure 7 shows this), we must take Theorem
2.3 into account. Suppose that G has m perfect codes, each of cardinality
one, and that H has n perfect codes. Then H o G will have n(ml!€l), where
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C is a perfect code in H. We can look back at Figure 8 to see this. Each
perfect code in H has cardinality 3, and there are 8 such codes. The graph
G has 2 perfect codes and H o G has 8(2%) = 64 perfect codes.
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