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Abstract

We study near hexagons which satisfy the following properties:
(i) every two points at distance 2 from each other are contained
in a unique quad of order (s,r1) or (s,72), 71 # rg; (ii) every line
is contained in the same number of quads; (iii) every two opposite
points are connected by the same number of geodesics. We show that
there exists an association scheme on the point set of such a near
hexagon and calculate the intersection numbers. We also show how
the eigenvalues of the collinearity matrix and their corresponding
multiplicities can be calculated. The fact that all multiplicities and
intersection numbers are nonnegative integers gives restrictions on
the parameters of the near hexagon. We apply this to the special
case in which the near hexagon has big quads.
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1 Introduction

A near polygon ([9]) is a partial linear space S = (P, L,I), I C P x L, with
the property that for every point p and every line L, there exists a unique
point on L nearest to p. Distances d(-,-) will always be measured in the
point graph or collinearity graph T of the geometry. If d is the diameter of T,
then the near polygon is called a near 2d-gon. A near O-gon is just a point
and a near 2-gon is a line. Near quadrangles are usually called generalized
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quadrangles (GQ’s, [7]). A generalized quadrangle is called degenerate if it
consists of a number of lines through a given point.

If X; and X, are two nonempty sets of points, then d(X;, X3) denotes
the minimal distance between a point of X; and a point of X5. If X, is
a singleton {x:}, then we will also write d(z1, X2) instead of d({z;}, X3).
If X is a nonempty set of points and if ¢ € N, then I';(X) denotes the set
of all points y for which d(y, X) = <. If X is a singleton {z}, then we will
also write I';(z) instead of I';({z}).

Let S = (P, £,I) be a near polygon. A nonempty subset P’ of P is called
geodetically closed if all geodesics (i.e. shortest pats) between two points of
P! are contained in P’. Suppose P’ is a geodetically closed subspace, let £’
denote the set of lines of & which are completely contained in P’ and put
I':=IN(P'xL’). Then &' := (P’,L',T') is a sub near polygon of S. We will
say that &’ is a geodetically closed sub near polygon of S. A nondegenerate
geodetically closed subGQ is also called a quad. In Proposition 2.5 of [9]
sufficient conditions were given for the existence of quads: if z and y are
two points at distance 2 from each other and if ¢ and d are two common
neighbours of =z and y such that at least one of the lines z¢, zd, yc, yd
contains at least three points, then = and y are contained in a unique quad.

A near polygon is called dense if every line is incident with at least
three points and if every two points at distance 2 have at least two common
neighbours. A dense near 2d-gon S satisfies the following properties.

¢ By Lemma 19 of [5], every point of § is incident with the same number
of lines.

o By Theorem 4 of [5], every two points at distance é € {0,...,d} from
each other are contained in a unique geodetically closed sub near
26-gon. This result generalizes Proposition 2.5 of [9].

o By Theorem 1 of [6], there exist constants m;, i € {0,...,d}, such
that |I;(z)| = m; for every point z of S.

A near polygon is said to have order (s, t) if every line is incident with
precisely s+1 points and if every point is incident with precisely ¢+ 1 lines.
A near polygon is called regular if it has an order (s,t) and if there exists
constants ¢;, ¢ € {0,...,d}, such that |T;_; (z)NT1(y)| = t;+1 for every two
points z and y at distance ¢ from each other. Obviously, o = —1, ¢ =0
and ¢4 = £. The point graph of a regular near polygon is a distance-regular
graph whose associated parameters satisfy a; = (s —1)(¢; +1), b; = s(t—¢;)
and ¢; =t; + 1, see [4].

Techniques from linear algebra are a very important tool for studying
regular near polygons, see [4], [8] and [9]. We will show that these tech-
niques can also be useful for studying “almost regular” near hexagons.
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More concrete, let S be a near hexagon which satisfies the following
properties: (i) every two points at distance 2 from each other are contained
in a unique quad of order (s,71) or (s,72), 71 # ro, and both types of quads
occur; (ii) every line is contained in the same number of quads; (iii) every
two opposite points are connected by the same number of geodesics. Define
the following relations on the point set P of S:

Ry = {(z,z)eP xP|zeP}

Ry, = {(z,y) € P xP|d(z,y) =1}
Ry = {(z,y) € PxP|d(z,y) =2and |I'1(z)NT1(y)| =71 +1};
R3 = {(z,y) € PxPld(z,y)=2and [T1(z) NT1(y)| =r2 +1};
R4 = {(:z:,y) eP x‘PId(w,y) =3}

In Section 3, we prove the following theorem.

Theorem 1.1 There exist constants py such that for every (z,y) € Ry,
there are p, points z € P such that (z,2z) € R; and (2,y) € Ri. Asa
consequence, (P, {Ro, Ry, R2, R3, R4}) is a symmetric association scheme.

We also show in Section 3 how the eigenvalues of the collinearity matrix
and their multiplicities can be calculated. In Section 4, we calculate the
intersection numbers of the association scheme. The fact that all multiplic-
ities and all intersection numbers are nonnegative integers gives restrictions
on the parameters of the near hexagon. In the final section, we will apply
the previous theory to the special case in which the near hexagon has big
quads.

2 Somme easy lemmas

Let S be a near hexagon which satisfies the following properties: (i) every
line is incident with precisely s+ 1 points; (ii) every two points at distance 2
are contained in a unique quad,; (iii) every quad has order (s,7;) or (s,72),
Ty # 12, and both types of quads occur. For every point z of S, let ¢ + 1
denote the total number of lines through z. If a line L is contained in o;(L)
quads of order (s,7;), i € {1,2}, then

tz =r1-a1(l) + 72 az(L) (1)

for every point z of L. Since S is connected, every point of S is incident
with the same number of lines, say ¢ + 1. If a(L) denote the total number
of quads through L, then

(L) + aa(L) = «(L). @)
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By equations (1) and (2), the following lemma immediately follows.

Lemma 2.1 The following are equivalent:
(a) there ezists a constant a such that every line is contained in o quads;

(b) there exists constants oy and ap such that every line of S is contained
in o; quads of order (s,r;), i € {1,2}.

If either (a) or (b) holds, then oy = 5,—'1'531% and ag = %;—:lr%

Let v denote the total number of paoints of S. For every %oint z of S, we have
ITo(z)| = 1, [T1(z)] = 2(¢+1), ;o ()| = v and 3, (=) |Ti(z)| =0
(see e.g. [6, Lemma 3]). As a consequence,

v

— -— 2 —
[TCa(z)] = por 1+ st — st,
IPs(z)] = s"fl —s—s%,

for every point z of S. Let Ni(z), ¢ € {1,2}, denote the total number of
quads of order (s,r;) through z. Then t(t + 1) = (ry + 1)ry - N1(z) + (r2 +
1)rg - No(z) (every two intersecting lines are contained in a unique quad)
and |T2(z)| = s?r1 - N1(z) + s%r2 - No(z) (every two points at distance 2 are
contained in a unique quad). It follows that the numbers Ny(z) and Ny(z)
are independent from the point z.

Lemma 2.2 The following are equivalent:

(@) there exists a constant § such that every two points x and y at distance
3 from each other are connected by precisely § geodesics;

(b) there ezist constants By and (2 such that for every two points z and y
at distance 3 from each other there are fB;, i € {1,2}, quads of order
(s,7;) through x containing a point of I'1(y).

If either (a) or (b) occurs, then By = S={r2tUC+D) g g, — S=(n+D)(E+])

T1—T2 T2—T1

Proof. Suppose property (b) holds, then the number of geodesics between
z and y is equal to (r; +1)81+(r2+1)B2. This number is independent from
z and y. Conversely, suppose that (a) holds. Let 8;(z,y), 7 € {1,2}, denote
the number of quads of order (s, r;) through z containing a point of I'; (y).
By (a), (r1 + 1) - Bi(z,y) + (r2 + 1) - B2(z,y) = 4. Since any line through
y contains a unique point at distance 2 from z, 81(z,y) + fa(z,y) =t + 1.
The lemma now easily follows. 0
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3 The existence of an association scheme

Let S be a near hexagon which satisfies the following properties:
(1) every line is incident with precisely s + 1 points;
(2) every two points at distance 2 are contained in a unique quad;

(3) every quad has order (s,r;) or (s,r2), r1 # 72, and both types of
quads occur;

(4) every line of S is contained in precisely a quads;

(5) there exists a constant § such that every two points at distance 3
from each other are connected by precisely é§ geodesics.

Let ¢ + 1 denote the constant number of lines through a point. Put a; =
Lne g, =tne g = éj’f!—"'_léﬁ""—l) and B, = H’;’—"’_%(ﬂ. By Lemma
2.1, every line of S is contained in o; quads of order (s,r,-). If z and y are
two points at distance 3 from each other, then by Lemma 2.2 there are §;
quads of order (s, r;) through z containing a point collinear with y.

Let P denote the point set of S and put P = {p1,p2,...,p»} Where
v := |P|. Let M denote the set of all (v x v)-matrices with real entries.
Then M is a v?-dimensional vector space over the field R. If M is an
arbitrary element of M, then we label the i-th row and i-th column of M
by the point p;. Let I denote the v X v identity matrix and let J denote
the (v X v)-matrix with all entries equal to 1. Let A denote the collinearity
matriz of S, i.e.

Agy = 1 if d(z,y) =1,
0 otherwise.

For every ¢ € {1,2}, let B; denote the following matrix of M:

(Bi)oy = 1 if d(z,y) =2 and |I'1(z) NT1(y)| = r: + 1,
0 otherwise.

Let C denote the following matrix of M:

Cyy =1 if d(z,y) =3,
= 0 otherwise.

Obviously, I, A, By, Bs and C are linearly independent elements of M and
J=I4+A+B,+By+C.
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Lemma 3.1

A2 = s(t+1)-IT4+(s—1)-A4(r1+1)-Bi+(r2+1)- B2
A-B, = sr1a1-A+(8—1)(r1+1)~Bl+,81-C
A-By, = STng-A-i-(S—1)(1‘2+1)'Bg+ﬂz'c

A-C = s(t—11)-Bi+s(t—r2) Ba+(s—1)(t+1)-C

Proof. If M and N are two elements of M, then (MN)zy =3, Mz, N,..
The lemma now easily follows. 0

By Lemma 3.1, there exist (unique) integers a,, bn, cn, dn and e, such
that
A" =a, - I+b,-A+cp-By+dn-Ba+e,-C| (3)

for every n € N. The initial values are
ap = l’bo = 0100 =0’d0 =0,€0 =0’

and the recursion relations read as follows (n > 0):

Gny1 = s(t+ 1) “bp,
bnyr = an+(5—1)-bn+srion o+ sr202-dy,
enir = (M+1)dat(s=1)(r1+1)-cn+s(t—71)-en,
dnt1 = (r2+1)-bn+(s—1)(r2+1) -dn+s(t —72)-en,
entl = Pr-cn+Pa-dn+(s—1)(t+1) en.
Obviously,
ay = 0,b1 = 1,01 =0,d1 = 0,81 =0
and

ay=s(t+1),ba=s—-1l,ca=r1+1,dp=ra+1,e2=0.

One calculates that

a3 = s(t+1)(s-1),

bs = s{t+1)+(s— 1)2 + sryay(ry + 1) + sraan(rs + 1),
es = (ri+1)(s—1)+(s—1)(r+1)%
ds = (ra+1)(s—1)+(s—1)(r2+1)?%,
ez = ,31(7‘1 +1)+ﬁ2(1‘2+1)=5,
and that
aqg = s(t+1)bs,
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by = a3+ (s—1)bs+ (sma1)es + (sreag)ds,
(ri+Dbs+s(t—7r1)8+ (s — 1)%(r1 + 1)2 + (s — 1)%(ry, + 1)3,
c2bs +s(t +1)6 — s(ry +1)6 + (8 — 1)[ea — (s — 1)ca]

+(s = 1)%(r +1)8,
= [b3—s6—(s—1)%ca+(s—1)es+s(t+1)6+ (s — 1)%(r; + 1),
di = [bs— 88~ (s—1)ldz + (s — 1)da + s(t + 1)5 + (s — 1)*(r2 + 1)?,
er = (s=1)(Brca + Pad) + (s — 1)[6165 + Bad] + (s — 1)(¢ + 1)6.

HEIBREIH
| = |d|[-(s-1)-]| da
A | e3 e

[ (s —1)(r1 +1)2
= (S - 1)(67'2 + 1)2 )

C4

A [ ¢4 ) c3
[ a:l = d4:|—(b3—8(5—(8—1)2)-l:dzjl—(s—-l)-l:d:;
€} | es e es3
( (s=1)%(r1 +1)3 + st + 1)6 ]

= (8=1)%(ro+1)% 4+ s(t+1)8

| (s =1)(Bi(r1 + 1)(r1 + 2) + Ba(ra + V)(ra + 2) + )

c2 da e
A= c3 d3 es3

and
[} d4 84?

Lemma 3.2 A #0.

Proof. We have
()] dz €9

¢y dy €}
cy dy e
We find A = (rp —r1)A’ with A’ = (r; + 1)(r2 + 1)(s — 1)2[B1(r1 + 1) (r1 +
2)+Ba(ra+1)(ro+2)+8) = 8- [(r1+1) (ro+1) (s = 1)%(ry +712+2)]+8%s(t+1).
Putting A" := ey we find

A" > Bi(r1+1)(r1 +2) + Bare + 1)(ra + 2) + 86 — 8(ry + 12 +2)

> (Bl 4+ 1)+ Ba(r2+1)) -min{ry + 2,70 + 2} + 4 - max{ry,r2}

~0(ry +r2 + 2),

A=

and this latter number is equal to 0. This proves the lemma. (]
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Corollary 3.3 The matrices I, A, A%, A% and A* are linearly indepen-
dent.

Proof. We have

1.-1+0.-A+40-B;+0-B,+0-C

0-I+1-A+0-B;+0-B3;+0.-C
az-I+b-A+co-By+dy-Ba+ez-C
az I +b3-A+c3-By+ds-Ba+e3-C
ag-I+by-A+cy-Bi+ds-By+eq-C

RS
N
1 (T |

The matrices I, A, By, B2 and C are linearly independent, and since A # 0,
also the matrices I, A, A%, A% and A* are linearly independent. o

Put )

r© — bga: — ag dz €2
. x3—bsx-a3 d3 e |,
2t —byx—ay dy ey

pi(z) =

DR

¢ 2 —boz—ags ey
c3 :Ba - b3.'l: —ag €3 |,
Cq $4 - b4$L‘ — Q4 €4

D~

p2(z) =

Co d2 .’E2 - bzx — a2
Cc3 d3 z3 — b3$ -a3 |,
Cq d4 SC4 - b4$ — Q4

p(z) =14z +p1(z) + p2(z) + pa(z),
m(z) := p(z) - (z — s(t + 1))

1
p3(e) = % -

Lemma 3.4 (a) By = pi(4), B; = pa(4), C = ps(A), p(A) = J and
m(A) =0.

(b) deg(p(z)) = 4, deg(m(x)) =5 and m(x) is a minimal polynomial of

H

(¢) A has 5 distinct eigenvalues Ay, A2, Az, Aq and As with —s(t + 1) <
M<A<A3<AM<A=s(t+1).

Proof.

(a) By equation (3) and the definitions of p;(x), p2(z) and ps(z), B =
P1(A), By = pa(A) and C = p3(A). We also have p(A) =T+ A+ B, +
By +C = J and m(A) =p(A)-(A-s@E+1))=J-A—s(t+1)J =0.
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(b) By Corollary 3.3, a minimal polynomial of A has degree at least 5.
So, either m(z) = 0 or deg(m(z)) > 5. Since p(4) = J, p(z) # 0 and
m(z) # 0. Since deg(p(z)) < 4, deg(m(x)) < 5. The property now
easily follows.

(c) Since A is symmetric, it is diagonizable and the number of eigenvalues
is equal to deg{m(z)) = 5. Moreover, all eigenvalues are real. Obvi-
ously, [1,...,1]7 is an eigenvector of A with eigenvalue s(t+1). Since
the sum of all entries on an arbitrary row of A is equal to s(t + 1),
|A] < s(t + 1) for every eigenvalue A of A. O

Let f;, ¢ € {1,...,5}, denote the multiplicity of the eigenvalue A;. The
number v is an eigenvalue of J with multiplicity 1 and corresponding eigen-
vector [1,...,1]7. It follows that fs = 1 and that p(st + s) = v. The other

multiplicities can be obtained from the following nonsingular linear system
* of equations (5 € {0,1,2,3}):

4
Y fid = Tr(A) — St + 1) =v-a; — s7(t + 1)

=1

The multiplicities f1, fo, fa and f4 need to be strictly positive integers. So,
we obtain a bunch of conditions that need to be satisfied by the parameters
8, t, 11, T2, @1, a2, B1 and f.

Let M’ be the five-dimensional subspace of M generated by the matrices
I, A, By, By and C. Then M’ = (I, A, A%, A%, A%) and N; - N, € M’ for
all N1, N, € M’'. By Theorem 1.1, which we will prove now, the algebra
defined on the set M’ is a Bose-Mesner algebra ([2]) of an association
scheme.

Proof of Theorem 1.1: Let Ry, R;, Rz, R3 and R, be the relations on
P as defined in Section 1. Put My =1, My = A, My = B;, M3 = By and
M, = C. We can write M; M, € M’ as a unique linear combination of the
matrices My, ..., My. The number pj-,c is the coefficient of M; in this linear
combination.

4 Calculation of the intersection numbers

In principle, it is possible to calculate the intersection numbers p;-k (see
Theorem 1.1) with the method given in Section 3. Unfortunately, a lot
of tedious calculations are necessary if one wants to proceed that way. In
this section, we will calculate these numbers by counting. Note that the
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countings presented below already make use of the fact that the intersection
numbers are constant (what we have shown in Theorem 1.1).

We will use the same notations as in Section 3. The numbers p}; are easily
calculated if § € {0,1}. If 4,5 € {0,1,2,3,4}, then p}; is equal to 1 if i = j
and equal to 0 otherwise. We list the numbers pij in the following table.

| pi; [d=0] j=1 ] j=2 ji=3 j=4 |
i=0 0 s(t+1) 0 0 0
i=1 1 s—1 ST s0iaT2 0
1=2 0 mn+1 (s - 1)(1‘1 + 1) 0 s(t - 1'1)
1=3 0 ro+1 0 (s —1)(r2 + 1) s(t —ra)
i=4] 0 0 B B2 E+DGE-1)

In the following proposition, we calculate the numbers n; := pg.

2 —
Proposition 4.1 It holds ng = 1, n; = s(t + 1), ng = %%;ﬁ,
2ra(t4+1)(t— S [(t+1)(t+arira)—t(r1+1)(ra+1
s = ZRUSHCR) e, = At
Proof. Obviously, no =1 and n; = s(t + 1). Since every line through a

iven point x is contained in precisely a; = {222 quads of order (s,
P Ti=T2 1}

there are precisely %"% quads of order (s,7;) through z. Hence,

2 -— . -
ng = {y € P|(z,y) € Ry} = = :’l_‘_t: :lﬁa . In a similar way one shows

that ng = ’—(:’2_4%11%%‘)—“1 By the calculations following Lemma 2.1, ngy =
IT3(z)| = s - (|T2(z)] — s%t) = s - (n2 + n3 — s2t). The value of ny readily
follows. m]

Proposition 4.2 It holds f; = 22:24=1) gng §, = Ze-s(tora)

Proof. Let z denote an arbitrary point of S. Counting in two different
ways the number of pairs (y, z) satisfying y € T's(z), z € 's(z), d(y,2) =1
and [T1(z) NTi(y)| = r1 + 1 gives nyfBy = ny - s(t ~ ;). Hence, B =
—l—zﬂ’ st=11) Similarly, 8o = —ﬁ——l"s Ai=ry O

Proposition 4.3 It holds

I

2 s(s — 1)r ((t+1)(t—r2a) _ 1),

N\ —r2)(r1 + 1)
(t + 1)(t — o) )

Pia = ols- 1)7'2((r2 =r)(r2+1)/°
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Proof. Let z and y be two points of S such that (z,y) € Rz and let Q
denote the unique quad of order (s,7;) through =z and y. Let @’ denote
a quad of order (s,r;) through z different from Q. Notice that there are
G(oraa) — 1 possibilities for @ if i = 1 and AL if = 9,

Suppose Q' intersects Q) in a line L and let 2 denote the unique point of L
collinear with y. There are precisely s(s— 1)r; points u € @'NTI'2(z)Na(z)
and these are precisely the points u of Q' satisfying (z,u) € Riy; and
(u,9) € Ry.

Suppose Q' intersects @ in only the point z. Then I'z(y) N Q' is an
ovoid of Q' containing z. There are precisely s?r; — sr; = s(s — 1)r; points
u € Q' NT(x) NT'3(y) and these are precisely the points u of Q' satisfying
(2,u) € Rizy and (u,y) € Ry.

The proposition now readily follows. ]

In a similar way, one shows that

t+1)(t-na)
pgll = 3(8 - 1)1'2 (7'2 — 7‘1)("'2 _L 1) - 1)$
_ (t+1)(t - roa)
e = so-Un(Grrm )

The above mentioned values of the intersection numbers together with the
well-known equalities (2, j, k € {0,1,2,3,4})

ik = Pk

i nz‘p;‘k

Pho= o

nj = pio+P5 + P+l + P,

allows us to calculate all intersection numbers except for the numbers p;k
with ¢, j,k € {2,3}. Knowing one of these values however, the remaining
seven readily follow. We show how to calculate p2, and p3, in the following
proposition.

Proposition 4.4 The numbers p2, and p3, are the solution of the following
non-singular linear system of equations:

{ nopds +napd, = (n2)? - "?027(2)2 — n1ply — NPy,
Bipds + Bopds = (X;P5ple) — (¢ +1)(s — 1)ph,.
Proof. (1) Let z be a given point of S. Counting in two different ways the

number of pairs (y, 2) with (z,y) € Rz and (y, 2) € R, yields 3, niph, =
(n2)?, from which the first equation readily follows.
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(2) Let = and y be two points such that (z,y) € Rs. We will count
in two different ways the number of pairs (u,v) satisfying (z,u) € Ry,
(uv,v) € Ry and (v,y) € Rp. We find 3, p{;phy = 3°; pfopia. The second
equation follows.

(3) By Proposition 4.2, nafz — nafy = w‘@ # 0. So, the linear
system of equations is indeed non-singular. m]

Remark. The fact that all intersection numbers are nonnegative integers
give rise to a number of (divisibility) conditions that need to be satisfied
by the parameters.

5 Example: near hexagons with big quads

We will now consider a special case for which the previous applies.

Definition. Let @ be a quad of a near hexagon §. The quad @ is called
big in S if every point of S not contained in @ is collinear with a unique
point of Q. If @ and @’ are quads of S such that @ is big, then precisely
one of the following occurs: (i) @ = @', (ii) @NQ’' =0, (ii)) QN Q' isa
line.

In this section, we suppose that S is a near hexagon which satisfies the
following properties:

(1) every point is incident with precisely s + 1 points;
(2) every two points at distance 2 are contained in a unique quad;

(3) every quad has order (s,71) or (s,72), r1 # T2, and both types of
quads occur;

(4) every quad of order (s,r;) is big in S;

(5) if V; is the set of quads of order (s,r;) through a point z of S, then
nQeV, Q = {z} for every point z of S.

As before, let £ 4 1 denote the constant number of lines through a point of
S and let v denote the total number of points of S. If @ is a quad of order
(s,71), then |@Q| = (s + 1)(sr1 + 1) and |T'(Q)] = (s + 1)(sr1 + 1)s(t — 71).
Hence,

v={_s+1)(1+sr1)(1 + s(t — r1)).

Put
2
(e 31 = tra(nitl ) Qi = :L:tLL—_E
r1—7r2 r1—rg_°?

i (ED(t=ra(r1+1 . D24 —t
B = (+1)(t—ra(r1+1)) By = (+1)(ry+r1—t)

(ri—r2)(m+1) ° (r1—r2)(r+1) *
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Lemma 5.1 (a) Every line is contained in @ =11 +1 quads: o of these
quads have order (s,m1) and aa have order (s,r2).

(b) Let x and y be two points at distance 3 from each other. Then there
are B;, i € {1,2}, quads of order (s,r;) through = containing a point
of T1(y)-

(C) 1 > T2.
Proof.

(a) Let L be an arbitrary line of S. Let = be a point of L and let Q be a
quad of order (s,7;) through z not containing L (such a quad exists
by property (5)). Any quad through L intersects @ in a line. So,
there are precisely r; + 1 quads through L. The rest of the statement
follows from Lemma 2.1.

(b) There are % = (1 quads of order (s,7;) through z. Since all
these quads are big, they all contain a point of I';(y). The number
of quads of order (s,72) through z containing a point at distance 1
from yisequal tot +1 — B = Bs.

(c) The total number of quads of order (s,72) through z is equal to

%){i’-. Since this number is at least 85, we must have that r; > ro.
]

Lemma 5.2 We havet + 1 = (r; + 1)(r2 + 1).

Proof. Let = be an arbitrary point of S. Since there are %%%D

quads of order (s,r;) and (t:: l_r:;t:fﬁ;) quads of order (s,r3) through =z,
we have

82(t + 1) ((t - T2(1‘1 + 1))1’1 " ('I'% +7r - t)'rg) )

|F2(x)| = T — T2 r1+1 o+ 1

On the other hand, we have

[T2(z)| = s—-%-i ~ 14 8% — st = s%(tr) —r? +1).
Equating both expressions for |['2(z)|, we obtain a quadratic equation in ¢.
The solutions are t = r? + 7, and t = ry72 + 71 +1ro. If t = r# + 7, then
the total number of quads of order (s,r2) through a given line is equal to
0, a contradiction. So, t = ryre + 11 + 72. m]
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Plugging ¢ = 7172 + 71 + 72 in the values of a1, agz, f1 and (2, we obtain:

2
— T — T1=TiT2-T2
o = aos 2 = T
B = Ti(rz+1) Bo = (r2+41)(rj—r1r2—12)
1 = ry—ry ? - r1—T2 :

Lemma 5.3 There exists a quad Qy of order (s,71) and a quad Q2 of order
(s,72) such that Q1 N Q2 = 0.

Proof. Let z denote an arbitrary point of S and let R;, Ry and R3 be
three quads of order (s,7;) through z such that Ry N Ry N R3 = {z}. Let
y be a point of S at distance 3 from z and let Q2 denote a quad of order
(s,r2) through y. Obviously, @ is disjoint with at least one of the quads
Ry, Ry, R3. O

Proposition 5.4 s € {1,2}.

Proof. Suppose s > 3. Take quads @; and @2 as in Lemma 5.3. Every
point of Qs is collinear with a unique point of @; and the set of points of
Q1 we obtain in this way form a subquadrangle of order (s,r2) of @;. By
Theorem 2.2.1 of (7], sro < 1. It follows that

T T s 3
b= < = <s.
ri—=r2 T 71— s—172

So, every line is contained in a unique big quad of order (s,r;). This is
impossible since every two different quads of order (s,7;) through a point
meet in a line. ]

We will now define two near hexagons.

(a) Let X be a set of size 8. Let Hj be the following incidence structure:
(i) the points of Hs are the partitions of X in four sets of size 2; (ii) the
lines of H3 are the partitions of X in two sets of size 2 and one set of size
4; (iii) a point is incident with a line if and only if the partition defined by
the point is a refinement of the partition defined by the line. One easily
verifies that Hj3 is a dense near hexagon of order (2, 5), see also [3].

(b) Consider in PG(6, 3) a nonsingular quadric Q(6, 3) and a nontangent
hyperplane 7 intersecting Q(6, 3) in a nonsingular elliptic quadric @~ (5, 3).
There is a polarity associated with @(6, 3) and we call two points orthogonal
if one of them is contained in the polar hyperplane of the other. Let N
denote the set of 126 internal points of ¢)(6,3) which are contained in ,
i.e. the set of all 126 points in 7 for which the polar hyperplane intersects
Q(6,3) in a nonsingular elliptic quadric. Let E; be the following incidence
structure: (i) the points of E3 are the 6-tuples of mutually orthogonal
points; (ii) the lines of [E3 are the pairs of mutually orthogonal points; (iii)
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incidence is reverse containment. By [5, Section (n)], E3 is a dense near
hexagon of order (2,14). The near hexagon E; was first constructed by
Aschbacher (1].

Proposition 5.5 If s =2, then S is isomorphic to either Hz or Es.

Proof. In this case S is a dense near hexagon of order (2,t). All these near
hexagons were classified in (3]. It follows that S is isomorphic to either Hjs
(r1=2,ro=1)0orE;s (r) =4, 12 =2). o

We will now take a look at the case s = 1. Then v = 2(r; +1)(r1r2 +72+1).
Since o; € N, we have the following divisibility condition:

ry—ro|ry.

The fact that all intersection numbers of the association scheme are non-
negative integers gives rise to no extra conditions. We will now calculate
the eigenvalues of the collinearity matrix A and their corresponding multi-
plicities. This will give rise to a new divisibility condition. One calculates
that

@%_ﬁ*%ﬁ**%m+lﬁ3—ﬁﬁ-*ﬂn+1Xm+1ﬂ
Pz = (r1 +1)(re + 1)2(ryre + 72 + 2r1 + 1) '

So, the roots of p(z) are
)\1 = —(1"1 + 1)(1‘2 + 1), )\2 = —1‘1,/\3 = 0, /\4 =n.

The fifth eigenvalue of A is equal to As = (r; + 1)(r2 + 1). We have
TI'(AO) =v = 2(1"1 + 1)(1‘17‘2 + re + 1), TI’(AI) =0, TI‘(Az) =v-ay =
2(ry + 1)2(ryre + 72 + 1)(r2 + 1), Tr(A%) = v- a3 = 0. Solving the linear
system (5 € {0,1,2,3})

4
Y i) =Te(A%) - S (t + 1),

i=1
we find
fl = f5 = 11
ro(re + 1)(ry +1)2
fo= o= 22D AL
m
f3 _ 2(7‘% - Ty — 7'2)(1”17’2 + 79 + 1)
1 ’

Since these multiplicities are integral, we find the following divisibility con-
dition:
™ IT2(1'2 + 1).
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