Finding Hamiltonian Cycles in Four Subfamilies of Quasi-Claw-Free Graphs

Rao Li *

Dept. of mathematical sciences University of South Carolina Aiken Aiken, SC 29801 Email: raol@usca.edu

Abstract

A graph G is called *quasi-claw-free* if it satisfies the property: $d(x,y)=2 \Rightarrow$ there exists $u \in N(x) \cap N(y)$ such that $N[u] \subseteq N[x] \cup N[y]$. It is shown that a Hamiltonian cycle can be found in polynomial time in four subfamilies of quasi-claw-free graphs.

^{*}This work is partially supported by the University of South Carolina Aiken Research and Grant Program.

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. For terminology, notation and concepts not defined here see [3]. If v is a vertex in a graph, the closed neighbor N[v] of v is defined as $N(v) \cup \{v\}$. For any two distinct vertices x and y in a graph G, d(x,y) denotes the distance in G from x and y. A graph G of order n is pancyclic if G has a cycle of length r for each r with $3 \le r \le n$. If G is a cycle in G, let G denote the cycle G with a given orientation. For G in the direction specified by G in the consecutive vertices on G from G to G in the direction specified by G. The same vertices, in reverse order, are given by G [G in G in G in G in G in G in G in the predecessor, successor, next predecessor and next successor of G along the orientation of G are denoted by G in G in G and G in G in G in G in G in the G in G in

The graphs Z_i , $1 \le i \le 3$, P_7 , P_7^+ , and B are respectively defined as follows. $V(Z_1) = \{a,b_1,b_2,c\}, E(Z_1) = \{ac,b_1c,b_2c,b_1b_2\}; V(Z_2) = \{a_1,a_2,b_1,b_2,c\}, E(Z_2) = \{a_2a_1,a_1c,b_1c,b_2c,b_1b_2\}; V(Z_3) = \{a_1,a_2,a_3,b_1,b_2,c\}, E(Z_3) = \{a_3a_2,a_2a_1,a_1c,b_1c,b_2c,b_1b_2\}; V(P_7) = \{a,b_1,b_2,c_1,c_2,d_1,d_2\}, E(P_7) = \{b_1c_1,c_1d_1,d_1a,ad_2,d_2c_2,c_2b_2\}; V(P_7^+) = V(P_7), E(P_7^+) = E(P_7) \cup \{d_1d_2\}; \text{ and } V(B) = \{a_1,a_2,b_1,b_2,c\}, E(B) = \{a_1a_2,a_1c,a_2c,b_1b_2,b_1c,b_2c\}.$

If G and H are graphs, then G is called H-free if G contains no induced subgraph isomorphic to H. If $H=K_{1,3}$, the graph G is called claw-free. It is well known that every line graph is claw-free. The concept of quasi-claw-free graphs was introduced by Ainouche [1]. A graph G is called quasi-claw-free if it satisfies the property: $d(x,y)=2 \Rightarrow$ there exists $u \in N(x) \cap N(y)$ such that $N[u] \subseteq N[x] \cup N[y]$. Obviously, every claw-free graph is quasi-claw-free.

Bertossi [2] proved that determining if a line graph has a Hamiltonian path is NP-complete. From Bertossi's result, one can easily see that determining if a line graph has a Hamiltonian cycle is NP-complete and therefore finding a Hamiltonian cycle in line graphs is a hard problem. Since every line graph is claw-free and every claw-free graph is quasi-claw-free, the problem for finding a Hamiltonian cycle in quasi-claw-free graphs is also hard. Hence we currently can only find polynomial time algorithms for Hamiltonian cycles in subfamilies of quasi-claw-free graphs.

Broersma and Veldman proved the following theorems for clawfree graphs.

Theorem 1. [5] Let G be a 2-connected claw-free graph. If every induced Z_1 of G satisfies $\phi(a,b_1) \vee \phi(a,b_2)$, then G is pancyclic or G is a cycle.

Theorem 2. [5] Let G be a 2-connected claw-free graph. If every induced Z_2 of G satisfies $\phi(a_1,b_1) \wedge \phi(a_1,b_2)$, then G is pancyclic or G is a cycle.

Theorem 3. [5] Let G be a 2-connected claw-free graph. If every induced subgraph of G isomorphic to P_7 or P_7^+ satisfies $\phi(a,b_1) \lor \phi(a,b_2) \lor (\phi(a,c_1) \land \phi(a,c_2))$, then G is Hamiltonian.

Theorem 4. [5] Let G be a 2-connected graph that is claw-free and B-free. If every induced Z_3 of G satisfies $\phi(a_1,b_1) \vee \phi(a_1,b_2) \vee \phi(a_2,b_1) \vee \phi(a_2,b_2) \vee (\phi(a_3,b_1) \wedge \phi(a_3,b_2))$, then G is Hamiltonian.

Motivated by Ainouche's work of extending a number of theorems for claw-free graphs to quasi-claw-free graphs in [1]. We will prove the following theorems in this paper.

Theorem 5. Let G be a 2-connected quasi-claw-free graph. If every induced Z_1 of G satisfies $\phi(a,b_1) \vee \phi(a,b_2)$, then a Hamiltonian cycle can be found in polynomial time in G.

Theorem 6. Let G be a 2-connected quasi-claw-free graph. If every induced Z_2 of G satisfies $\phi(a_1,b_1) \wedge \phi(a_1,b_2)$, then a Hamiltonian cycle can be found in polynomial time in G.

Theorem 7. Let G be a 2-connected quasi-claw-free graph. If every induced subgraph of G isomorphic to P_7 or P_7^+ satisfies $\phi(a,b_1) \vee \phi(a,b_2) \vee (\phi(a,c_1) \wedge \phi(a,c_2))$, then a Hamiltonian cycle can be found in polynomial time in G.

Theorem 8. Let G be a 2-connected graph that is quasi-claw-free and B-free. If every induced Z_3 of G satisfies $\phi(a_1,b_1) \vee \phi(a_1,b_2) \vee \phi(a_2,b_1) \vee \phi(a_2,b_2) \vee (\phi(a_3,b_1) \wedge \phi(a_3,b_2))$, then a Hamiltonian cycle can be found in polynomial time in G.

2. Lemmas

Based on Tarjan's depth-first search algorithm in [9], Köhler proved the

following Lemma 1 in [7]. Lemma 1 was used by Brandstädt et al. in [4]. We will also use Lemma 1 in our proofs in Section 3.

Lemma 1. Let G be a 2-connected graph, and let x, y be two different non-adjacent vertices of G. Then one can construct in linear time (of |V(G)| and |E(G)|) two induced, internally disjoint paths, both joining x and y.

The following Lemma 2 is a computational reformulation of Lemma 3 in [1].

Lemma 2. Let G be a connected quasi-claw-free of order n. Suppose that G has a cycle C of length r, $4 \le r \le n-1$. Let u be a vertex on C such that it has a neighbor in V(G) - V(C). Then either $u^-u^+ \in E$ or a cycle of length r+1 can be found in polynomial time in G.

Proof of Lemma 2. Let G be a connected quasi-claw-free of order n. Suppose that G has a cycle C of length r with a fixed orientation, $4 \le r \le n-1$. Let u be a vertex on C such that it has a neighbor in V(G) - V(C). If $u^-u^+ \in E$, then it is done. Now we assume that $u^-u^+ \notin E$. Choose a vertex $x \in N(u) \cap (V(G) - V(C))$. If $xu^- \in E$ or $xu^+ \in E$, we can easily construct a cycle of length r+1 in G. Now we assume that $xu^- \notin E$ and $xu^+ \notin E$.

Since $d(x,u^+)=2$, there exists a vertex, say v, such that $v\in N(x)\cap N(u^+)$ and $N[v]\subseteq N[x]\cup N[u^+]$. Since $u^-\in N[u]$ but $u^-\not\in N[x]\cup N[u^+]$, we have $v\neq u$. If $v\in V(C)$, then $v^+\in N[v]\subseteq N[x]\cup N[u^+]$. Thus $v^+\in N(x)$ or $v^+\in N(u^+)$. In either case, we can easily construct a cycle of length $v^+=1$ in $v^+=1$. Now we assume $v^+=1$ in $v^+=1$ in

If $vu^{++} \in E$, we can easily construct a cycle of length r+1 in G. We now assume that $vu^{++} \notin E$. Since $d(v,u^{++})=2$, there exists a vertex, say y, such that $y \in N(v) \cap N(u^{++})$ and $N[y] \subseteq N[v] \cup N[u^{++}]$. If $y=u^+$, then $u \in N[u^+] \subseteq N[v] \cup N[u^{++}]$. Thus $u \in N[v]$ or $u \in N[u^{++}]$. If $u \in N[v]$, we can easily construct a cycle of length v+1 in v+1 in

If y=w, then $vw\in E$ and we can construct a cycle $wv\overrightarrow{C}[u^+,u^-]w$ of length r+1 in G. If y=x, then $u\in N[x]\subseteq N[v]\cup N[u^{++}]$. If $u\in N[v]$, we can easily construct a cycle of length r+1 in G. If $u\in N[u^{++}]$, we can also easily construct a cycle of length r+1 in G. Now we assume that $y\in V(G)-(V(C)\cup\{w,x\})$. Thus $y\in N[v]\subseteq N[x]\cup N[u^+]$. If $y\in N[u^+]$, we can easily construct a cycle of length r+1 in G. If $y\in N[x]$, we can construct a cycle $xy\overrightarrow{C}[u^{++},u]x$ of length r+1 in r+1

3. Proofs

Proof of Theorem 5. Let G be a graph satisfying the conditions in Theorem 5. Check if G has a pair of nonadjacent vertices. If we cannot find a pair of nonadjacent vertices in G, then G is a complete graph and we can easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent vertices in G, apply Lemma 1, we can find a cycle G of length G in G. This step can be completed in G(|V(G)|+|V(E)|) time. If G if G is a complete on G in the sequence of G in G is a condition of G.

Since G is 2-connected, we can find a vertex, say u, on C such that $N(u) \cap (V(G) - V(C)) \neq \emptyset$. Next we will show that a cycle C_1 of length r+1 can be found in polynomial time in G.

If $u^-u^+ \notin E$ we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Now we assume that $u^-u^+ \in E$. Choose a vertex, say w, in $N(u) \cap (V(G) - V(C))$. If $wu^- \in E$ or $wu^+ \in E$, then we can easily construct a cycle C_1 of length r+1 in G. We now assume that $wu^- \notin E$ and $wu^+ \notin E$. Thus $H_1 := G[\{w, u, u^-, u^+\}] \cong Z_1$. Then $N(w) \cap N(u^+) - V(H_1) \neq \emptyset$ or $N(w) \cap N(u^-) - V(H_1) \neq \emptyset$.

When $N(w) \cap N(u^+) - V(H_1) \neq \emptyset$, choose a vertex $v \in N(w) \cap N(u^+) - V(H_1)$. If $v \in V(C)$, then by Lemma 2 we can construct a cycle C_1 of length r+1 in G if $v^-v^+ \notin E$. We now assume that $v^-v^+ \in E$. In this case, we can construct a cycle $C_1 := wv\overrightarrow{C}[u^+,v^-]\overrightarrow{C}[v^+,u]w$ of length r+1 in G. If $v \in V(G) - V(C)$, then by Lemma 2 we can construct a cycle C_1 of length r+1 in G if $uv^{++} \notin E$. We now assume that $uv^{++} \in E$.

If $vu^{++} \in E$, we can easily construct a cycle C_1 of length r+1 in G. If $vu^- \in E$, we can construct a cycle $C_1 := u^-vwu\overline{C}[u^{++}, u^-]$ of length r+1 in G. So now we assume that $vu^{++} \notin E$ and $vu^- \notin E$.

If $u^-u^{++} \in E$, then $H_2 := G[\{v, u^+, u^-, u^{++}\}] \cong Z_1$. Thus $N(v) \cap N(u^-) - V(H_2) \neq \emptyset$ or $N(v) \cap N(u^{++}) - V(H_2) \neq \emptyset$. When $N(v) \cap N(u^-) - V(H_2) \neq \emptyset$, choose a vertex $p \in N(v) \cap N(u^-) - V(H_2)$. If $p \in V(C)$, then by Lemma 2 we can construct a cycle C_1 of length r+1 in G if $p^-p^+ \notin E$ or if $p^-p^+ \in E$ we can construct a cycle $C_1 := vwu\overrightarrow{C}[u^{++}, p^-]\overrightarrow{C}[p^+, u^-]pv$ of length r+1 in G. If $p \in V(G) - V(C)$, then we can construct a cycle $C_1 := u^-pv\overrightarrow{C}[u^+, u^-]$ of length r+1 in G.

When $N(v)\cap N(u^{++})-V(H_2)\neq\emptyset$, choose a vertex $q\in N(v)\cap N(u^{++})-V(H_2)$. If $q\in V(C)$. Using a construction which is similar to the one for the case $v\in V(C)$ above, we can construct a cycle C_1 of length r+1 in G. Now we assume that $q\in V(G)-V(C)$. Then by Lemma 2 we can construct a cycle C_1 of length r+1 in G if $u^+u^{+++}\notin E$ or if $u^+u^{+++}\in E$ we can construct a cycle $C_1:=vu^+\overrightarrow{C}[u^{+++},u]wv$ of length r+1 in G.

Now we consider the case $u^-u^{++} \notin E$. Since $d(v,u^-) = 2$, there exists a vertex x such that $x \in N(v) \cap N(u^-)$ and $N[x] \subseteq N[v] \cup N[u^-]$. Since $u^-u^{++} \notin E$, $x \neq u^{++}$. If x = u, we can easily construct a cycle C_1 of length r+1 in G. So we can assume that $x \neq u$ and $x \neq u^{++}$. Since $u^{++} \in N[u^+]$ but $u^{++} \notin N[v] \cup N[u^-]$, we have $x \neq u^+$. Using a construction which is similar to the one for the case $N(v) \cap N(u^-) - V(H_2) \neq \emptyset$ before, we can construct a cycle C_1 of length r+1 in G.

Symmetrically, we can construct a cycle C_1 of length r+1 in G when $N(w) \cap N(u^-) - V(H_1) \neq \emptyset$

Since the algorithmic procedures in Lemma 1 and Lemma 2 can be completed in polynomial time, the step of enlarging the cycle C of length r in G to a cycle C_1 of length r+1 can be fulfilled in polynomial time time.

Apply the similar procedure as above to the cycle C_1 of length r+1 in G, we can construct a cycle of length r+2 in G. Repeat this process, we can construct a cycle of length s for each s with $r+1 \le s \le |V(G)|$. Notice that we can repeat the processes at most |V(G)| times, therefore we can find a Hamiltonian cycle in the graph G in polynomial time. QED

Proof of Theorem 6. Let G be a graph satisfying the conditions in Theorem 6. Check if G has a pair of nonadjacent vertices. If we cannot find a pair of nonadjacent vertices in G, then G is a complete graph and we can easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent vertices in G, apply Lemma 1, we can find a cycle G of length G in G.

This step can be completed in O(|V(G)|+|V(E)|) time. If r=|V(G)|, then we are finished. we now assume that $r \leq |V(G)|-1$ and give an orientation on C.

Using depth-first search algorithm in the graph G[V(G) - V(C)], we can find a connected component, say H, in G[V(G) - V(C)]. More details on applying depth-first search algorithm to find a connected component in a graph can be found in Algorithm 8.3 on Page 330 in [8]. This step can be completed in O(|V(G)| + |V(E)|) time. Since G is 2-connected, we can find two distinct vertices, say v_1 and v_2 , on C such that $N(v_i) \cap V(H) \neq \emptyset$, where $1 \leq i \leq 2$. Next we will show that a cycle C_1 of length r+1 in G can be found in polynomial time.

If $v_1v_2 \in E$, define a graph $G_1 := G[V(H) \cup \{v_1, v_2\}] - v_1v_2$; otherwise define $G_1 := G[V(H) \cup \{v_1, v_2\}]$. Using breadth-first search algorithm in the graph G_1 , we can find a shortest path $P := v_1u_1u_2...u_tv_2$ between v_1 and v_2 in G_1 , where each vertex u_i with $1 \le i \le t$ is in V(H). This step can completed in O(|V(G)| + |E(G)|) time. More details on breadth-first search algorithm can be found in [6].

If $u_1v^- \in E$ or $u_1v^+ \in E$, we can easily construct a cycle C_1 of length r+1 in G. If $v_1^-v_1^+ \notin E$, we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Now we assume that $u_1v^- \notin E$, $u_1v^+ \notin E$, and $v_1^-v_1^+ \in E$.

If $t \geq 2$, then $u_2v_1 \notin E$ since P is a shortest path between v_1 and v_2 in G_1 . Now we consider the case $u_2v_1^+ \in E$. Then we can assume that $v_1v_1^{++} \in E$ otherwise we can apply Lemma 2 to construct a cycle of G_1 of length r+1 in G. Moreover, if $u_1v_1^{++} \in E$, $u_2v_1^{++} \in E$, or $u_2v_1^- \in E$, then we can construct a cycle $C_1 = u_2u_1\overrightarrow{C}[v_1^{++}, v_1^-]u_2$, $C_1 = u_2\overrightarrow{C}[v_1^{++}, v_1^+]v_1^+u_2$, or $C_1 = u_2u_1v_1\overrightarrow{C}[v_1^{++}, v_1^-]u_2$ of length r+1 in G, respectively. So we now assume that $u_1v_1^{++} \notin E$, $u_2v_1^{++} \notin E$, and $u_2v_1^- \notin E$.

If $v_1^-v_1^{++} \in E$, then $H_1 := G[\{u_2, u_1, v_1, v_1^-, v_1^{++}\}] \cong Z_2$. Thus $N(u_1) \cap N(v_1^-) - V(H_1) \neq \emptyset$. Choose a vertex, say x, in $N(u_1) \cap N(v_1^-) - V(H_1)$. Now if $x \in V(C)$, then if $x^-x^+ \notin E$ we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G and if $x^-x^+ \in E$ we can construct a cycle $C_1 = u_1 \overline{C}[v_1, x^+] \overline{C}[x^+, v_1^-] x u_1$ of length in G. If $x \in V(G) - V(C)$, then we can construct a cycle $C_1 = u_1 v_1 \overline{C}[v_1^{++}, v_1^{-}] x u_1$.

If $v_1^-v_1^{++} \notin E$, since $d(u_1, v_1^-) = 2$ and G is quasi-claw-free, there exists a vertex, say y, such that $y \in N(u_1) \cap N(v_1^-)$ and $N[y] \subseteq N[u_1] \cap N[v_1^-]$. Notice that $v_1^{++} \in N[v_1]$ but $v_1^{++} \notin N[u_1] \cap N[v_1^-]$. Thus $y \neq v_1$. Using a con-

struction which is similar to the one for the case $N(u_1) \cap N(v_1^-) - V(H_1) \neq \emptyset$ just above, we can construct a cycle C_1 of length r+1 in G.

Symmetrically, if $u_2v_1^- \in E$, we can construct a cycle C_1 of length r+1 in G.

We now assume that $u_2v_1^+ \notin E$ and $u_2v_1^- \notin E$. Thus $H_2 := G[\{u_2, u_1, v_1, v_1^-, v_1^+\}] \cong Z_2$. So $N(u_1) \cap N(v_1^-) - V(H_2) \neq \emptyset$. Using a construction which is similar to the one for the case $N(u_1) \cap N(v_1^-) - V(H_1) \neq \emptyset$ just above, we can construct a cycle C_1 of length r+1 in G.

Next we consider the case t=1. Then $v_2 \neq v_1^{--}, v_1^{-}, v_1^{+}$, and v_1^{++} otherwise we can easily construct a cycle C_1 of length r+1 in G. We also have $v_2^{-}v_2^{+} \in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G.

If $v_2v_1^- \in E$, we can construct a cycle $C_1 = u_1\overrightarrow{C}[v_1, v_2^-]\overrightarrow{C}[v_2^+, v_1^-]v_2u_1$ of length r+1 in G. Similarly, we can construct a cycle of length r+1 in G when $v_2v_1^+ \in E$, . Now we assume that $v_2v_1^- \notin E$ and $v_2v_1^+ \notin E$.

If $v_1v_2 \notin E$, then $H_3 := G[\{v_2, u_2, v_1, v_1^-, v_1^+\}] \cong Z_2$. Thus $N(v_1^-) \cap N(u_1) - V(H_3) \neq \emptyset$. Choose a vertex, say z, in $N(v_1^-) \cap N(u_1) - V(H_3)$. If $z \in V(C)$, then $z^-z^+ \in E$ otherwise we can apply Lemma 2 to construct a cycle of C_1 of length r+1 in G. Furthermore, if $z \in \overrightarrow{C}[v_1^{++}, v_2^-]$, then we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, z^-] \overrightarrow{C}[z^+, v_1^-] z u_1$ of length r+1 in G and if $z \in \overrightarrow{C}[v_2^+, v_1^{--}]$, then we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, z^-] \overrightarrow{C}[z^+, v_1^-] z u_1$ of length of r+1 in G. If $z \in V(G) - V(C)$, then we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, v_2^-] \overrightarrow{C}[v_2^+, v_1^-] z u_1$ of length r+1 in G.

Now we assume that $v_1v_2 \in E$. If $v_2v_1^- \in E$ or $v_2v_1^{--} \in E$, then we can easily construct a cycle C_1 of length r+1 in G. So we assume that $v_2v_1^- \notin E$ and $v_2v_1^{--} \notin E$. Choose the first vertex w along $\overrightarrow{C}[v_2^+, v_1^-]$ such that $w \notin N(v_2)$. If $v_1w^- \in E$, then we can construct a cycle $C_1 = u_1v_1\overrightarrow{C}[w^-, v_1^-]\overrightarrow{C}[v_1^+, v_2^-]\overrightarrow{C}[v_2^+, w^{--}]v_2u_1$ of length r+1 in G. If $v_1w \in E$, then we can construct a cycle $C_1 = u_1v_1\overrightarrow{C}[w, v_1^-]\overrightarrow{C}[v_1^+, v_2^-]\overrightarrow{C}[v_2^+, w^{--}]v_2u_1$ of length r+1 in G. If $u_1w^- \in E$, then we can construct a cycle $C_1 = u_1\overrightarrow{C}[w^-, v_2^-]\overrightarrow{C}[v_2^+, w^{--}]v_2u_1$ of length r+1 in G. If $u_1w \in E$, then we can construct a cycle $C_1 = u_1\overrightarrow{C}[w, v_2^-]\overrightarrow{C}[v_2^+, w^{--}]v_2u_1$ of length r+1 in G. Now we can assume that $v_1w^- \notin E$, $v_1w \notin E$, $u_1w^- \notin E$, and $u_1w \notin E$. Therefore $H_4 := G[\{w, w^-, v_2, u_1, v_1\}] \cong Z_2$. Hence $N(u_1) \cap N(w^-) - V(H_4) \neq \emptyset$.

Choose a vertex $o \in N(u_1) \cap N(w^-) - V(H_4)$. If $o \in V(G) - V(C)$, then

we can construct a cycle $C_1 = u_1 o \overrightarrow{C}[w^-, v_1^-] \overrightarrow{C}[v_1^+, v_2^-] \overrightarrow{C}[v_2^+, w^{--}] v_2 u_1$. If $o \in V(C)$, then $o^-o^+ \in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. If $o \in \overrightarrow{C}[v_2^+, w^{--}]$, then we can construct a cycle $C_1 = u_1 \overrightarrow{C}[o, v_2^-] \overrightarrow{C}[v_2^+, o^-] v_2 u_1$ of length r+1 in G. If $o \in \overrightarrow{C}[w^+, v_1^-] \cup \overrightarrow{C}[v_1^+, v_2^-]$, then we can construct a cycle $C_1 = u_1 o \overrightarrow{C}[w^-, o^-] \overrightarrow{C}[o^+, v_2^-] \overrightarrow{C}[v_2^+, w^{--}] v_2 u_1$ of length r+1 in G.

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-first search algorithm for finding a component H in G[V(G) - V(C)], and the breadth-first search algorithm for finding the shortest path between v_1 and v_2 in G_1 all can be completed in polynomial time, the step of enlarging the cycle C of length r in G to a cycle C_1 of length r+1 can be fulfilled in polynomial time.

Apply the similar procedure as above to the cycle C_1 of length r+1 in G, we can construct a cycle of length r+2 in G. Repeat this process, we can construct a cycle of length s for each s with $r+1 \le s \le |V(G)|$. Notice that we can repeat the processes at most |V(G)| times, therefore we can find a Hamiltonian cycle in the graph G in polynomial time. QED

Proof of Theorem 7. Let G be a graph satisfying the conditions in Theorem 7. Check if G has a pair of nonadjacent vertices. If we cannot find a pair of nonadjacent vertices in G, then G is a complete graph and we can easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent vertices in G, apply Lemma 1, we can find a cycle G of length G in G. This step can be completed in G(|V(G)|+|V(E)|) time. If G if G is a give an orientation on G.

Using depth-first search algorithm in the graph G[V(G) - V(C)], we can find a connected component, say H, in G[V(G) - V(C)]. This step can be completed in O(|V(G)| + |V(E)|) time. Since G is 2-connected, we can find two distinct vertices, say v_1 and v_2 , on C such that $N(v_i) \cap V(H) \neq \emptyset$, where $1 \leq i \leq 2$. Next we will show that a cycle C_1 of length at least r+1 in G can be found in polynomial time.

If $v_1v_2 \in E$, define a graph $G_1 := G[V(H) \cup \{v_1, v_2\}] - v_1v_2$; otherwise define $G_1 := G[V(H) \cup \{v_1, v_2\}]$. Using breadth-first search algorithm in the graph G_1 , we can find a shortest path $P := v_1u_1u_2...u_tv_2$ between v_1 and v_2 in G_1 , where each vertex u_i with $1 \le i \le t$ is in V(H). This step can be completed in O(|V(G)| + |E(G)|.

We can assume that $v_1^+v_1^-$, $v_2^+v_2^- \in E$, otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. We can further assume that $v_2 \neq v_1^{--}, v_1^+, v_1^+$, and v_1^{++} , otherwise we can easily construct a cycle C_1 of length at least r+1 in G. Also, $v_1 \neq v_2^{--}, v_2^-, v_2^+, v_2^+$, and v_2^{++} , otherwise we can easily construct a cycle C_1 of length at least r+1 in G. Moreover, we can assume that $v_1v_2^{--}, v_1v_2^-, v_1v_2^+, v_1v_2^{++}, v_2v_1^{--}, v_2v_1^+, v_2v_1^+$, and $v_2v_1^{++}$ are not in E, otherwise we can easily construct a cycle C_1 of length at least r+1 in G.

Find the first vertex, say w_1 , along $\overrightarrow{C}[v_1^+, v_2^-]$ such that $v_1w_1 \notin E$ and the first vertex, say w_2 , along $\overrightarrow{C}[v_2^+, v_1^-]$ such that $v_2w_2 \notin E$. We can assume that u_ip is not in E for each i with $1 \le i \le t$ and p is any vertex in $\overrightarrow{C}[v_1^+, w_1] \cup \overrightarrow{C}[v_2^+, w_2]$, otherwise we can construct a cycle C_1 of length at least r+1 in G. We can further assume that pq, v_1q , and v_2p are not in E, where p is any vertex in $\overrightarrow{C}[v_1^+, w_1]$ and q is any vertex in $\overrightarrow{C}[v_2^+, w_2]$ otherwise we can easily construct a cycle of length at least r+1 in G.

If t = 1, then $H_1 := G[\{w_1, w_1^-, v_1, u_1, v_2, w_2^-, w_2\}]$ is isomorphic to P_7 if $v_1v_2 \in E$ or P_7^+ otherwise. Thus $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$ or $N(u_1) \cap N(w_2) - V(H_1) \neq \emptyset$ or $(N(u_1) \cap N(w_1^-) - V(H_1) \neq \emptyset)$ and $N(u_1) \cap N(w_2^-) - V(H_1) \neq \emptyset$.

When $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$, choose a vertex, say o, in $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$. If $o \in V(G) - V(C)$, then we can construct a cycle $C_1 = u_1 o \overrightarrow{C}[w_1, v_1^-] \overrightarrow{C}[v_1^+, w_1^-] v_1 u_1$ of length at least r+1 in G. If $o \in V(C)$, then we can assume that $o^-o^+ \in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Thus we can construct a cycle of $C_1 = u_1 o \overrightarrow{C}[w_1, o^-] \overrightarrow{C}[o^+, v_1^-] \overrightarrow{C}[v_1^+, w_1^-] v_1 u_1$ of length at least r+1 in G. Similarly, we can construct a cycle C_1 of length at least r+1 in G when $N(u_1) \cap N(w_2) - V(H_1) \neq \emptyset$.

When $N(u_1)\cap N(w_1^-)-V(H_1)\neq\emptyset$ and $N(u_1)\cap N(w_2^-)-V(H_1)\neq\emptyset$, choose a vertex, say o, in $N(u_1)\cap N(w_1^-)-V(H_1)\neq\emptyset$. If $o\in V(G)-V(C)$, then we can construct a cycle $C_1=u_1o\overrightarrow{C}[w_1^-,v_1^-]\overrightarrow{C}[v_1^+,w_1^{--}]v_1u_1$ of length at least r+1 in G. If $o\in V(C)$, then we can assume that $o^-o^+\in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Thus we can construct a cycle of $C_1=u_1o\overrightarrow{C}[w_1^-,o^-]\overrightarrow{C}[o^+,v_1^-]\overrightarrow{C}[v_1^+,w_1^{--}]v_1u_1$ of length at least r+1 in G.

If $t \geq 2$, since $P = v_1u_1u_2...u_tv_2$ is a shortest path between v_1 and v_2 in G_1 , $u_1v_2 \notin E$. If $v_1v_2 \in E$, since $d(u_1, v_1^-) = 2$ and G is quasiclaw-free, there exists a vertex, say y, such that $y \in N(u_1) \cap N(v_1^-)$ and

 $N[y] \subseteq N[u_1] \cup N[v_1^-]$. Notice that $v_2 \in N[v_1]$ but $v_2 \notin N[u_1] \cup N[v_1^-]$, we have $y \neq v_1$. Thus if $y \in V(G) - V(C)$, we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, v_1^-]yu_1$ of length at least r+1 in G. If $y \in V(C)$, then we can assume that $y^-y^+ \in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Thus we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, y^-] \overrightarrow{C}[y^+, v_1^-]yu_1$ of length at least r+1 in G. Next we assume that $v_1v_2 \notin E$.

If t = 2, then $H_2 = G[\{w_1, w_1^-, v_1, u_1, u_2, v_2, w_2^-\}] \cong P_7$. Thus $N(u_1) \cap N(w_1) - V(H_2) \neq \emptyset$ or $N(u_1) \cap N(w_2^-) - V(H_2) \neq \emptyset$ or $(N(u_1) \cap N(w_1^-) - V(H_2) \neq \emptyset$ and $N(u_1) \cap N(v_2) - V(H_2) \neq \emptyset$.

When $N(u_1) \cap N(w_1) - V(H_2) \neq \emptyset$ or $N(u_1) \cap N(w_2^-) - V(H_2) \neq \emptyset$ or $N(u_1) \cap N(w_1^-) - V(H_2) \neq \emptyset$, using a construction which is similar to the one for the cases t = 1 and $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$ or t = 1 $N(u_1) \cap N(w_1^-) - V(H_1) \neq \emptyset$, we can construct a cycle C_1 of length at least t + 1 in C

If t = 3, then $H_3 = G[\{w_1, w_1^-, v_1, u_1, u_2, u_3, v_2\}] \cong P_7$. Thus $N(u_1) \cap N(v_2) - V(H_3) \neq \emptyset$ or $N(u_1) \cap N(w_1) - V(H_3) \neq \emptyset$ or $(N(u_1) \cap N(w_1^-) - V(H_3) \neq \emptyset$ and $N(u_1) \cap N(u_3) - V(H_3) \neq \emptyset$.

When $N(u_1)\cap N(v_2)-V(H_3)\neq\emptyset$, choose a vertex $p\in N(u_1)\cap N(v_2)-V(H_3)\neq\emptyset$. Since $P=v_1u_1u_2u_3v_2$ is a shortest path between v_1 and v_2 in G_1 , we have $u_1v_2\notin E$, $p\in V(C)$, and $d(u_1,v_2)=2$. Since G is quasiclaw-free, there exists a vertex, say o, such that $o\in N(u_1)\cap N(v_2)$ and $N[o]\subseteq N[u_1]\cup N[v_2]$. Again the fact that $P=v_1u_1u_2u_3v_2$ is a shortest path between v_1 and v_2 in G_1 implies that $o\in V(C)$. We can assume that $o^-o^+\in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. We further have $o\in \overrightarrow{C}[w_1^+,v_2^{--}]\cup \overrightarrow{C}[w_2^+,v_1^{--}]$, otherwise we can construct a cycle C_1 of length at least r+1 in G.

If $o \in \overrightarrow{C}[w_1^+, v_2^-]$, since $o^- \in N[o]$, we have $o^- \in N[u_1] \cup N[v_2]$. If $o^- \in N[u_1]$, we can easily construct a cycle C_1 of length at least r+1 in G. If $o^- \in N[v_2]$, then we can construct a cycle $C_1 = u_1 \overrightarrow{C}[o, v_2^-] \overrightarrow{C}[v_2^+, o^-] v_2 u_3 u_2 u_1$ of length at least r+1 in G. If $o \in \overrightarrow{C}[w_2^+, v_1^{--}]$, since $o^+ \in N[o]$, we have $o^+ \in N[u_1] \cup N[v_2]$. If $o^+ \in N[u_1]$, we can easily construct a cycle C_1 of length at least r+1 in G. If $o^+ \in N[v_2]$, then we can construct a cycle $C_1 = u_1 u_2 u_3 v_2 \overrightarrow{C}[o^+, v_2^-] \overrightarrow{C}[v_2^+, o] u_1$ of length at least r+1 in G.

When $N(u_1) \cap N(w_1) - V(H_3) \neq \emptyset$ or $N(u_1) \cap N(w_1^-) - V(H_3) \neq \emptyset$, using a construction which is similar to the one for the cases t = 1 and

 $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$ or t = 1 $N(u_1) \cap N(w_1^-) - V(H_1) \neq \emptyset$, we can construct a cycle C_1 of length at least r + 1 in G

If $t \geq 4$, then $H_4 = G[\{w_1, w_1^-, v_1, u_1, u_2, u_3, u_4\}] \cong P_7$. Thus $N(u_1) \cap N(u_4) - V(H_4) \neq \emptyset$ or $N(u_1) \cap N(w_1) - V(H_4) \neq \emptyset$ or $(N(u_1) \cap N(w_1^-) - V(H_3) \neq \emptyset$ and $N(u_1) \cap N(u_3) - V(H_4) \neq \emptyset$.

When $N(u_1) \cap N(u_4) - V(H_4) \neq \emptyset$, choose a vertex $p \in N(u_1) \cap N(u_4) - V(H_4) \neq \emptyset$. Since $P = v_1u_1u_2...u_tv_2$ is a shortest path between v_1 and v_2 in G_1 , we have $u_1u_4 \notin E$, $p \in V(C)$, and $d(u_1, u_4) = 2$. Since G is quasi-claw-free, there exists a vertex, say o, such that $o \in N(u_1) \cap N(u_4)$ and $N[o] \subseteq N[u_1] \cup N[u_4]$. Again the fact that $P = v_1u_1u_2...u_tv_2$ is a shortest path between v_1 and v_2 in G_1 implies that $o \in V(C)$. Since $o^- \in N[u_1] \cup N[u_4]$, we can easily construct a cycle C_1 of length r+1 in G.

When $N(u_1) \cap N(w_1) - V(H_4) \neq \emptyset$ or $N(u_1) \cap N(w_1^-) - V(H_4) \neq \emptyset$, using a construction which is similar to the one for the cases t = 1 and $N(u_1) \cap N(w_1) - V(H_1) \neq \emptyset$ or t = 1 $N(u_1) \cap N(w_1^-) - V(H_1) \neq \emptyset$, we can construct a cycle C_1 of length at least r + 1 in G

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-first search algorithm for finding a component H in G[V(G) - V(C)], and the breadth-first search algorithm for finding the shortest path between v_1 and v_2 in G_1 all can be completed in polynomial time, the step of enlarging the cycle C of length r in G to a cycle C_1 of length at least r+1 can be fulfilled in polynomial time.

Apply the similar procedure as above to the cycle C_1 of length at least r+1 in G, we can construct a cycle longer than C_1 in G. Repeat this process, we can construct a Hamiltonian cycle in G. Notice that we can repeat the processes at most |V(G)| times, therefore we can find a Hamiltonian cycle in the graph G in polynomial time. QED

Proof of Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Check if G has a pair of nonadjacent vertices. If we cannot find a pair of nonadjacent vertices in G, then G is a complete graph and we can easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent vertices in G, apply Lemma 1, we can find a cycle G of length G in G. This step can be completed in G(|V(G)| + |V(E)|) time. If G is a complete we are finished. We now assume that G is a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in Theorem 8. Let G be a graph satisfying the conditions in G be a graph satisfying the G be a graph satisfying the G because G be a graph satisfying the G because G be

Using depth-first search algorithm in the graph G[V(G) - V(C)], we

can find a connected component, say H, in G[V(G) - V(C)]. This step can be completed in O(|V(G)| + |V(E)|) time. Since G is 2-connected, we can find two distinct vertices, say v_1 and v_2 , on C such that $N(v_i) \cap V(H) \neq \emptyset$, where $1 \leq i \leq 2$. Next we will show that a cycle C_1 of length at least r+1 in G can be found in polynomial time.

If $v_1v_2 \in E$, define a graph $G_1 := G[V(H) \cup \{v_1, v_2\}] - v_1v_2$; otherwise define $G_1 := G[V(H) \cup \{v_1, v_2\}]$. Using breadth-first search algorithm in the graph G_1 , we can find a shortest path $P := v_1u_1u_2...u_tv_2$ between v_1 and v_2 in G_1 , where each vertex u_i with $1 \le i \le t$ is in V(H). This step can be completed in O(|V(G)| + |E(G)|) time.

We can assume that $v_1^+v_1^-$, $v_2^+v_2^- \in E$, otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. We can further assume that $v_2 \neq v_1^{--}, v_1^+, v_1^+$, and v_1^{++} , otherwise we can easily construct a cycle C_1 of length at least r+1 in G. Also, $v_1 \neq v_2^{--}, v_2^-, v_2^+$, and v_2^{++} , otherwise we can easily construct a cycle C_1 of length at least r+1 in G. Moreover, we can assume that $v_1v_2^{--}$, $v_1v_2^-$, $v_1v_2^+$, $v_1v_2^{++}$, $v_2v_1^{--}$, $v_2v_1^-$, $v_2v_1^+$, $v_1^-v_2^-$, $v_1^+v_2^+$, and $v_2v_1^{++}$ are not in E, otherwise we can easily construct a cycle C_1 of length at least r+1 in G.

We first prove the claim that if $N(v_1^-) \cap N(v_2^-) \neq \emptyset$, then we can construct a cycle C_1 of length at least r+1 in G.

Since $v_1^-v_2^- \notin E$ and $N(v_1^-) \cap N(v_2^-) \neq \emptyset$, we have $d(v_1^-, v_2^-) = 2$. Since G is quasi-claw-free, there exists a vertex, say o, such that $o \in N(v_1^-) \cap N(v_2^-)$ and $N[o] \subseteq N[v_1^-] \cup N[v_2^-]$. If $o \in V(G) - V(C)$, we can easily construct a cycle C_1 of length at least r+1 in G. If $o \in V(C)$, then $\{o^-, o^+\} \subseteq N[o] \subseteq N[v_1^-] \cup N[v_2^-]$. When $o \in \overrightarrow{C}[v_2^+, v_1^-]$, if $o^- \in N(v_1^-)$ or $o^+ \in N(v_2^-)$, we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, v_2^-] \overrightarrow{C}[o, v_1^-] \overrightarrow{C}[o^-, v_2] u_t \dots u_2 u_1$ or $C_1 = u_1 \overrightarrow{C}[v_1, v_2^-] \overrightarrow{C}[o^+, v_1^-] \overrightarrow{C}[o, v_2] u_t \dots u_2 u_1$ of length at least r+1 in G. Now we can assume that $o^- \notin N(v_1^-)$ and $o^+ \notin N(v_2^-)$. Thus $o^- \in N(v_2^-)$ and $o^+ \in N(v_1^-)$. Since $G[\{v_2^-, o^-, o, o^+, v_1^-\}]$ is not isomorphic to B, we have $o^-o^+ \in E$ and so we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, v_2^-] \overrightarrow{C}[v_1^-, o^+] \overrightarrow{C}[o^-, v_2] u_t \dots u_2 u_1$ of length at least $c^- \in C[v_1^+, v_2^-]$.

Symmetrically, we can prove the claim that if $N(v_1^+) \cap N(v_2^+) \neq \emptyset$, then we can construct a cycle C_1 of length at least r+1 in G.

If t=1, since $G[\{v_1^-, v_1^+, v_1, u_1, v_2\}]$ is not isomorphic to B, we have

 $v_1v_2 \notin E$. If $v_1^+v_2^- \in E$, then $N(v_1^+) \cap N(v_2^+) \neq \emptyset$. By the claim we just proved we can construct a cycle of C_1 of length r+1 in G.

We now consider the case $v_1^+v_2^- \notin E$. Then $H_1 := G[\{v_1^-, v_1^+, v_1, u_1, v_2, v_2^-\}] \cong Z_3$. Thus $N(u_1) \cap N(v_1^-) - V(H_1) \neq \emptyset$ or $N(u_1) \cap N(v_1^+) - V(H_1) \neq \emptyset$ or $N(v_2) \cap N(v_1^-) - V(H_1) \neq \emptyset$ or $N(v_2) \cap N(v_1^+) - V(H_1) \neq \emptyset$ or $N(v_2^-) \cap N(v_1^-) - V(H_1) \neq \emptyset$ and $N(v_2^-) \cap N(v_1^+) - V(H_1) \neq \emptyset$.

When $N(u_1) \cap N(v_1^-) - V(H_1) \neq \emptyset$, choose a vertex $p \in N(u_1) \cap N(v_1^-) - V(H_1)$. If $p \in V(G) - V(C)$, then we easily construct a cycle C_1 of length at least r+1 in G. If $p \in V(C)$, then we can assume that $p^-p^+ \in E$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G. Now we can construct a cycle $C_1 = u_1 \overrightarrow{C}[v_1, p^-] \overrightarrow{C}[p^+, v_1^-] p u_1$ of length at least r+1 in G. Similarly, we can construct a cycle C_1 of length at least r+1 in C when $C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_5 \cap$

When $N(v_2)\cap N(v_1^-)-V(H_1)\neq\emptyset$, choose a vertex $q\in N(v_2)\cap N(v_1^-)-V(H_1)$. If $q\in V(G)-V(C)$, then we can construct a cycle $C_1=u_1\overrightarrow{C}[v_1,v_2^-]\overrightarrow{C}[v_2^+,v_1^-]qv_2u_1$ of length at least r+1 in G. Now we assume that $q\in V(C)$. We can assume that $q\notin N(v_2^-)$ otherwise by the claim we proved above we can construct a cycle of length at least r+1 in G. We can further assume that $q\notin N(u_1)$ otherwise we can apply Lemma 2 to construct a cycle C_1 of length r+1 in G when $q^-q^+\notin E$ or $C_1=u_1\overrightarrow{C}[v_1,q^-]\overrightarrow{C}[q^+,v_1^-]pu_1$ of length at least r+1 in G when $q^-q^+\in E$. Notice that $d(u_1,v_2^-)=2$. Since G is quasi-claw-free, there exists a vertex, say w, such that $w\in N(u_1)\cap N(v_2^-)$ and $N[w]\subseteq N[u_1]\cup N[v_2^-]$. Since $q\in N[v_2]$ but $q\notin N[u_1]\cup N[v_2^-]$, we have $w\neq v_2$. Using a construction which is similar to the one for the case $N(u_1)\cap N(v_1^-)-V(H_1)\neq\emptyset$ above, we can construct a cycle C_1 of length at least r+1 in G. Similarly, we can construct a cycle C_1 of length at least r+1 in G when $N(v_2)\cap N(v_1^+)-V(H_1)\neq\emptyset$

When $N(v_2^-) \cap N(v_1^-) - V(H_1) \neq \emptyset$, using the claim we proved above, we can construct a cycle C_1 of length at least r+1 in G.

If $t \geq 2$, since $P = v_1u_1u_2...u_tv_2$ is a shortest path between v_1 and v_2 in G_1 , we have $u_1v_2 \notin G$.

If t=2 and $v_1v_2 \in E$, since $d(u_1,v_1^-)=2$ and G is quasi-claw-free, there exists a vertex, say w, such that $w \in N(u_1) \cap N(v_1^-)$ and $N[w] \subseteq N[u_1] \cup N[v_1^-]$. Notice that $v_2 \in N[v_1]$ but $v_2 \notin N[u_1] \cup N[v_1^-]$, we have $w \neq v_1$. Using a construction which is similar to the one for the case

t=1 and $N(u_1)\cap N(v_1^-)-V(H_1)\neq\emptyset$ above, we can construct a cycle C_1 of length at least r+1 in G.

If t = 2 and $v_1v_2 \notin E$, then $H_2 := G[\{v_1^-, v_1^+, v_1, u_1, u_2, v_2\}] \cong Z_3$. Thus $N(u_1) \cap N(v_1^-) - V(H_2) \neq \emptyset$ or $N(u_1) \cap N(v_1^+) - V(H_2) \neq \emptyset$ or $N(u_2) \cap N(v_1^-) - V(H_2) \neq \emptyset$ or $N(u_2) \cap N(v_1^+) - V(H_2) \neq \emptyset$ or $(N(v_2) \cap N(v_1^+) - V(H_2) \neq \emptyset)$.

When $N(u_1) \cap N(v_1^-) - V(H_2) \neq \emptyset$ or $N(u_1) \cap N(v_1^+) - V(H_2) \neq \emptyset$ or $N(u_2) \cap N(v_1^-) - V(H_2) \neq \emptyset$, we can easily construct a cycle C_1 of length at least r+1 in G. Using a construction which is similar to the one for the case when t=1 and $N(v_2) \cap N(v_1^-) - V(H_1) \neq \emptyset$, we can construct a cycle C_1 of length at least r+1 in G when $N(v_2) \cap N(v_1^-) - V(H_2) \neq \emptyset$ and $N(v_2) \cap N(v_1^+) - V(H_2) \neq \emptyset$.

If $t \geq 3$, then $H_3 := G[\{v_1^-, v_1^+, v_1, u_1, u_2, u_3\}] \cong Z_3$. Thus $N(u_1) \cap N(v_1^-) - V(H_3) \neq \emptyset$ or $N(u_1) \cap N(v_1^+) - V(H_3) \neq \emptyset$ or $N(u_2) \cap N(v_1^-) - V(H_3) \neq \emptyset$ or $N(u_2) \cap N(v_1^+) - V(H_3) \neq \emptyset$ or $(N(u_3) \cap N(v_1^-) - V(H_3) \neq \emptyset$ and $N(u_3) \cap N(v_1^+) - V(H_3) \neq \emptyset$. Using or slightly modifying the constructions in the cases t = 1 and t = 2, we can construct a cycle C_1 of length at least t = 1 in t = 0.

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-first search algorithm for finding a component H in G[V(G) - V(C)], and the breadth-first search algorithm for finding the shortest path between v_1 and v_2 in G_1 all can be completed in polynomial time, the step of enlarging the cycle C of length r in G to a cycle C_1 of length at least r+1 can be fulfilled in polynomial time.

Apply the similar procedure as above to the cycle C_1 of length at least r+1 in G, we can construct a cycle longer than C_1 in G. Repeat this process, we can construct a Hamiltonian cycle in G. Notice that we can repeat the processes at most |V(G)| times, therefore we can find a Hamiltonian cycle in the graph G in polynomial time. QED

4. Acknowledgements

The author would like to thank the referee for helpful suggestions and comments.

References

- [1] A. Ainouche, Quasi-claw-free graphs, Discrete Math. 179(1998) 13-26.
- [2] A. Bertossi, The edge Hamiltonian path problem is NP-complete, Information Processing Letters 13(1981) 157-159
- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York (1976).
- [4] A. Brandstädt, F. Dragan, and E. Köhler, Linear time algorithms for Hamiltonian problems on (claw, net)-free graphs, SIAM J. Comput. 30(2000) 1662-1677.
- [5] H. J. Broersma and H. J. Veldman, Restrictions on induced subgraphs ensuring Hamiltonicity or pancyclicity of K_{1,3}-free graphs, Contemporary Methods in Graph Theory (R. Bodendiek), BI-Wiss.-Verl., Mannheim-Wien-Zurich (1990) 181-194.
- [6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, *Introduction to Algorithms*, Second Edition, The MIT Press (2000).
- [7] E. Köhler, Graphs without asteroidal triples, Ph.D. Thesis, Technical University of Berlin, 1999.
- [8] E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice, Prentice-Hall (1977).
- [9] R. Tarjan, Depth-first search and linear grap algorithms, SIAM J. Comput. 1(1972) 146-160.