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Abstract

A graph G is called guasi-claw-free if it satisfies the property:
d(z,y) = 2 => there exists © € N(z) N N(y) such that Nfu] C
Niz] U N[y]. It is shown that a Hamiltonian cycle can be found
in polynomial time in four subfamilies of quasi-claw-free graphs.
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1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. For terminology, notation and concepts not defined here see [3]. If v
is a vertex in a graph, the closed neighbor N{v] of v is defined as N(v)U{v }.
For any two distinct vertices  and y in a graph G, d(z, y) denotes the dis-
tance in G from x and y. A graph G of order n is pancyclic if G has a cycle
of length r for each r with3 < r <n. If Cisacyclein G, let C denote the
cycle C with a given orientation. For u, v € C, let a[u, v] denote the con-
secutive vertices on C from « to v in the d{_i_rect.ion specified by C. Th+e_ same
vertices, in reverse order, are given by C[v,u]. Both 6[‘1‘, v] and C|v,u]
are considered as paths and vertex sets. If u is on C, then the predecessor,
successor, next predecessor and next successor of u along the orientation of
C are denoted by »~, u*, u~~ and utt respectively. The symboles V and
A are used to denote “or ” and “ and ”, respectively. The following concept
was introduced in [5). If H is a subgraph of a graph G and u, v € V(H),
the H is said to satisfy property ¢(u,v) if (N(u) N N(v)) — V(H) #0.

The graphs Z;, 1 < i < 3, Py, P, and B are respectively defined
as follows. V(Z1) = {a,b1,bs,c}, E(Z1) = {ac,bic,bac,biba }; V(Z,2) =
{a1,a2,b1,b2,c}, E(Z2) = {a2a1,a1¢,b1¢,bac,brbe }; V(Z3) = { a1,a2,a3,
b1, be, ¢ }, E(Z3) = { azaz,aza1, 616, b1¢,bac, bz }; V(Pr) = {a,b1, b2, c1, Ca,
di,dz }, E(Py) = {b1c1, 101, dra, ada, daca, c2ba }; V(PF) = V(Py), E(P)
= E(Py) U {d1dz}; and V(B) = { a1, a2,b1,b2,c }, E(B) = { a1a2,01¢,azc,
b1b2, blc, bzc}.

I G and H are graphs, then G is called H-free if G contains no in-
duced subgraph isomorphic to H. If H = K3, the graph G is called
claw-free. It is well known that every line graph is claw-free. The concept
of quasi-claw-free graphs was introduced by Ainouche [1]. A graph G is
called quasi-claw-free if it satisfies the property: d(z,y) = 2 = there exists
u € N(z) N N(y) such that N[u] C N[z] U N[y]. Obviously, every claw-free
graph is quasi-claw-free.

Bertossi [2] proved that determining if a line graph has a Hamiltonian
path is NP-complete. From Bertossi’s result, one can easily see that deter-
mining if a line graph has a Hamiltonian cycle is NP-complete and therefore
finding a Hamiltonian cycle in line graphs is a hard problem. Since every
line graph is claw-free and every claw-free graph is quasi-claw-free, the
problem for finding & Hamiltonian cycle in quasi-claw-free graphs is also
hard. Hence we currently can only find polynomial time algorithms for
Hamiltonian cycles in subfamilies of quasi-claw-free graphs.
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Broersma and Veldman proved the following theorems for claw-
free graphs.

Theorem 1. [5] Let G be a 2-connected claw-free graph. If every induced
Z, of G satisfies ¢(a,b1) V ¢(a,b2), then G is pancyclic or G s a cycle.

Theorem 2. [5] Let G be a 2-connected claw-free graph. If every induced
Zy of G satisfies ¢(a1,b) A ¢(a1,b2), then G is pancyclic or G is a cycle.

Theorem 3. [5] Let G be a 2-connected claw-free graph. If every induced
subgraph of G isomorphic to Py or Py satisfies ¢(a,b1)Ve(a, b2)V(d(a,c1)A
¢(a,c2)), then G is Hamiltonian.

Theorem 4. [5] Let G be a 2-connected graph that is claw-free and B-free.
If every induced Z3 of G satisfies $(ay,b1) Vd(ay, bs)Vd(az, b1)Vé(az, ba) Vv
(¢(a3, b1) A é(as, b2)), then G is Hamiltonian.

Motivated by Ainouche’s work of extending a number of theorems for
claw-free graphs to quasi-claw-free graphs in [1]. We will prove the follow-
ing theorems in this paper.

Theorem 5. Let G be a 2-connected quasi-claw-free graph. If every in-
duced Zy of G satisfies ¢(a,b1) V ¢(a,b2), then a Hamiltonian cycle can be
found in polynomial time in G.

Theorem 6. Let G be a 2-connected quasi-claw-free graph. If every in-
duced Z of G satisfies ¢(a1,b1) A ¢(a1,b2), then a Hamiltonian cycle can
be found in polynomial time in G.

Theorem 7. Let G be a 2-connected guasi-cloew-free graph. If every in-
duced subgraph of G isomorphic to Py or P7 satisfies ¢(a,b1) V ¢(a,b2) V
(¢(a,¢1) A ¢(a,c2)), then a Hamiltonian cycle can be found in polynomial
time in G.

Theorem 8. Let G be a 2-connected graph that is quasi-claw-free and B-
free. If every induced Zs of G satisfies ¢(a1,b1) V ¢(a1,b2) V ¢(az,b1) V
d(az2,b2) V (¢(as, b1) A d(as, b)), then a Hamiltonian cycle can be found in
polynomial time in G.

2. Lemmas

Based on Tarjan’s depth-first search algorithm in [9], Kohler proved the
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following Lemma 1 in [7]. Lemma 1 was used by Brandstadt et al. in [4].
We will also use Lemma 1 in our proofs in Section 3.

Lemma 1. Let G be a 2-connected greph, and let z, y be two different non-
adjacent vertices of G. Then one can construct in linear time (of |V(G)|
and |B(G)|) two induced, internally disjoint paths, both joining  and y.

The following Lemma 2 is a computational refomulation of Lemma 3 in
(1.

Lemma 2. Let G be a connected quasi-claw-free of order n. Suppose that
G has a cycle C of length r, 4 <r < n—1. Let u be a vertex on C such
that it has a neighbor in V(G) — V(C). Then either u"u* € E or a cycle
of length r + 1 can be found in polynomial time in G.

Proof of Lemma 2. Let G be a connected quasi-claw-free of order n. Sup-
pose that G has a cycle C of length r with a fixed orientation, 4 <r < n—1.
Let u be a vertex on C such that it has a neighbor in V(G) - V(C). If
w~ut € E, then it is done. Now we assume that u~u+ ¢ E. Choose a
vertex z € N(u) N (V(G) - V(C)). Ezu~ € E or zut € E, we can easily
construct a cycle of length r + 1 in G. Now we assume that zu~ ¢ F and
zut ¢ E.

Since d(z,u™) = 2, there exists a vertex, say v, such that » € N(z) N
N(u*) and N[v] C N[z]UN[u*]. Since u~ € Nlu] but v~ ¢ N[z]U N[ut],
we have v # u. If v € V(C), then v* € Nv] C Nfz] U Nfu*]. Thus
vt € N(z) or vt € N(ut). In either case, we can easily construct a
cycle of length r + 1 in G. Now we assume v € V(G) — V(C). Symmet-
rically, we can prove that there exist a vertex, say w, in V(G) — V(C)
such that w € N(z) N N(u~) and N{w] C Niz] U N[u~] otherwise we
can construct a cycle of length r + 1 in G. Obviously, v # w, otherwise
u~ € N[w] = N[v] C N[z] U N[u*], contradicting to our assumption.

If vu*t € E, we can essily construct a cycle of length r + 1 in G. We
now assume that vutt ¢ E. Since d(v, u™*) = 2, there exists a vertex, say
y, such that y € N(v)NN(u**) and N[y] C N[v]JUN[utt]. Ey = u*, then
u € N[u*] € Njp]UN[u**]. Thus u € N[y} or u € Nu**). If u € N[,
we can easily construct a cycle of length r+ 1 in G. If u € Njut*], we can
construct a cycle wruC [u*+, u~]w of length r + 1 in G. Moreover, we can
assume that y is in V(G) — V(C) otherwise using a construction which is
similar to the one for the case v € V(G) — V(C) above we can construct a
cycle of length r 4+ 1 in G.
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If y = w, then vw € E and we can construct a cycle wva[u*',u']w of
length r +1in G. f y = z, then u € N[z] C N[v]U N[u**]. If u € N[v],
we can easily construct a cycle of length r +1 in G. If u € N[u*t], we
can also easily construct a cycle of length r 41 in G. Now we assume that
ye V(G)-(V(C)u{w,z}). Thusy € N[v] C N[z]UN[u*]. f y € N[ut],
we can easily construct a cycle of length r + 1 in G. If y € Nz, we can
construct a cycle xya [ut*,u]z of lenght r + 1 in G. Clearly, the above
algorithmic procedure can be completed in polynomial time. QED

3. Proofs

Proof of Theorem 5. Let G be a graph satisfying the conditions in The-
orem 5. Check if G has a pair of nonadjacent vertices. If we cannot find a
pair of nonadjacent vertices in G, then G is a complete graph and we can
easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent
vertices in G, apply Lemma 1, we can find a cycle C of length » > 4 in G.
This step can be completed in O([V(G)|+|V (E)|) time. If r = [V(G)|, then
we are finished. we now assume that r < [V(G)|—1 and give an orientation
on C.

Since G is 2-connected, we can find a vertex, say u, on C such that
N(uw) N (V(G) — V(C)) # 0. Next we will show that a cycle C; of length
7+ 1 can be found in polynomial time in G.

If u"ut ¢ E we can apply Lemma 2 to construct a cycle C; of length
r+1in G. Now we assume that u~u™ € E. Choose a vertex, say
w, in N(u) N (V(G) - V(C)). If wu~ € E or wut € E, then we can
easily construct a cycle C) of length 7 + 1 in G. We now assume that
wu~ ¢ E and wut ¢ E. Thus Hy := G[{w,u,u",u*}] = Z;. Then
Nw)NN(@u*)—-V(H)#0or Nw)NN(u™)—-V(H,)#0.

When N(w)NN(ut)—V(H;) # 0, choose a vertex v € N(w)NN(ut) -
V(H,). fv € V(C), then by Lemma 2 we can construct a cycle C of length
r+1in G if v~vt ¢ E. We now assume that v~ v* € E. In this case, we
can construct a cycle C; := wvC [u*,v~]C v+, ujw of length r + 1in G. If
v € V(G) — V(C), then by Lemma 2 we can construct a cycle C; of length
r+1in G if uutt ¢ E. We now assume that uut* € E.

If vutt € E, we can easily construct a cycle C; of length r+1in G. If

vu~ € F, we can construct a cycle C; := u’ku@[u“"", u~] of length r+1
in G. So now we assume that vu™ ¢ F and vu~ ¢ E.
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If uutt € E, then Hz := G[{v,u*,u",u**}] @ Z;. Thus N(v) N
N@™)-V(H;) # 0or Nw)NN(ut+)-V(H;) # 0. When N(v)NN(u~)—
V(Hg) # 0, choose a vertex p € N(v)NN(u~) — V(Hz). K p € V(C), then
by Lemma 2 we can construct a cycle C; of length r+1inGifp pt ¢ FE
orif p~p* € E we can construct a cycle Cy := vwuC [ut+,p~|Cp*,u~|pv
of length r +1in G. If p € V(G) — V(C), then we can construct a cycle
C1 == u~pvClu*,u"] of length r + 1 in G.

When N (v)NN (utt)-V(Hy) # 0, choose a vertex g € N(v)NN(ut+)—
V(H2). If ¢ € V(C). Using a construction which is similar to the one for
the case v € V(C) above, we can construct a cycle C; of length r +1in G
Now we assume that ¢ € V(G)—V(C). Then by Lemma 2 we can construct
a cycle C; of length r + 1 in G if ututt* ¢ E or if utut*+ € E we can
construct a cycle C; := vut C[ut++, ujwv of length r +1 in G.

Now we consider the case u~u** ¢ E. Since d(v,u~) = 2, there exists
a vertex z such that x € N(v) N N(v~) and Nfz] C N[v]UN[u~]. Since
v~utt ¢ E, z # utt. If z = u, we can easily construct a cycle C; of length
r+1in G. So we can assume that = # v and z # u*+. Since ut+ € N[ut]
but ut+ ¢ N[v) U N{u~], we have z # u*+. Using a construction which is
similar to the one for the case N(v) N N(u~) — V(Hz) # 0 before, we can
construct a cycle C; of length r + 1 in G.

Symmetrically, we can construct a cycle C of length r + 1 in G when
Nw)NN(u~)-V(H)#0

Since the algorithmic procedures in Lemma 1 and Lemma 2 can be com-
pleted in polynomial time, the step of enlarging the cycle C of length 7 in
G to a cycle C; of length r + 1 can be fulfilled in polynomial time time.

Apply the similar procedure as above to the cycle C; of length r + 1 in
G, we can construct a cycle of length r + 2 in G. Repeat this process, we
can construct a cycle of length s for each s with r+1 < s < |[V(G)|. Notice
that we can repeat the processes at most |V(G)| times, therefore we can
find a Hamiltonian cycle in the graph G in polynomial time. QED

Proof of Theorem 6. Let G be a graph satisfying the conditions in The-
orem 6. Check if G has a pair of nonadjacent vertices. If we cannot find a
pair of nonadjacent vertices in G, then G is a complete graph and we can
easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent
vertices in G, apply Lemma 1, we can find a cycle C of length r > 4 in G.
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This step can be completed in O([V (G){+|V(E)|) time. If r = [V(G)], then
we are finished. we now assume that 7 < |V(G)|—1 and give an orientation
onC.

Using depth-first search algorithm in the graph G[V(G) — V(C))], we
can find a connected component, say H, in G[V(G) — V(C)]. More details
on applying depth-first search algorithm to find a connected component in
a graph can be found in Algorithm 8.3 on Page 330 in [8]. This step can
be completed in O(|V(G)| + |V(E)|) time. Since G is 2-connected, we can
find two distinct vertices, say v; and v, on C such that N(v;)NV(H) # 0,
where 1 < i < 2. Next we will show that a cycle C; of length r +1in G
can be found in polynomial time.

If v,v; € E, define a graph G, := G[V (H) U { v, v2 }] — v1v9; otherwise
define G, := G[V(H) U {v;,v2 }]. Using breadth-first search algorithm in
the graph G;, we can find a shortest path P := v uju,...uv2 between v;
and v, in G;, where each vertex u; with 1 < ¢ < ¢t is in V(H). This step
can completed in O(|V(G)| + |E(G)|) time. More details on breadth-first
search algorithm can be found in [6].

Ifuyv~ € Eor u;v"’ € E, we can easily construct a cycle C; of length
r+1in G. ¥ v]v{ ¢ E, we can apply Lemma 2 to construct a cycle C; of
length r+1 in G. Now we assume that 19~ ¢ E, u1vt ¢ E, and vy vy € E.

If t > 2, then upv, ¢ E since P is a shortest path between v; and v
in G;. Now we consider the case ugvy € E. Then we can assume that
nvyt € E otherwise we can apply Lemma 2 to construct a cycle of C; of
length r 4+ 1 in G. Moreover, if u1v{ ¥ € E, ugv{* € E, or ugv1 € E, then
we can construct a cycle C; = ugu; C[vF ¥, 9] Jug, C1 = uza[‘v v ot ug,
or C; = uguyvy C o+, v] Juz of length 7 + 1 in G, respectively. So we now
assume that w0}t ¢ B, ugvft ¢ E, and ugv; ¢ E.

If v7vf* € E, then Hy := G[{u2,u1,v1,v7,v1}] 2 Z;. Thus N(u1) N
N(vw) - V(Hl) # . Choose a vertex, say , in N(ul) N N(vy) — V(H).
Now if z € V(C), then if z7z* ¢ E we can apply Lemma 2 to construct
a cycle Cy of length r+1in G and if z~z+ € E we can construct a cycle
C = ulé['ul, Cla*, vy Jou; of length in G. ¥ z € V(G) — V(C), then
we can construct a cycle C; = 1101 C v, v5 Jzws.-

If vy v ¢ E, since d(u1,v; ) = 2 and G is quasi-claw-free, there exists

a vertex, say ¥, such that y € N(u;)NN(v;) and N[y] C N{u1]JnN[vy]. No-
tice that ]+ € N{vy] but v7+ ¢ N[ui]nN{vy ). Thus y # v;. Using a con-
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struction which is similar to the one for the case N{(u1)NN(vy )-V(Hy) #90
just above, we can construct a cycle C; of length r + 1 in G.

Symmetrically, if ugv; € E, we can construct a cycle C; of length 7 + 1
in G.

We now assume that upvy ¢ E and ugv; ¢ E. Thus Hp := G[{ug, u1,v;,
vy ,v7 }] & Za. So N(u;)NN(v])—V(Hz) # 0. Using a construction which
is similar to the one for the case N(ui) N N(vy) — V(H;) # 0 just above,
we can construct a cycle C; of length r + 1 in G.

Next we consider the case ¢ = 1. Then vy # v] ~,o[,v{, and v}+
otherwise we can easily construct a cycle C) of length » + 1 in G. We also
have v; v] € E otherwise we can apply Lemma 2 to construct a cycle C;
of length r +1in G.

If vv; € E, we can construct a cycle C) = u, C[vy,v5]C [v5, o] |vowy
of length r 4+ 1 in G. Similarly, we can construct a cycle of length r + 1 in
G when vv{ € E, . Now we assume that v2v] ¢ E and vpv] ¢ E.

If viv; & E, then Hz = G[{vs,u2,v1,v7,v}] = Z. Thus N(v])n
N(uy) — V(H3) # 0. Choose a vertex, say z, in N(v{) N N(u1) ~ V(Ha).
If z € V(C), then 2~ 2+ € E otherwise we can apply Lemma 2 to con-
struct a cycle of C; of length r + 1 in G. Furthermore, if z € C[vi,v5],
then we can construct a cycle Ci = u;1C[v1,27|Clzt, v }2u; of length
r+1in G and if z € C[v},v] |, then we can construct a cycle C; =
ula[vl,z‘]ﬁ[z"',vl‘]zul of lengthof r+1in G. If z € V(G) - V(C), then
we can construct a cycle Gy = u; C[vy,v7)C[vf, v |2u; of length r+1in G.

Now we assume that v,v2 € E. If vovy € E or vov; ~ € E, then we
can easily construct a cycle C; of length r + 1 in G. So we assume that
vou; € E and vpvy - € E. Choose the first vertex w along 6[‘03‘ 21 ]
such that w ¢ N(v2). If vyw™ € E, then we can construct a cycle C; =
w0 Clw=, v |Clv,v5]C v, w™~Jvzus of length r+1in G. X vyw € E,
then we can construct a cycle C; = u1v; Cw, v |C i, v5 |C o, w e
of length 7 + 1 in G. If yyw™ € E, then we can construct a cycle C; =
ula[w',vz']a[vg‘,w“]vzul of length r+1 in G. ¥ u;w € E, then we can
construct a cycle C; = u, C [w,v; ] C [vg, w™|vau; of length r+1in G. Now
we can assume that vyw™ € E, viw € E, vyw™ ¢ E, and wyw ¢ E. There-
fore Hy := G{{w,w™,v2,u1,v1}] = Z,. Hence N(u1)NN(w™) -V (H,) # 0.

Choose a vertex 0 € N(uy)NN(w™) -V (H,). o € V(G)—-V(C), then
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we can construct a cycle Gy = u,0C [w™,vj] Cvi,v51C i, w " Jvaus.
If o € V(C), then o~ 0% € E otherwise we can apply Lemma 2 to con-
struct a cycle C; of length 7 +1in G. If 0 € 5[1);",10"‘], then we
can construct a cycle C; = u,C[o,v5 |Clvf, 0 Jvau; of length = + 1 in
G. Ifoe 6[10’*‘,'01‘] U Clvt,vs], then we can construct a cycle C; =
2100 [w™,07]Co*,v;]CvF, w ~|vzu; of length r + 1 in G.

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-
first search algorithm for finding a component H in G[V(G) — V(C)), and
the breadth-first search algorithm for finding the shortest path between v,
and v2 in Gy all can be completed in polynomial time, the step of enlarging
the cycle C of length r in G to a cycle C; of length r + 1 can be fulfilled in
polynomial time.

Apply the similar procedure as above to the cycle C; of length r +1 in
G, we can construct a cycle of length r + 2 in G. Repeat this process, we
can construct a cycle of length s for each s with r+1 < s < |V(G)|. Notice
that we can repeat the processes at most |V(G)| times, therefore we can
find a Hamiltonian cycle in the graph G in polynomial time. QED

Proof of Theorem 7. Let G be a graph satisfying the conditions in The-
orem 7. Check if G has a pair of nonadjacent vertices. If we cannot find a
pair of nonadjacent vertices in G, then G is a complete graph and we can
easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent
vertices in G, apply Lemma 1, we can find a cycle C of length r > 4 in G.
This step can be completed in O(|V (G)|+|V(E)|) time. If r = |V(G)|, then
we are finished. we now assume that r < |V(G)| -1 and give an orientation
on C.

Using depth-first search algorithm in the graph G[V(G) — V(C))], we
can find a connected component, say H, in G[V(G) — V(C)]. This step can
be completed in O(|V(G)| + |V(£)|) time. Since G is 2-connected, we can
find two distinct vertices, say v1 and vz, on C such that N(v;)NV(H) # 0,
where 1 < i < 2. Next we will show that a cycle C) of length at least r+1
in G can be found in polynomial time.

If viv2 € E, define a graph G, := G[V (H) U { v1,v2 }] — v1v2; otherwise
define G := G[V(H) U {v1,v2 }]. Using breadth-first search algorithm in
the graph G;, we can find a shortest path P := vujus...u;v2 between v,
and v, in G1, where each vertex u; with 1 < < ¢ is in V(H). This step
can be completed in O(|V(G)| + [E(G)|.
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We can assume that v}v, v3v; € E, otherwise we can apply Lemma
2 to construct a cycle C; of length r + 1 in G. We can further assume that
vy # v7 7, ,v7, and v, otherwise we can easily construct a cycle C;
of length at least 7 + 1 in G. Also, v, # v; ~,v;,v5, and v3*, otherwise
we can easily construct a cycle C; of length at least r 41 in G. Moreover,
we can assume that viv; ™, v1vg, vivd, v1vd™, vavy T, veul, oy, and
voui+ are not in E, otherwise we can easily construct a cycle C; of length
atleast r +1in G.

Find the first vertex, say w,, along 6[01" , V3 | such that vyuwy ¢ E and
the first vertex, say ws, along C[vf,vy] such that vaws; ¢ E. We can
assume that u;p is not in E for each ¢ with 1 < ¢ < ¢ and p is any vertex
in Cv},w1) U Clvf, wa], otherwise we can construct a cycle C) of length
at least » + 1 in G. We can further assume that pg, v1¢q, and vep are not
in E, where p is any vertex in a['vi",wl] and q is any vertex in ?j[v;",wz]
otherwise we can easily construct a cycle of length at least » + 1 in G.

If t = 1, then H; = G[{w1,w],v1,u1,v2, w5 ,wa}] is isomorphic to
P, if vjua € E or P;f otherwise. Thus N(uj) N N(wy) — V(H;) # 0
or N(uy) N N(wq) — V(Hy) # 0 or (N(u1) N N(wy) — V(Hy) # 0 and
N(w)NN(wy) - V(H,) #0).

When N(u;) N N(wr) — V(H;) # 0, choose a vertex, say o, in N(u;) N
N(w) - V(H,) # 0. If o € V(G) — V(C), then we can construct a cycle
C1 = 110C [wy, 97| C v, wy Jurus of length at least r+1in G. If o € V(C),
then we can assume that 0~ 0" € E otherwise we can apply Lemma 2 to
construct a cycle C; of length r+ 1 in G. Thus we can construct a cycle of
Ci = u,0C [w1,0"|C o+, v[|C v, wjv1us of length at least r + 1 in G.
Similarly, we can construct a cycle C; of length at least 7 4+ 1 in G when
N(w) N N(wz) - V(H;) # 0.

When N(u,) N N(wy) — V(Hy) # 0 and N(w) N N(wy ) — V(Hy) # 9,
choose a vertex, say o, in N(u)NN(wy)—-V(Hy) # 0. Ifo € V(G)-V(C),
then we can construct a cycle C; = u;0C [wy ,v; |C [v¥, wi ~Juyu; of length
at least r + 1 in G. If 0 € V(C), then we can assume that 0”0t € E other-
wise we can apply Lemma 2 to construct a cycle C} oflength r+1 in G. Thus
we can construct a cycle of C; = u10C [wy,0”]Co*,v7|C v}, wi ~vyu
of length at least r +1 in G.

If t > 2, since P = vjujus...ugv2 is a shortest path between v; and

vg in Gy, wyv2 € E. If vyvp € E, since d(u1,v;) = 2 and G is quasi-
claw-free, there exists a vertex, say y, such that y € N(u;) N N(v;') and
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N(y] € N[u1] U Nfvy]. Notice that va € N[v] but v2 & N[u;] U N[v1],
we have y # v;. Thus if y € V(G) — V(C), we can construct a cycle
C1 = w1 Clv1, vy Jyu of length at least  + 1 in G. Ky € V(C), then
we can assume that y~y+ € E otherwise we can apply Lemma 2 to con-
struct a cycle C) of length » + 1 in G. Thus we can construct a cycle
C = ulgsfvl,y“]a[y‘*,vl‘]yu; of length at least r + 1 in G. Next we as-
sume that vive ¢ E.

Ift =2, then Hy = G[{wl,wl',vl,ul,ug,vz,w;}] = P;. Thus N(ul) n
N(w,)-V(H) #0or N(u1)NN(wy ) — V(H2) # 0 or (N(u)NN(wy) —
V(H2) # 0 and N(u;) N N(v2) — V(H2) # 0).

When N(u;) N N(w;) — V(Hz) # 0 or N(ua) N N(wy ) — V(Hz) # 0
or N(u;) N N(wy) — V(Hz) # 9, using a construction which is similar to
the one for the cases t = 1 and N(u1) N N(w;) - V(Hy) #0ort =1
N(u1)NN(wy)—-V(H1) # 0, we can construct a cycle C; of length at least
r+1inG

If t = 3, then H3 = G[{w:,w;,v1,u1, U2, U3, v2}] = P;. Thus N(u;) N
N(vg) — V(H3) # 0 or N(u1) N N(wy) - V(Hz) # 0 or (N(u1) N N(wy) -
V(Hs) # 0 and N(u1) N N(us) — V(Hz) # 0).

When N(u1)NN(v2) — V(Hz) # 0, choose a vertex p € N(u1)NN(v2)—
V(H3) # 0. Since P = v ujuqugve is a shortest path between v; and v,
in G,, we have vz ¢ E, p € V(C), and d(u;,v2) = 2. Since G is quasi-
claw-free, there exists a vertex, say o, such that o € N(u1) N N(vz) and
Nlo] € Nfu;] U N[vg]. Again the fact that P = v ujuzugve is a shortest
path between v; and v in G, implies that o € V(C). We can assume
that 0- 0™ € E otherwise we can apply Lemma 2 to construct a cycle C; of
length 7+1 in G. We further have o € C[w],v5 "JUC[wF, vy 7], otherwise
we can construct a cycle C; of length at least r + 1 in G.

If o € Clwt,v; 7], since 0~ € N[o], we have o~ € N([u;]JUN[vo]. Ifo™ €
Nu;], we can easily construct a cycle C of length at least r+1in G. If o~ €
N{vg], then we can construct a cycle C; = u1Clo, vz |C [, 0™ Juauaugus
of length at least v +1 in G. If o € C [wy, vy 7], since o* € N{o], we have
ot € N[ui) U N[vg). If ot € Nlu,], we can easily construct a cycle Cy of
length at least r + 1 in G. If ot € Nfuvy)], then we can construct a cycle
C1 = u1ugu3vs C [0+, v5 1 C v, ojuy of length at least r +1 in G.

When N(u;) N N(wy) — V(Hs) # 0 or N(u3) " N(wy ) — V(Hs3) # 0,
using a construction which is similar to the one for the cases ¢ = 1 and
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Nw)NN(w)-V(H)#0ort=1N(u) " N(wy )~ V(H,) # 0, we can
construct a cycle C; of length at least r +1in G

Ift > 4, then Hy = G[{wl, wy , 'l)1,7£1,'l£2,'d3,1.&4}] & P;. Thus N(’Uq) N
N(ug) ~ V(Hy) # 0 or Nun) (1 Nun) — V(He) # § o (N(us) O N(up) -
V(Hs) # 0 and N(u1) N N(ug) — V(Ha) # 0).

When N(u;)NN(us)—V(H;) # 0, choose a vertex p € N(u;)NN(uq)—
V(H,) # 0. Since P = vjuus...usv is a shortest path between v; and v,
in G, we have ujus ¢ E, p € V(C), and d(u1,u4) = 2. Since G is
quasi-claw-free, there exists a vertex, say o, such that o € N(u;) N N(uy)
and N[o] C N[u;] U Nfug]. Again the fact that P = vjujus...usvs is a
shortest path between v; and v, in G; implies that o € V(C). Since
0~ € N|u1]UNJug], we can easily construct a cycle C; of length 41 in G.

When N(u1) N N(w1) ~ V(Ha) # 0 or N(us) 0 N(wy) - V(Hy) # 0,
using a construction which is similar to the one for the cases ¢ = 1 and
N(uw)NN(w)~-V(H) #0ort =1 N(u1)NN(w; ) — V(H;) # 0, we can
construct a cycle C; of length at least r +1 in G

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-
first search algorithm for finding a component H in G[V(G) — V(C)), and
the breadth-first search algorithm for finding the shortest path between v;
and vz in G all can be completed in polynomial time, the step of enlarging
the cycle C of length r in G to a cycle C; of length at least r + 1 can be
fulfilled in polynomial time.

Apply the similar procedure as above to the cycle C; of length at least
r+1in G, we can construct a cycle longer than C) in G. Repeat this pro-
cess, we can construct a Hamiltonian cycle in G. Notice that we can repeat
the processes at most |V(G)| times, therefore we can find a Hamiltonian
cycle in the graph G in polynomial time. QED

Proof of Theorem 8. Let G be a graph satisfying the conditions in The-
orem 8. Check if G has a pair of nonadjacent vertices. If we cannot find a
pair of nonadjacent vertices in G, then G is a complete graph and we can
easily find a Hamiltonian cycle in G. If we can find a pair of nonadjacent
vertices in G, apply Lemma 1, we can find a cycle C of length » > 4 in G.
This step can be completed in O(|V(G)|+|V (E)|) time. If r = [V(G), then
we are finished. we now assume that r < |V(G)| -1 and give an orientation
on C.

Using depth-first search algorithm in the graph G[V(G) — V(C)], we
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can find a connected component, say H, in G[V(G) — V(C)]. This step can
be completed in O(|V(G)| + |V(E)|) time. Since G is 2-connected, we can
find two distinct vertices, say v; and va, on C such that N(v;)"\'V{(H) # 0,
where 1 < i < 2. Next we will show that a cycle C) of length at least »+ 1
in G can be found in polynomial time.

If v,v; € E, define a graph G, := G[V(H) U { v1, v2 }] — v1v2; otherwise
define Gy := G[V(H) U { v1,v2 }]. Using breadth-first search algorithm in
the graph G;, we can find a shortest path P := vjujus...u;va between v
and v2 in G;, where each vertex u; with 1 < i <t is in V(H). This step
can be completed in O(|V(G)| + |E(G)|) time.

We can assume that v} o], viv; € E, otherwise we can apply Lemma
2 to construct a cycle C; of length r + 1 in G. We can further assume that
v2 # vy ",v5,v¥, and v§F, otherwise we can easily construct a cycle C,
of length at least r + 1 in G. Also, v1 # v; ~,v3,v7, and v] T, otherwise
we can easily construct a cycle C; of length at least r + 1 in G. Moreover,
we can assume that vv; ™, 115, V105, Vv T, vavl T, voul, vavy, vy vz,
vivd, and vovit are not in E, otherwise we can easily construct a cycle
C; of length at least 7 + 1 in G.

We first prove the claim that if N(v; ) N N(vy) # 0, then we can con-
struct a cycle C; of length at least r + 1 in G.

Since v v; ¢ E and N(v])NN(vz ) # 0, we have d(vy ,vz ) = 2. Since
G is quasi-claw-free, there exists a vertex, say o, such that o € N(v;') N
N(vz) and No} C Npy]UNJv;]. If o € V(G) — V(C), we can easily con-
struct a cycle C; of length at least r+1 in G. If o € V(C), then {o™,0%} C
Nlo] C Njv7]U N[v;]. When 0 € Clvt,vi~), if o~ € N(v[) or ot €
N(v3), we can construct a.cycle Cy = u; C[v1,v3 1Clo,v; 1C [0, valus...uauy
or C; = 4, Clvr,v5]1C o, v7]Clo,va] us...uguy of length at least r + 1
in G. Now we can assume that o~ ¢ N(v{') and ot ¢ N(vy). Thus
0o~ € N(vy) and ot € N(vy). Since G[{vz,0™,0,0%, vy }] is not iso-
mc%phic to B, we ha.veho‘o"' € E and so we can construct a cycle C; =
43 C[v1,v5]0C [vy, 07| C 0™, vauys...ugu; of length at least r+1in G. Sim-
ilarly, we can construct a cycle C; of length at least r + 1 in G when
o € Clot,v3 7).

Symmetrically, we can prove the claim that if N(v})NN(v) # 0, then
we can construct a cycle C; of length at least 7 4+ 1 in G.

If t = 1, since G[{;a)f,vi",vl,ul,vg}] is not isomorphic to B, we have
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vve € E. If vfvs € E, then N(v}) N N(v3) # 0. By the claim we just
proved we can construct a cycle of C; of length r + 1 in G.

We now consider the case vvy; ¢ E. Then Hj := G[{v],v],v1,u1, 02,
vg }| & Z3. Thus N(u1)ON(vy) =V (H1) # @ or N(u1)NN(vf) - V(Hy) #
@ or N(ve) N N(vy) — V(H;) # @ or N(ve) N N(vi) — V(H;) # 0 or
(N@3) N N(o7) - V(Ex) # 0 and N(u7) 0 N(uf) - V(Hy) #0).

When N(u)NN(vy )—V(Hy) # 0, choose a vertex p € N(uy )N (vy ) -
V(H,). If p e V(G) — V(C), then we easily construct a cycle C; of length
at least r+1 in G. If p € V(C), then we can assume that p—p* € E
otherwise we can apply Lemma 2 to construct a cycle C; of length r + 1 in
G. Now we can construct a cycle C; =u; a['vl, p‘]a[p’*‘,vl' Jpuy of length
at least r 41 in G. Similarly, we can construct a cycle C) of length at least
r+1in G when N(u;) N N(vf) — V(H,) # 0.

When N(v2) N N(vy') — V(H,) # 0, choose a vertex ¢ € N(vz) N
N(vy) ~ V(H,). If ¢ € V(G) — V(C), then we can construct a cycle
C = w1 Clvy,v3] Clvg, vy |quauy of length at least r + 1 in G. Now we
assume that ¢ € V(C). We can assume that ¢ ¢ N(v;) otherwise by the
claim we proved above we can construct a cycle of length at least r 4 1
in G. We can further assume that ¢ ¢ N(u;) otherwise we can apply
Lemma 2 to construct a cycle C) of length r + 1 in G when ¢~ ¢* ¢ E or
Ci1 = w1 Clv1,q7]Clg*,v7 lpws of length at least r+1 in G when g~¢* € E.
Notice that d(u,,v;) = 2. Since G is quasi-claw-free, there exists a vertex,
say w, such that w € N(u;) N N(vy) and N[w] € Nfu;] U N[v;]. Since
g € Nlvg] but ¢ ¢ N[u;] U Nfv; ], we have w # v,. Using a construc-
tion which is similar to the one for the case N(u;) N N(v;') — V(H;) # 0
above, we can construct a cycle C; of length at least r + 1 in G. Sim-
ilarly, we can construct a cycle C; of length at least r + 1 in G when
Nw)NN@) - V(H,) #0

When N(v; ) N N(vy) — V(H,) # 0, using the claim we proved above,
we can construct a cycle C; of length at least r + 1 in G.

Ift > 2, since P = vjujuz...usv2 is a shortest path between v; and v,
in Gl, we have Uy V2 ¢ G.

Ift = 2 and viv, € E, since d(u1,v]) = 2 and G is quasi-claw-
free, there exists a vertex, say w, such that w € N(u;) N N(v) and
N{w] € N{u1] U Nvy]. Notice that vz € N(v;] but v ¢ N[u1] U N[vy], we
have w # v;. Using a construction which is similar to the one for the case
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t =1 and N(u1) N N(vy) — V(H,) # @ above, we can construct a cycle C;
of length at least » +1 in G.

If t = 2 and vv; ¢ E, then Hy = G[{v],v],v1,u1,u2,v2}] & Zs.
Thus N(u;) N N(vy) — V(H,) # 0 or N(uy) N N(vt) — V(Hz) # 0 or
N(u2) NN(v) — V(Hz) # 0 or N(u2) "\ N(v) — V(Hz) # @ or (N(v2) N
N(vi) - V(H,) # 0 and N(v2) "\ N(v{) - V(Hy) # 0).

When N(u;) N N(vy) — V(Hz) # 0 or N(w) N N(vt) — V(Hz) # 0
or N(uz) N N(vy) — V(Hz) # 0 or N(uz) N N(v]) ~ V(Hz) # 0, we
can easily construct a cycle C) of length at least » + 1 in G. Using a
construction which is similar to the one for the case when ¢ = 1 and
N(v2)NN(vy)—V(H;) # 0, we can construct a cycle C; of length at least
r+1in G when N (v2)NN(vy )~V (Hz) # @ and N(v)NN(v)-V(Hz) # 0.

It > 3, then H := G[{vy,v{,v1,u1,u2,u3}] & Z3. Thus N(u;) N
N(vi') — V(Hs) # 0 or N(u1) N\ N(v{) — V(Hs) # @ or N(uz) N N(vy) -
V(H3) # 0 or N(ug)NN(v{)—V(Hs) # 0 or (N(us)NN(vy)—V(Hs) # 0
and N(uz) N N(v}) — V(H3) # 0). Using or slightly modifying the con-
structions in the cases ¢ = 1 and ¢ = 2, we can construct a cycle C; of
length at least r+1in G .

Since the algorithmic procedures in Lemma 1 and Lemma 2, the depth-
first search algorithm for finding a component H in G[V(G) — V(C))], and
the breadth-first search algorithm for finding the shortest path between v;
and v; in G; all can be completed in polynomial time, the step of enlarging
the cycle C of length r in G to a cycle C; of length at least r + 1 can be
fulfilled in polynomial time.

Apply the similar procedure as above to the cycle C) of length at least
7+ 1 in G, we can construct a cycle longer than C; in G. Repeat this pro-
cess, we can construct a Hamiltonian cycle in G. Notice that we can repeat
the processes at most |V(G)| times, therefore we can find a Hamiltonian
cycle in the graph G in polynomial time. QED
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