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Abstract

Let G be a graph of order n. Let a and b be integers with
1 <a<b and let k > 2 be a positive integer not larger than
the independence number of G. Let g(z) and f(z) be two non-
negative integer-valued functions defined on V(G) such that a <
g(z) < f(z) < b for each z € V(G). Then G has a (g, f)-factor

if the minimum degree §(G) > 5”;:-_}(15;1-1, n> 5“—'“’)3554?1—“& and

|Ne(z1) UNeg(z2)U---UNg(zk)| 2 gba;;,),ﬁ for any independent sub-
set {x1,22,...,zx} of V(G). Furthermore, we show that the result is
best possible in some sense.
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1. Introduction

The graphs considered in this paper will be finite and undirected graphs
without loops and multiple edges. Let G be a graph with vertex set V(G)
and edge set E(G). For z € V(G), we denote by dg(z) the degree of z in
G and by Ng(z) the set of vertices adjacent to z in G. we use Ng[z] to
denote Ng(z) U {z} and 6(G) to denote the minimum degree of G. For a
subset § C V(G), we denote by Ng(S) the union of Ng(z) for every z € S,
by G[S] the subgraph of G induced by S, by G — S the subgraph obtained
from G by deleting the vertices in S together with the edges incident to the
vertices in S. We write d(S) =} .gd(v).

Let g(z) and f(z) be two nonnegative integer-valued functions defined
on V(G) with g(z) < f(z) for any z € V(G). Then a spanning subgraph F’
of G is called a (g, f)-factor if g(z) < dr(z) < f(z) holds for any = € V(G).
A (g, f)-factor is called an [a, b}-factor if g(z) = a and f(z) =b. An [a,d)-
factor is called a k-factor if @ = b = k. The other terminologies and
notations may be found in [1].

Many authors have investigated graph factors(4,7] and (g, f)-factors[5,9,10]
In (8], T. Nishimura gave the following result.

Theorem 1 [8]. Let k > 3 be an integer and G be a connected graph
of order n with n > 4k — 3, kn even, and §(G) > k. If for each pair of
nonadjacent vertices z,y of V(G)

n
ma.x{dc(a:),dg(y)} 2> 51
then G has a k-factor.

In (3], Yanjun Li and Maocheng Cai extended Theorem 1 to [a, b]- fac-
tors.

Theorem 2 [3]. Let G be a graph of order n, and let a and b be in-
tegers such that 1 < a < b. Then G has an [a,b]-factor if 6(G) > a,

n22a+b+“2T"’ and

an

ma.x{dc(x), dG(y)} 2 m

for any two nonadjacent vertices x and y in G.

In (7}, Haruhide Matsuda gave a sufficient condition in terms of neigh-
borhood union for the existence of [a, b]-factors.

Theorem 3 [7]. Let a and b be integers such that 1 < a < b, and let

258



G be a graph of order n with n > M,f"'ﬁ)-, and 6(G) 2 a. If

an

INe(z) U Ne(y)| 2 3

for any two nonadjacent vertices x and y of G , then G has an [a, b]-factor.

In [2], Jianxiang Li proved the following theorem, which is an extension
of Theorem 3.

Theorem 4 [2]. Let a and b be integers such that 1 < a < b, and let
G be a graph of order n with n > Qﬂﬁﬂ:j’ﬂl. If§(G) > (k - 1)a, and

an

[Nag(z1) U Ng(zo) U -+ U Ng(zk)| > o

for any independent subset {z1, z2, ...z} of V(G), where k > 2, then G has
an [a, b]-factor.

It is easy to see that Theorem 3 is a special case of Theorem 4 for k£ = 2.

We extend Theorem 4 to (g, f)-factors and obtain the following result.

Theorem 5. Let G be a graph of order n, and let a and b be integers
with 1 < a < b. Let g(z) and f(z) be two nonnegative integer-valued func-
tions defined on V(G) such that a < g(z) < f(z) < b for each z € V(G).
Let k > 2 be a positive integer not larger than the independence number of

G. Then G has a (g, f)-focter if 8(G) 2 Me-1)GE-1) s (etb) (et —2)
an
ING(fL'l) U Ng(1:2) U..-y NG(xk)l > (ba—-'.lz'n (1)

Jor any independent subset {z1,x2, ...z} of V(G).

2. Proof of Theorem 5

We use the following lemma in our proof, which is a special case of Lovdsz’s
(g, f)-factor theorem.

lemma 1 [6]. Let G be a graph, and let g(z) and f(x) be two non-
negative integer-valued functions defined on V(G) such that g(z) < f(z)
for each z € V(G). Then G has a (g, f)-factor if and only if

66(S,T) = £(S) + de_s(T) — g(T) = 0
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for all disjoint subsets S and T of V(G).

Proof of Theorem 5. We use the similar method in [7] to prove
Theorem 5. Suppose that G satisfies the condition of Theorem 5, but has
no (g, f)-factor. Then, by Lemma 1, there exist two disjoint subsets S and
T of V(G) such that

06 (5,T) = f(5) + dg-s(T) — g(T) < -1. (@)

We choose such subsets S and T which satisfy |T'| is minimum.
We first prove the following claims.
Claim 1. dg_gs(z) < g(z) <b—1forallz € T.
Proof. If dg_s(z) > g(z) for some z € T, then the subsets S and
T\ {z} satisfy (2). This contradicts the choice of S and T'. Therefore,
dg-s(z) <g(z) <b-1

for all z € T holds. o
Claim 2. [T} > a+2.

Proof. Assume |T| < a+ 1. By (2) and |S]| + dg—_s(z) = dg(z) >
§(G) > 2=1=1 > 1 (since k> 2and b> a+1) forall z € T, we

obtain
-1 > 66(S,T) = f(S) + de-s(T) — g(T)
2 (a+1)]S|+dg-s(T) — (b—1)|T)
> TS|+ de-s(T) — (b—1)|T)

Yeer(IS) + de_s(z) — (b-1)) >0,
which is a contradiction. Thus |T'| > a + 2. o

Since T # ¢, in the following we shall construct a sequence z,, T3, ...z,
of vertices of T'. Let

hy = min{dg_s(z)|z € T}

and choose z; € T to be a vertex such that dg_s(z;) = h;. By Claim 1,
we have by < g(z) <b-—1.

If j 2 2 and T\ (U]; Nrle:]) # 4, let
i—1
h; = min {dc_s(a:)lz eT\ ( U NT[:c,-]) }
=1

and choose z; € T'\ (2] Nr[z:]) to be a vertex such that de_s(z;) = h;.
This defines a nondecreasing sequence of integers 0 < h; < hy < -+- <
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hr < g(z) £ b—1 and a sequence of independent vertices z;, T2, ...,z in
T with dg_s(z;) = h; (1 <i<m)and T\ (U, Nr[z:i])) = ¢

Claim 3. |T| > (k—1)b+1.

Proof. Suppose that [T| < (k—1)b. Since |S|+hy > dg(z1) = §(G) >

5o-1D-1) by (2) and 1 < by < b1, it follows that

-1 2 f(S)+de-s(T)-9(T)

> (a+1)|S|+m|T| - (b-1)T|
= (a+1)|S|+ (b1 — b+ 1)|T|
> (a+1)(C=DE=D —py) + (b — b+ 1)(k—1)b
= bb—-1)k-1)-hi(a+1)+hi(k—1)b+b(1—-b)k~1)
= bb—-1)k-1)+b1-0)k—1)+h(bk—-1)—a—-1)
> bb-1)(k-1)+b(1-b)(k-1)
= 0.

This is a contradiction. Thus we have |T| > (k- 1)b+ 1. D

Since [Np[z;]] = hi +1 < dg-s(zi) +1 < b — 1(by Claim 1) and
IT| > (k—1)b+1> (k—1)(b—1) + 1, we have # > k and we can take an
independent subset {z;,z3,...,zt} € T

By the assumption of the theorem we can get the following inequalities:

3
b-1
( Py l))n < |Ng(z1) U Ng(z2) U+ -- U Ng(zi)| < |S]+ Zhi.
i=1
It follows that
15| > —2 (b I)n - Zh (3)
i=1

Since n—|S|—|T'| > 0 and b—1—hy > 1, we have (n~|S|—|T|)(b—1—hi) = 0.
Note that

i-1 :
Np[zi]\ | Nrlz;] #0,=2,3,..,k— 1
j=1

and

< EINT[w,ll < Z(dc—s(-"fg)‘*'l) = Zj(h +1),i=1,2,...k.

j=1

U Nr(z;]

Therefore we have

(n—|S| = 1T -1 - hs)
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> 0>-1
> f(S)+dg-s(T) —9(T) +1
> (a+1)|S+dg-s(T) - (b-1)|T| +1
= (a+1)|S]+ ha|Nr[zi]| + ha(|N7[z2] \ Nrfza]]) + -
k-2
+hi—1 (INT[Ik—ll\ U NT[xiH)
=1
k-1
+hye (lT[ - Nrlzi] ) —(b=-1)|T|+1
i=1
k-1
> (a+1)IS|+ (b1 — ke)INTz1]l + D hi + (hx — b+ 1)|T]|
i=2
k-1
—hi Y |Np[z)] + 1
=2
k-1
= (@+DIS|+ (b1 = hi)(hy + 1)+ D ki + (ke — b+ 1)|T)|
=2
k-1
—he ) (hi+1)+1
=2
k-1 k-1
= @+DIS|+h+Y kit (h—b+ DT =k Y (hi +1) +1.
i=1 i=1

Thus it follows that

k-1 k-1
0 < n(b~1-he)—(a+b—he)|S|+he D hi—)  hit+hi(k—1)—hi-1. (4)

i=1 i=1

}]?)’ (3) and (4), hy S hy < -+ < hy < b—2, and n > FA*EIB-2)
ave

0 < n(b—l—h)—(a+b—h)((b_1)n—-zk:h-)+h kz_fh.
= k k a+b < i kizl i
k-1
=D hi+hi(k—1)—h} -1

i=1
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-1

- (““)"h +(a +b)2h, thh +hk2m Zh,-

i=1 i=1 i=1

+hi(k—1)—h2 -1

k-1
_ (“TZ"" +((a+b=1)h1 —h}) + (a+b- l)g"‘

+hila+b+k—1)—hZ -1

k—1

_(e+D)n
< et (et b- l)hk+(a+b—1)§hk
+hi(a+b+k—1)—~hi—1
(a.+1)n

= Ty k(a+ bk — B2 — 1.

If hi > 0, then 0 < 2h; — b — 1 < 0 (since n > @HKEEN-2)) ¢hy i
a contradiction. If hy = 0, then 0 < -1, a contradiction. So we conclude
that G has a (g, f)-factor.

Remark 1. By the following example we can show that the condition
(1) is best possible in the sense that it can not be replaced by |Ng(z;) U

Ng(z2)U---U Ng(zi)| 2 ng-Tl:}&

We let G = K(3_1); be a complete graph and Gg = ((a+1)t+1)K; be
(a+ 1)t + 1 independent vertices. Then let G = G + G, be the join of G;
and Ga(that is, V(G) = V(G1) UV (G2), E(G) = E(G1) U E(G2) U {uv :
u € V(G1),v € V(Gs)}. Thus we have |V(G;)| = (b— 1)t and |V(G2)| =
(e + 1)t + 1, where ¢t is a sufficiently large positive integer(For some k, we

choose t > k(a"'b) LI “1‘_';_;1, thus the conditions §(G) > Jﬂ)-(";l and

? 1% suffice). Then it follows that n = |V(G1)| + |V(Gg)| =
a an

(b-1)n
a+b

for any independent subset {z1,%2,...zx} of V(G2). We take S = V(G,),
g(z) =aand f(z) =a+1forz € V(G1); T = V(Gz), g(z) =b-1
and f(z) = b for z € V(G3). It is easy to see that G has no (g, f)-factors
because 6¢(S,T) = f(S) — g(T) = (a + DIV(G1)| - (b — D|V(G2)] =
(e+1)o-1)t—(b-1D((a+1)t+1)=—-(b—-1)<0.

Remark 2. We can see that the minimum degree bound in Theorem 5
8(G) > Ye=1k=1) i best, possible when b=a+1 and k = 2.

> [No(a1) U No(ea) U-+- U Na(a] = (- 1)t > £
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