A note on the characterization of potentially $K_{1,1,s}$ -graphic sequences *

Meng-Xiao Yin^a, Cheng Zhong^a, Feng Yang^a
^aSchool of Computer, Electronics and Information,
Guangxi University, Nanning 530004, China.

Abstract: For given a graph H, a graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be potentially H-graphic if there is a realization of π containing H as a subgraph. In this paper, we characterize potentially $K_{1,1,6}$ -positive graphic sequences. This characterization implies the value of $\sigma(K_{1,1,6},n)$. Moreover, we also give a simple sufficient condition for a positive graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ to be potentially $K_{1,1,s}$ -graphic for $n \geq s+2$ and $s \geq 2$.

Keywords: graph, degree sequence, potentially $K_{1,1,s}$ -graphic sequence. Mathematics Subject Classification (2000): 05C07.

1. Introduction

The set of all sequences $\pi=(d_1,d_2,\ldots,d_n)$ of non-negative, non-increasing integers with $d_1\leq n-1$ is denoted by NS_n . A sequence $\pi\in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . If each term of a graphic sequence π is nonzero, then π is said to be $positive\ graphic$. For a sequence $\pi=(d_1,d_2,\ldots,d_n)\in NS_n$, denote $\sigma(\pi)=d_1+d_2+\cdots+d_n$. For given a graph H, a sequence $\pi\in GS_n$ is said to be $potentially\ H-graphic$, if there is a realization of π containing H as a subgraph. Yin and Chen [9] characterized potentially $K_{2,3}$ -graphic sequences and potentially $K_{2,4}$ -graphic sequences, where $K_{r,s}$ is the $r\times s$ complete bipartite graph. Hu and Lai [6] characterized potentially $K_{3,3}$ -graphic sequences. Yin and Li [11] gave

^{*}Supported by Guangxi Universities Excellent Scholar Support Programme (No. RC2007004), Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (NO.2007-71) and the Scientific Research Foundation of Guangxi University (No. X081034).

[†]E-mail: yinmengxiao@yahoo.com.cn

two sufficient conditions for $\pi \in GS_n$ to be potentially $K_{1,1,\dots,1,2}$ -graphic, where $K_{1,1,\dots,1,2}$ is the $r_1 \times r_2 \times \dots \times r_t$ complete t-partite graph with $r_1 = r_2 = \dots = r_{t-1} = 1$ and $r_t = 2$. Eschen and Niu [3] characterized potentially $K_{1,1,2}$ -graphic sequences. Hu and Lai [5] characterized potentially $K_{1,1,3}$ -graphic sequences. In the following, the symbol x^y in a sequence stands for y consecutive terms, each equal to x.

Theorem 1.1 [3] Let $n \geq 4$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence. Then π is potentially $K_{1,1,2}$ -graphic if and only if the conditions hold (1) $d_1 \geq d_2 \geq 3$ and $d_4 \geq 2$, (2) $\pi \neq (3^6), (3^2, 2^4), (3^2, 2^3)$.

Theorem 1.2 [5] Let $\pi = (d_1, d_2, \ldots, d_n)$ be a graphic sequence with $n \geq 5$. Then π is potentially $K_{1,1,3}$ -graphic if and only if the conditions hold (1) $d_2 \geq 4$ and $d_5 \geq 2$, (2) $\pi \neq (4^2, 2^4), (4^2, 2^5), (4^3, 2^3)$ and (4⁶).

Recently, Yin et al. [12] characterized potentially $K_{1,1,4}$ -graphic sequences and potentially $K_{1,1,5}$ -graphic sequences.

In [4], Gould et al. posed an extremal problem on potentially H-graphic sequences as follows: determine the smallest even integer $\sigma(H,n)$ such that every positive sequence $\pi \in GS_n$ with $\sigma(\pi) \geq \sigma(H,n)$ is potentially H-graphic.

In this paper, we first characterize potentially $K_{1,1,6}$ -positive graphic sequences. That is the following.

Theorem 1.3 Let $n \geq 6$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence. Then π is potentially $K_{1,1,6}$ -graphic if and only if π satisfies the following conditions: (1) $d_2 \geq 7$ and $d_8 \geq 2$, (2) π is not one of the following sequences

 $n = 9: (7^2, 2^7), (7^2, 4, 2^6), (7^2, 5, 3, 2^5), (7^2, 6, 3^2, 2^4), (7^2, 6, 4^2, 2^4), (7^3, 6, 3^5), (7^4, 4, 3^4), (7^3, 5^3, 2^3), (7^3, 5, 4^2, 2^3), \\ n = 10: (7^2, 2^8), (8, 7, 5, 2^7), (7^2, 6, 2^7), (7^3, 3, 2^6), (8, 7, 6, 3, 2^6), (7^2, 5, 2^6, 1), (7^2, 6, 3, 2^5, 1), (7^2, 6, 4, 2^6), (7^3, 4, 3, 2^5), (8, 7^2, 3^2, 2^5), (8, 7^2, 4^2, 2^5), (7^3, 3^2, 2^4, 1), (7^3, 4^2, 2^4, 1), (7^4, 3^5, 1), (7^3, 5, 4, 2^5), \\ n = 11: (8^2, 6, 2^8), (8, 7, 6, 2^7, 1), (7^2, 6, 2^8), (9, 7, 6, 2^8), (8^2, 7, 3, 2^7), (8, 7^2, 2^8), (8, 7^2, 4, 2^7), (8, 7^2, 3, 2^6, 1), (9, 7^2, 3, 2^7), (7^2, 6, 2^6, 1^2), (7^3, 2^7, 1), (7^3, 3, 2^5, 1^2), (7^3, 4, 2^6, 1), (7^3, 3, 2^7), (7^3, 5, 2^7), (8^3, 3^2, 2^6), (8^3, 4^2, 2^6), \\ n = 12: (8^3, 2^9), (9, 8, 7, 2^9), (9, 7^2, 2^8, 1), (8^2, 7, 2^8, 1), (8, 7^2, 2^7, 1^2), (8, 7^2, 2^9), (10, 7^2, 2^9), (9, 8^2, 3, 2^8), (7^3, 2^8, 1), (8^3, 3, 2^7, 1), (7^3, 2^6, 1^3), (8^3, 4, 2^8), \\ n = 13: (9^2, 8, 2^{10}), (9, 8^2, 2^9, 1), (10, 8^2, 2^{10}), (8^3, 2^8, 1^2), (8^3, 2^{10}), (9^3, 3, 2^9), \\ n = 14: (10, 9^2, 2^{11}), (9^3, 2^{10}, 1), \\ n = 15: (10^3, 2^{12}).$

As an application of the characterization, it is straightforward to find the value of $\sigma(K_{1,1,6},n)$. Moreover, we also give a sufficient condition for a positive graphic sequence π to be potentially $K_{1,1,s}$ -graphic.

Theorem 1.4 Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence with $n \geq s+2$ and $s \geq 2$. If $\pi \neq (3^6)$ for s=2, $\pi \neq ((s+1)^{s+3})(s$ is odd) and $d_{s+2} \geq s+1$, then π is potentially $K_{1,1,s}$ -graphic.

2. Proofs of Theorem 1.3 and Theorem 1.4

In order to prove Theorem 1.3 and Theorem 1.4, we also need the following known results.

$$\pi_k'' = \begin{cases} (d_1, d_2, \dots, d_n) \in NS_n \text{ and } 1 \le k \le n. \text{ Let} \\ (d_1 - 1, \dots, d_{k-1} - 1, d_{k+1} - 1, \dots, d_{d_k+1} - 1, d_{d_k+2}, \dots, d_n), \\ \text{if } d_k \ge k, \\ (d_1 - 1, \dots, d_{d_k} - 1, d_{d_k+1}, \dots, d_{k-1}, d_{k+1}, \dots, d_n), \\ \text{if } d_k < k. \end{cases}$$

Let $\pi'_k = (d'_1, d'_2, \ldots, d'_{n-1})$, where $d'_1 \geq \cdots \geq d'_{n-1}$ is the rearrangement in non-increasing order of the n-1 terms of π''_k . π'_k is called the *residual* sequence obtained by laying off d_k from π .

Theorem 2.1 [7] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ and $1 \leq k \leq n$. Then $\pi \in GS_n$ if and only if $\pi'_k \in GS_{n-1}$.

Theorem 2.2 [2] Let $\pi = (d_1, d_2, \ldots, d_n)$ be a non-increasing sequence of nonnegative integer with even $\sigma(\pi)$. Then $\pi \in GS_n$ if and only if for any $t, 1 \le t \le n-1,$

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{i=t+1}^{n} min\{t, d_i\}$$

Theorem 2.3 [10] Let $\pi = (d_1, d_2, ..., d_n) \in NS_n$, $d_1 = m$ and $\sigma(\pi)$ be even. If there exists an integer $n_1, n_1 \leq n$ such that $d_{n_1} \geq h \geq 1$ and $n_1 \ge \frac{1}{h} \left\lfloor \frac{(m+h+1)^2}{4} \right\rfloor$, then $\pi \in GS_n$.

Theorem 2.4 [8] Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n$ and $\sigma(\pi)$ be even. If $d_1 - d_n \le 1$ and $d_1 \le n - 1$, then $\pi \in GS_n$.

Theorem 2.5 [4] If $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ has a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Theorem 2.6 [10] Let $\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in GS_n$, where $d_r \geq r+s-1$ and $d_n \geq r$. If $n \geq (r+2)(s-1)$, then π is potentially $K_{r,s}$ -graphic.

Theorem 2.7 [1] Let $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$. If π is potentially $K_{2,s+2}$ -graphic, then π is potentially $K_{1,1,s}$ -graphic.

Theorem 2.8 [11] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$, where $d_1 = r$ and $\sigma(\pi)$ is even. If $d_{r+1} \geq r-1$, then π is graphic.

Theorem 2.9 [10] Let $\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in$ GS_n , where $d_{r+s} \geq r+s-1$ and $d_n \geq r$. Then π is potentially $K_{r,s}$ -graphic.

In order to prove our main result, we need the following definition.

Let $n \ge s + 2$ and $\pi = (d_1, d_2, ..., d_n) \in NS_n$ with $d_2 \ge s + 1, d_{s+2} \ge 2$ and $d_n \ge 1$. We define sequences π_0, π_1 and π_2 as follows. Let $\pi_0 = \pi$. Let $\pi_1 = (d_2 - 1, \ldots, d_{s+2} - 1, d_{s+3}^{(1)}, \ldots, d_n^{(1)})$,

$$\pi_1 = (d_2 - 1, \dots, d_{s+2} - 1, d_{s+3}^{(1)}, \dots, d_n^{(1)}),$$

where $d_{s+3}^{(1)} \geq \cdots \geq d_n^{(1)}$ is the rearrangement in non-increasing order of

 $d_{s+3}-1,\ldots,d_{d_1+1}-1,d_{d_1+2},\ldots,d_n.$ $\pi_2=(d_3-2,\ldots,d_{s+2}-2,d_{s+3}^{(2)},\ldots,d_n^{(2)}),$

where $d_{s+3}^{(2)}, \ldots, d_n^{(2)}$ is the rearrangement in non-increasing order of $d_{s+3}^{(1)} - 1, \ldots, d_{d_2+1}^{(1)} - 1, d_{d_2+2}^{(1)}, \ldots, d_n^{(1)}$.

The following lemma is obvious from the definition of π_2 .

Lemma 2.1 Let $n \geq s+2$ and $\pi=(d_1,d_2,\ldots,d_n) \in GS_n$ with $d_2 \geq s+1, d_{s+2} \geq 2$ and $d_n \geq 1$. If π_2 is graphic, then π is potentially $K_{1,1,s}$ -graphic.

Lemma 2.2 Let $n \geq s+2$ and $\pi=(d_1,d_2,\ldots,d_n) \in GS_n$ with $d_2 \geq s+1, d_{s+2} \geq 2$ and $d_n \geq 1$. If $d_1=n-1$ or there exists an integer $t,s+2 \leq t \leq d_1+1$ such that $d_t > d_{t+1}$, then π_2 is graphic. Hence, π is potentially $K_{1,1,s}$ -graphic.

Proof. Since there exists an integer $t, s+2 \le t \le d_1+1$ such that $d_t > d_{t+1}$, the residual sequence $\pi'_1 = (d'_1, d'_2, \dots, d'_{n-1})$ obtained by laying off d_1 from π satisfies $d'_i = d_{i+1}-1$ for $i=1,2,\dots,t-1$. If $d_1=n-1$, then the residual sequence $\pi'_1 = (d'_1, d'_2, \dots, d'_{n-1})$ satisfies $d'_i = d_{i+1}-1$ for $i=1,2,\dots,n-1$. Since π is graphic, π'_1 is graphic by Theorem 2.1. Thereby, $\pi''_{11} = (d'_2-1,\dots,d'_{d'_1+1}-1,d'_{d'_1+2},\dots,d'_{n-1})$ is graphic. It is easy to see that π_2 is graphic. \square

Lemma 2.3 Let $\pi = (3^x, 2^y, 1^z)$, where $x + y + z = n \ge 1$ and $\sigma(\pi)$ is even. Then $\pi \in GS_n$ if and only if $\pi \notin S$, where $S = \{(2), (2^2), (3, 1), (3^2), (3, 2, 1), (3^2, 2), (3^3, 1), (3^2, 1^2)\}.$

Proof. For n = 1, since $\sigma(\pi)$ is even, π must be (2), which belongs to S. For $n \geq 2$, we consider the following cases.

Case 1. n = 2. Then π is one of the sequences $(3, 1), (2^2), (3^2), (1^2)$. It is easy to check that only one sequence (1^2) is graphic.

Case 2. n=3. Since $\sigma(\pi)$ is even, π must be one of the sequences $(3,2,1),(3^2,2),(2^3),(2,1^2)$. The sequences (2^3) and $(2,1^2)$ are graphic.

Case 3. n = 4. Then π is one of the sequences $(3^3, 1), (3, 1^3), (3^4), (2^4), (3, 2^2, 1), (2^2, 1^2), (3^2, 2^2), (1^4), (3^2, 1^2)$. Only $(3^2, 1^2)$ and $(3^3, 1)$ are excepted. Case 4. n = 5. Then π must be one of the graphic sequences $(2, 1^4), (3, 1^4), (3, 1^4)$.

 $(2,1^3), (3^2,2,1^2), (3^3,2,1), (3,2^3,1), (2^5), (3^2,2^3), (2^3,1^2), (3^4,2).$

Case 5. $n \ge 6$. If x > 0 and z > 0, then $6 = \lfloor \frac{(3+1+1)^2}{4} \rfloor \le n$. Hence, π is graphic from Theorem 2.3. Otherwise, π is graphic by Theorem 2.4. \square

Lemma 2.4 Let $\pi = (4^x, 3^y, 2^z, 1^m)$ with even $\sigma(\pi), x+y+z+m = n \ge 1$ and $x \ge 1$. Then $\pi \in GS_n$ if and only if $\pi \notin A$, where $A = \{(4), (4, 2), (4^2), (4, 1^2), (4, 3, 1), (4, 3^2), (4^2, 2), (4^2, 2), (4^3), (4, 2, 1^2), (4, 2^3), (4, 3, 2, 1), (4, 3^2, 2), (4^2, 1^2), (4^2, 2^2), (4^2, 3, 1), (4^2, 3^2), (4^3, 2), (4^4), (4, 3^2, 1^2), (4, 3, 1^3), (4^2, 2, 1^2), (4^2, 3, 2, 1), (4^3, 1^2), (4^3, 3, 1), (4^4, 2), (4^2, 3, 1^3), (4^2, 1^4), (4^3, 2, 1^2), (4^4, 1^2), (4^3, 1^4)\}.$

Proof. It is easy to see that the sequences of the set A are not graphic. Now we verify the sufficient condition. If $n \le 4$ and $x \ge 1$, then π is not

graphic. In other words, the following sequences are not graphic (4), (4, 2), (4^2) , $(4, 1^2)$, (4, 3, 1), $(4, 3^2)$, $(4, 2^2)$, $(4^2, 2)$, (4^3) , $(4, 2, 1^2)$, $(4, 2^3)$, (4, 3, 2, 1), $(4, 3^2, 2)$, $(4^2, 1^2)$, $(4^2, 2^2)$, $(4^2, 3, 1)$, $(4^2, 3^2)$, $(4^3, 2)$, (4^4) . It is enough to consider the following cases. For convenience, denote $\pi = (d_1, d_2, \ldots, d_n)$.

Case 1. n = 5. Consider the residual sequence π'_1 obtained by laying off d_1 from π . If x = 1 and $\pi'_1 \neq (2), (2^2)$, then π'_1 is graphic by Lemma 2.3 and so is π . If π'_1 is (2) or (2²), then π is $(4, 3^2, 1^2)$ or $(4, 3, 1^3)$, a contradiction. If $x \geq 2$ and $\pi'_1 \neq (3, 1), (3^2), (3, 2, 1), (3^2, 2), (3^3, 1)$ and $(3^2, 1^2)$, then π'_1 is graphic by Lemma 2.3. If π'_1 is one of the sequences $(3, 1), (3^2), (3, 2, 1), (3^2, 2), (3^3, 1), (3^2, 1^2)$, then π is one of the excepted sequences $(4^2, 2, 1^2), (4^3, 1^2), (4^2, 3, 2, 1), (4^3, 3, 1), (4^4, 2), (4^3, 2^2)$.

Case 2. n=6. If $d_6 \geq 2$, then π'_1 is graphic by Lemma 2.3. For $d_6=1$ and x=1, π'_1 is also graphic. If $d_6=1, x\geq 2$ and $\pi'_1\neq (3,1), (3,2,1), (3^3,1), (3^2,1^2)$, then π'_1 is graphic by Lemma 2.3. If π'_1 is one of the sequences $(3,1), (3,2,1), (3^3,1), (3^2,1^2)$, then π is one of the sequences $(4^2,1^4), (4^2,3,1^3), (4^4,1^2), (4^3,2,1^2)$, which is contradict.

Case 3. n=7. If $d_7 \geq 2$, then π_1' is graphic by Lemma 2.3. For $d_7=1$ and x=1, π_1' is also graphic. If $d_7=1, x\geq 2$ and $d_6\geq 2$, then π_1' is graphic by Lemma 2.3. If $d_7=d_6=1, x\geq 2$ and $\pi_1'\neq (3^2,1^2)$, then π_1' is graphic. If π_1' is $(3^2,1^2)$, then π is $(4^3,1^4)$, a contradiction.

Case 4. n=8. By Lemma 2.3, it is easy to check that π_1' is graphic. Hence, π is graphic.

Case 5. $n \ge 9$. For $n \ge 9 \ge max\{\frac{1}{2}\lfloor \frac{(4+2+1)^2}{4} \rfloor, \lfloor \frac{(4+1+1)^2}{4} \rfloor\}$, π is graphic by Theorem 2.3 and 2.4. \square

Lemma 2.5 Let $n \geq 6$ and $\pi = (d_1, d_2, ..., d_n) \in GS_n$ with $d_2 \geq 7$. If $d_n \geq 3$ and $\pi \neq (7^3, 6, 3^5), (7^4, 4, 3^4)$, then π is potentially $K_{1,1,6}$ -graphic.

Proof. We use induction on n. For n = 8, $d_1 = 7$ since $d_2 \ge 7$. So π is potentially $K_{1,1,6}$ -graphic by Lemma 2.2. Assume this Lemma holds for $n - 1 (n \ge 9)$. It is enough to consider the following two cases.

Case 1. $d_2 \geq 8$. If $d_3 \geq 4$, then the residual sequence $\pi'_n = (d'_1, \ldots, d'_{n-1})$ obtained by laying off d_n from π satisfies $d'_{n-1} \geq 3$ and $d'_2 \geq 7$. By the induction hypothesis, π'_n is potentially $K_{1,1,6}$ -graphic, and so is π . If $d_3 = 3$, then $\pi = (d_1, d_2, 3^{n-2})$. It is easy to compute the corresponding sequence $\pi_2 = (3^x, 2^y, 1^z)$ (reordering the terms in π_2 to make them non-increasing), where $z \geq 6$. According to Lemma 2.3, π_2 is graphic. So π is potentially $K_{1,1,6}$ -graphic by Lemma 2.1.

Case 2. $d_2 = 7$. By Lemma 2.2, we suppose that π satisfies $n-2 \ge d_1 \ge \cdots \ge d_8 = d_9 = \cdots = d_{d_1+2} \ge d_{d_1+3} \ge \cdots \ge d_n$. It is enough to show that π_2 is graphic by Lemma 2.1.

If $d_8 = 3$, then $m(\pi_2) \le 5$, $h(\pi_2) = 1$ and $|\pi_2| \ge 7$, where $m(\pi)$, $h(\pi)$ and $|\pi|$ mean the largest positive term, the smallest positive term and the number of the positive terms of π , respectively. If $d_3 \le 6$, then $m(\pi_2) \le 6$

 $4, h(\pi_2) = 1$ and $|\pi_2| \geq 7$. According to Lemma 2.3 and 2.4, π_2 is graphic. If $d_3 = 7$, then $\pi_2 = (5, d_4 - 2, d_5 - 2, d_6 - 2, d_7 - 2, 1, 3^{n-d_1-1}, 2^{d_1-7})$. If $d_7 \ge 5$ and $n - d_1 - 1 \ge 2$, then $5 + (n - d_1 - 1) \ge 7 \ge \frac{1}{3} \lfloor \frac{(5+3+1)^2}{4} \rfloor$ and π_2 is graphic by Theorem 2.3. If $d_7 \ge 5$ and $n - d_1 - 1 = 1$, then $d_1 = n - 2$ and $\pi_2 = (5, d_4 - 2, d_5 - 2, d_6 - 2, d_7 - 2, 1, 3, 2^{n-9})$. If $n - 9 \ge 2$, then $6 + (n-9) \ge 8 \ge \frac{1}{2} \lfloor \frac{(5+2+1)^2}{4} \rfloor$ and π_2 is graphic. If $n-9 \le 1$, then we consider the residual sequence π'_{21} obtained by laying off the largest term of π_2 (reordering the terms of π_2 to make them non-increasing). It is easy to check that π'_{21} is graphic by Lemma 2.3 and 2.4. Thereby, π_2 is graphic by Theorem 2.1. If $d_7 = 4$ and $n - d_1 - 1 + (d_1 - 7) \ge 3$, i.e. $n \ge 11$, then $5+n-d_1-1+(d_1-7)\geq 8\geq \frac{1}{2}\lfloor \frac{(5+2+1)^2}{4}\rfloor$ and π_2 is graphic by Theorem 2.1. If $d_7 = 4$ and n = 10, then d_1 is 7 or 8 and the residual sequence π'_{21} is graphic and so is π_2 . If $d_7 = 4$, n = 9 and $d_4 \le 6$, then π'_{21} is graphic. If $d_7 = 4$, n = 9 and $d_4 = 7$, then π'_{21} is graphic by Lemma 2.4 and $\pi \in GS_n$. If $d_7 = 3$, $d_4 \le 6$ and $d_6 \ge 4$, then π'_{21} is graphic by Lemma 2.3 and so is π_2 . If $d_7 = 3, d_4 \le 6, d_6 = 3$ and $d_5 \ge 4$, then π'_{21} is also graphic. If $d_7 = 3$, $d_4 \le 5$ and $d_6 = d_5 = 3$, then $m(\pi'_{21}) \le 3$, $|\pi'_{21}| \ge 2$ and there must exist one term which is equal to two and one term equal to one in π'_{21} . it is easy to check that π'_{21} is graphic. If $d_7 = 3, d_4 = 6$ and $d_6 = d_5 = 3$, then there must exist one term which is equal to two and one term equal to one in π'_{21} . If $\pi'_{21} \neq (3,2,1)$, then π'_{21} is graphic by Lemma 2.3. If $\pi'_{21} = (3, 2, 1)$, then $\pi = (7^3, 6, 3^5)$, a contradiction. If $d_7 = 3, d_4 = 7$ and $d_6 \geq 4$, then there must exist one term which is equal to one and one term which is equal to two in π'_{21} . Thus, π'_{21} is graphic by Lemma 2.4 and $\pi \in GS_n$. If $d_7 = 3$, $d_4 = 7$, $d_6 = 3$ and $d_5 \ge 4$, then there are at most two terms equal to four in π'_{21} . If there are exactly two terms equal to four in π'_{21} , then $\pi_2 = (5^3, 1^3, 3^{n-d_1-1}, 2^{d_1-7})$. Since $\sigma(\pi_2)$ is even, $n-d_1-1$ must be even. If $n - d_1 - 1 \ge 4$, then $3 + (n - d_1 - 1) \ge \frac{1}{3} \lfloor \frac{(5+3+1)^2}{4} \rfloor$ and π_2 is graphic by Theorem 2.3. If $n-d_1-1=2$, then π_2 is the graphic sequence $(5^3, 1^3, 3^2, 2^{n-10})$. If there is only one term which is equal to four in π'_{21} and $\pi'_{21} \neq (4,2,1^2)$, then π'_{21} is graphic by Lemma 2.4. If $\pi'_{21} = (4, 2, 1^2)$, then $\pi = (7^4, 4, 3^4)$, a contradiction. If $d_7 = 3, d_4 = 7$ and $d_5=d_6=3$, then $\pi_2=(5^2,1^4,3^{n-d_1-1},2^{d_1-7})$. If $|\pi_2|\geq 12\geq \lfloor\frac{(5+1+1)^2}{4}\rfloor$, then π_2 is graphic. If $|\pi_2|\leq 11$, then π_2 is one of the graphic sequences $(5^2,1^2,1^2,1^2,1^2)$ $1^4, 3^2$, $(5^2, 1^4, 3^2, 2)$, $(5^2, 1^{\overline{4}}, 3^2, 2^2)$, $(5^2, 1^4, 3^4)$, $(5^2, 1^{\overline{4}}, 3^{\overline{2}}, 2^3)$, $(5^2, 1^4, 3^4, 2)$.

If $d_8=4$ and $d_3\leq 6$, then $|\pi_2|\geq 7\geq \frac{1}{2}\lfloor\frac{(4+2+1)^2}{4}\rfloor$ and π_2 is graphic. If $d_8=4,d_3=7$ and $d_4\leq 6$, then π'_{21} is graphic by Lemma 2.3 and 2.4. If $d_8=4,d_3=d_4=7$ and $d_7\geq 5$, then π'_{21} is also graphic. If $d_8=4,d_3=d_4=7,d_7=4$ and $|\pi_2|\geq 8$, then π_2 is graphic by Theorem 2.3. If $|\pi_2|=7$, then π_2 is one of the graphic sequences $(5^2,2^4,4),(5^2,3^2,2^2,4),(5^2,4,2^3,4),(5^2,4^2,2^2,4),(5^3,3,2^2,4),(5^4,2^2,4).$

If $d_8 = 5$, then π_2 is graphic by Theorem 2.3, Lemma 2.3 and 2.4.

If $d_8=6$, then $m(\pi_2)=6$ and $h(\pi_2)\geq 3$. If $|\pi_2|\geq 9\geq max\{\frac{1}{4}\lfloor\frac{(6+4+1)^2}{4}\rfloor$, $\frac{1}{3}\lfloor\frac{(6+3+1)^2}{4}\rfloor$, then π_2 is graphic. If $|\pi_2|=7$, then π'_{21} is graphic. If $|\pi_2|=8$ and $d_{10}\geq 4$, then $|\pi_2|=8\geq \frac{1}{4}\lfloor\frac{(6+4+1)^2}{4}\rfloor$. If $|\pi_2|=8$ and $d_{10}=3$, then π_2 is one of the graphic sequences $(5,4^5,6,3),(5^3,4^3,6,3),(5^5,4,6,3)$. If $d_8=7$, then $\pi=(d_1,7^{d_1+1+x},6^y,5^z,4^m,3^{n-(d_1+2+x+y+z+m)})(x,y,z,m\geq 0)$ and $\pi_2=(5^6,7^{x+1},6^{y+d_1-7},5^z,4^m,3^{n-(d_1+2+x+y+z+m)})$. If $6+x+\frac{(n+1)^2}{4}$

If $d_8 = 7$, then $\pi = (d_1, 7^{d_1+1+x}, 6^y, 5^z, 4^m, 3^{n-(d_1+2+x+y+z+m)})(x, y, z, m \ge 0)$ and $\pi_2 = (5^6, 7^{x+1}, 6^{y+d_1-7}, 5^z, 4^m, 3^{n-(d_1+2+x+y+z+m)})$. If $6 + x + 1 + y + d_1 - 7 + z \ge 9 \ge \frac{1}{5} \lfloor \frac{(7+5+1)^2}{4} \rfloor$, then π_2 is graphic by Theorem 2.3. If $6 + x + 1 + y + d_1 - 7 + z = 8$, then π_2 is graphic by Lemma 2.4. If $6 + x + 1 + y + d_1 - 7 + z = 8$, then π_2 is one of the graphic sequences $(5^6, 7, 6, 4^m, 3^{n-m-10}), (5^6, 7, 5, 4^m, 3^{n-m-10}), (5^6, 7^2, 4^m, 3^{n-m-10})$. \square

Proof of Theorem 1.3 Assume that π is potentially $K_{1,1,6}$ -graphic. (1) is obvious. It is easy to compute the corresponding π_2 (re-ordering the terms in π_2 to make them non-increasing and zero omitted) of the excepted sequences is one of the sequences (2), (2²), (3, 2, 1), (4, 2, 1²), (4, 2²), (4, 2³), (5, 2², 1), (5, 2, 1³), (6, 2², 1²), (6, 2, 1⁴), (5², 3, 1⁵), (5, 4, 3, 1⁴), (5², 3, 2, 1³), (5, 2³, 1), (6, 2³, 1²), (5, 3, 2³), (5, 3³, 2), (7, 2, 1⁵), (8, 2, 1⁶), which are not graphic.

To prove the sufficiency, we use induction on n. It is enough to show that π_2 is graphic by Lemma 2.1. Assume that n=8 and $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ satisfies (1) and (2). Then $d_1=7=n-1$ and π is potentially $K_{1,1,6}$ -graphic by Lemma 2.2. Now suppose that the sufficiency holds for $n-1(n\geq 9)$, and let $\pi=(d_1,d_2,\ldots,d_n)\in GS_n$ satisfy (1) and (2). According to Lemma 2.2 and 2.5, we can assume that π satisfies $n-2\geq d_1\geq \cdots \geq d_8=d_9=\cdots=d_{d_1+2}\geq d_{d_1+3}\geq \cdots \geq d_n$ and $d_n\leq 2$. In the following, we will use Theorem 2.5, repeatedly. We now prove that π is potentially $K_{1,1,6}$ -graphic in terms of the following two cases.

Case 1. $d_n = 2$. Consider $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$, where $d'_2 \geq 6$ and $d'_{n-1} \geq 2$. If π'_n satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_{1,1,6}$ -graphic, and so is π .

If π'_n does not satisfy (1), i.e., $d'_2 = 6$, then $d_2 = 7$.

If $d_1 = 7$, then $d_4 \le 6$. If $d_4 = 2$, then $\pi_2 = (d_3 - 2, 0^5, 2^{n-8})$. If π_2 (zero omitted) is not $(2), (2^2), (4, 2^2)$ or $(4, 2^3)$, then π_2 is graphic by Lemma 2.3 and 2.4. If π_2 is $(2), (2^2), (4, 2^2)$ or $(4, 2^3)$, then π is one of the sequences $(7^2, 2^7), (7^2, 2^8), (7^2, 4, 2^6), (7^2, 6, 2^7), (7^2, 6, 2^8)$, a contradiction. If $d_4 = 3$ and $d_3 \le 4$, then π_2 is graphic. If $d_4 = 3$, $d_3 = 5$ and $d_8 = 3$, then π_2 is graphic. If $d_4 = 3$, $d_3 = 5$, $d_8 = 2$ and $\pi_2 \ne (3, 2, 1)$, then π_2 is graphic. If $\pi_2 = (3, 2, 1)$, then π_2 is graphic. If $d_4 = 3, d_3 = 6$ and $d_8 = 3$, then π_2 is graphic. If $d_4 = 3, d_3 = 6$ and $d_8 = 2$, then $|\pi_2| \ge 3$. If $|\pi_2| \ge 7$, then π_2 is graphic. Since $\sigma(\pi_2)$ is even, $|\pi_2| \ne 3$. If $|\pi_2| = 4$, then $\pi = (7^2, 6, 3^2, 2^4)$, a contradiction. If $|\pi_2| \le 6$, then π_2 is graphic sequences $(4, 2^2, 1^2), (4, 2, 1^4)$ or $(4, 2^3, 1^2)$. If $d_4 = 3, d_3 = 7$ and $d_8 = 3$, then $m(\pi_2) = 5$ and $|\pi_2| \ge 8$. If $|\pi_2| \ge 8$.

 $12 \ge \lfloor \frac{(5+1+1)^2}{4} \rfloor$, then π_2 is graphic. If $|\pi_2| \le 11$, then π_2 is one of the graphic sequences $(5, 3^2, 2, 1^5), (5, 3^2, 2^2, 1^5), (5, 3^2, 2^3, 1^5), (5, 3^4, 2, 1^5)$. If $d_4 = 3, d_3 = 7$ and $d_8 = 2$, then π_2 is $(5, 2^{n-8}, 1)$ or $(5, 2^{n-8}, 1^3)$. If $\pi_2 = (5, 2^{n-8}, 1)$ and $n \ge 16$, then $1 + (n-8) \ge \frac{1}{2} \lfloor \frac{(5+2+1)^2}{4} \rfloor$ and π_2 is graphic. If $12 \le n \le 15$, then π_2 is one of the graphic sequences $(5, 2^4, 1), (5, 2^5, 1), (5, 2^6, 1), (5, 2^7, 1)$. Since π is graphic, $n \neq 9$. If n is 10 or 11, then $\pi = (7^3, 3, 2^6)$ or $(7^3, 3, 2^7)$, a contradiction. If $\pi_2 = (5, 2^{n-8}, 1^3)$ and $n \ge 16$, then $1 + (n-8) \ge \frac{1}{2} \lfloor \frac{(5+2+1)^2}{4} \rfloor$ and π_2 is graphic. Since π is graphic, $n \ne 9$. If $10 \le n \le 15$, then π_2 is one of the graphic sequences $(5, 2^2, 1^3), (5, 2^3, 1^3), (5, 2^4, 1^3), (5, 2^5, 1^3), (5, 2^6, 1^3), (5, 2^7, 1^3)$. If $d_4=4$ and $d_3\leq 5$, then π_2 is graphic. If $d_4=4, d_3=6$ and $d_8=2$, then there must exist at least two terms equal to two in π_2 . If $|\pi_2| \geq 7$, then π_2 is graphic. Since π is graphic, $|\pi_2| \neq 3$. If $|\pi_2| = 4$, then π is $(7^2, 6, 4^2, 2^4)$ or $(7^2, 6, 4, 2^6)$, a contradiction. If $5 \le |\pi_2| \le 6$, then π_2 is one of the graphic sequences $(4, 2^2, 1^2), (4, 2^4), (4, 2^3, 1^2), (4, 2^5)$. If $d_4 = 4, d_3 = 6$ and $d_8=3$, then π_2 is graphic. If $d_4=4, d_3=6$ and $d_8=4$, then π_2 is also graphic. If $d_4 = 4$, $d_3 = 7$ and $d_8 = 4$, then π_2 is graphic by Theorem 2.3. If $d_4 = 4$, $d_3 = 7$ and $d_8 = 3$, then $|\pi_2| \ge 8$. If $|\pi_2| \ge 12 \ge \lfloor \frac{(5+1+1)^2}{4} \rfloor$, then π_2 is graphic. If $|\pi_2| \leq 11$, then the residual sequence π'_{21} is graphic and so is π_2 . If $d_4 = 4$, $d_3 = 7$ and $d_8 = 2$, then π_2 is one of the sequences $(5,2^{n-7},1),(5,2^{n-5},1),(5,2^{n-7},1^3)$. It is easy to check that the sequences $(5,2^{n-5},1)$ and $(5,2^{n-7},1^3)$ are graphic. If $\pi_2=(5,2^{n-7},1)$ and $n\geq 14$, then $1 + (n-7) \ge \frac{1}{2} \lfloor \frac{(5+2+1)^2}{4} \rfloor$ and π_2 is graphic. If $11 \le n \le 13$, then π_2 is one of the graphic sequences $(5,2^4,1),(5,2^5,1),(5,2^6,1)$. Since π is graphic, $n \neq 9$. If n = 10, then $\pi = (7^3, 4, 3, 2^5)$, which is contradict. If $d_4 = 5, d_3 = 5$ and $d_8 \ge 3$, then π_2 is graphic by Theorem 2.3, Lemma 2.3 and 2.4. If $d_4 = 5, d_3 = 5$ and $d_8 = 2$, then $|\pi_2| \ge 3$. If $|\pi_2| \ge 4$, then π_2 is graphic. Since π is graphic, $|\pi_2| \neq 3$. If $d_4 = 5, d_3 = 6$ and $d_8 \geq 3$, then π_2 is graphic by Theorem 2.3, Lemma 2.3 and 2.4. If $d_4 = 5$, $d_3 = 6$ and $d_8=2$, then $|\pi_2|\geq 3$. Since $\sigma(\pi_2)$ is even, $|\pi_2|\neq 3,4$. If $|\pi_2|\geq 5$, then π_2 is graphic. If $d_4 = 5, d_3 = 7$ and $d_8 \ge 4$, then π_2 is graphic by Theorem 2.3. If $d_4 = 5, d_3 = 7$ and $d_8 = 3$, then π'_{21} is graphic by Lemma 2.3. If $d_4 = 5$, $d_3 = 7$ and $d_8 = 2$, then π_2 is one of the sequences $(5,3,2^{n-8}),(5,3,2^{n-8},1^2),(5,3,2^{n-7}),(5,3,2^{n-7},1^2),(5,3,2^{n-5}),(5,3,2^{n-6}),(5,3^2,2^{n-8},1),(5,3^2,2^{n-7},1),(5,3^3,2^{n-8}),(5,3^3,2^{n-7}).$ If $\pi_2=(5,3^2,2^{n-8},1)$ $3, 2^{n-8}$) and $n \ge 12$, then it is easy to see that π_2 is graphic. Since π is graphic, $n \ge 11$. If n = 11, then $\pi = (7^3, 5, 2^7)$, a contradiction. If $\pi_2 = (5,3,2^{n-7})$, then $n \ge 10$ since π is graphic. It is easy to check that π_2 is graphic for $n \geq 11$. If n = 10, then $\pi = (7^3, 5, 4, 2^5)$, which is contradict. If $\pi_2 = (5, 3, 2^{n-6})$ and $n \ge 10$, then π_2 is graphic. If n = 9, then $\pi = (7^3, 5, 4^2, 2^3)$, a contradiction. If $\pi_2 = (5, 3^3, 2^{n-8})$ and $n \ge 10$, then π_2 is graphic. If n=9, then $\pi=(7^3,5^3,2^3)$, a contradiction. For π_2 is one

of the sequences $(5, 3, 2^{n-8}, 1^2)$, $(5, 3, 2^{n-7}, 1^2)$, $(5, 3, 2^{n-5})$, $(5, 3^2, 2^{n-8}, 1)$, $(5, 3^2, 2^{n-7}, 1)$, $(5, 3^3, 2^{n-7})$, it is easy to check that π_2 is graphic by $\pi \in GS_n$. If $d_4 = 6$ and $d_3 = d_8 = 6$, then $m(\pi_2) = 6$ and $h(\pi_2) = 2$. If $|\pi_2| \geq 10 \geq \frac{1}{2} \lfloor \frac{(6+2+1)^2}{4} \rfloor$, then π_2 is graphic. If $|\pi_2| \leq 9$, then π_2 is one of the graphic sequences $(6, 4^6, 2)$, $(6, 4^7, 2)$, $(6, 4^6, 2^2)$, $(6^2, 4^6, 2)$. If $d_4 = 6, d_3 = 6$ and $2 \leq d_8 \leq 5$, then π_2 is graphic by Theorem 2.3, Lemma 2.4 and $\pi \in GS_n$. If $d_4 = 6, d_3 = 7, d_8 = 6$ and $d_{10} \geq 4$, then $8 \geq \frac{1}{4} \lfloor \frac{(6+4+1)^2}{4} \rfloor$ and π_2 is graphic. If $d_4 = 6, d_3 = 7$ and $d_8 = 3$, then π'_{21} is graphic. If $d_4 = 6, d_3 = 7$ and $d_8 = 3$, then π'_{21} is graphic. If $d_4 = 6, d_3 = 7$ and $d_8 = 2$, then π'_{21} is also graphic. If $d_4 = 6, d_3 = 7, d_7 \leq 4$ and $d_8 = 2$, then π'_{21} is also graphic. If $d_4 = 6, d_3 = 7, d_7 \leq 3$ and $d_8 = 2$, then π'_{21} is also graphic sequences $(5, 4, 2^{n-8}, 1), (5, 4, 2^{n-6}, 1), (5, 4, 3, 2^{n-8}, 1^2), (5, 4, 3^2, 2^{n-8}, 1), (5, 4^3, 2^{n-8}, 1), (5, 4, 2^{n-8}, 1), (5, 4, 2^{n-7}, 1)$.

If $d_1 \geq 8$, then $d_3 \leq 6$. If $d_3 \leq 4$, then π_2 is graphic. If $d_3 = 5$ and $d_8 = 2$, then $m(\pi_2) = 3$ and $|\pi_2| \geq 3$. If $\pi_2 \neq (3,2,1)$, then π_2 is graphic. If $\pi_2 = (3,2,1)$, then π is $(8,7,5,2^7)$, a contradiction. If $d_3 = 5$ and $3 \leq d_8 \leq 4$, then π_2 is graphic. If $d_3 = 5$ and $d_8 = 5$, then $9 \geq \frac{1}{3} \lfloor \frac{(5+3+1)^2}{4} \rfloor$ and π_2 is graphic. If $d_3 = 6$ and $d_8 = 2$, then $|\pi_2| \geq 3$. If $|\pi_2| \geq 7$, then π_2 is graphic by Lemma 2.4. Since $\sigma(\pi_2)$ is even, $|\pi_2| \neq 3$. Since π is graphic, $|\pi_2| \neq 5$ and 6. If $|\pi_2| = 4$, then π is $(8,7,6,3,2^6)$, $(9,7,6,2^8)$ or $(8,7,6,5,2^6)$. The sequences $(8,7,6,3,2^6)$ and $(9,7,6,2^8)$ are excepted and the sequence $(8,7,6,5,2^6)$ is not graphic. If $d_3 = 6$ and $d_8 = 5$, then $|\pi_2| \geq 9 \geq \frac{1}{2} \lfloor \frac{(5+2+1)^2}{4} \rfloor$ and π_2 is graphic. If $d_3 = 6$ and $d_8 = 6$, then $|\pi_2| \geq 9$. If $|\pi_2| \geq 10 \geq \frac{1}{2} \lfloor \frac{(6+2+1)^2}{4} \rfloor$, then π_2 is graphic by Theorem 2.3. Since $\sigma(\pi_2)$ is even, $|\pi_2| \neq 9$.

If π_n' does not satisfy (2), then π_n' is one of the sequences $(7^2,2^7), (7^2,4,2^6), (7^2,5,3,2^5), (7^2,2^8), (7^2,6,4^2,2^4), (7^3,6,3^5), (7^4,4,3^4), (8,7,5,2^7), (10,9^2,2^{11})(8^2,6,2^8), (7^2,6,2^7), (7^3,3,2^6), (8,7,6,3,2^6), (7^2,6,4,2^6), (7^3,4,3,2^5), (8,7^2,3^2,2^5), (7^2,6,3^2,2^4), (7^3,3,2^7), (7^2,6,2^8), (9,7,6,2^8), (10^3,2^{12}), (8^2,7,3,2^7), (8,7^2,2^8), (8,7^2,4,2^7), (8^3,2^9), (8^3,2^{10}), (9,7^2,3,2^7), (7^3,5,2^7), (8,7^2,4^2,2^5), (7^3,5,4,2^5), (7^3,5^3,2^3), (8^3,3^2,2^6), (8^3,4^2,2^6), (8^3,4,2^8), (9,8,7,2^9), (8,7^2,2^9), (10,7^2,2^9), (9,8^2,3,2^8), (9^2,8,2^{10}), (7^3,5,4^2,2^3), (10,8^2,2^{10}), (9^3,3,2^9).$ Since π satisfies the condition (2), π is one of the sequences $(9,8,7,4^2,2^6), (9^2,6,2^9), (10,8,6,2^9), (9^2,7,3,2^8), (8^2,7,3,2^8), (8^2,7,5,2^8), (8^2,6,2^9), (9^2,8,2^{11}), (8^2,7,5,4,2^6), (8^2,7,5^3,2^4), (11,9,8,2^{11}), (9^2,8,4^2,2^7), (10,8,7,3,2^8), (9,8,7,4,2^8), (10^2,8,2^{11}), (10,9,7,2^{10}), (9^2,8,4,2^9), (9,8,7,2^{10}), (11,8,7,2^{10}), (10,9,8,3,2^9), (8^2,7,5,4^2,2^4), (10^2,9,3,2^{10}), (8^2,2^8), (8^2,7^3,2^6), (8^2,2^9), (8^2,7^2,4,3^4,2), (9,8,5,2^8), (9,8,6,3,2^7), (8^2,6,4,2^7), (8^2,7,4,3,2^6), (8^2,2^9), (8^2,7^2,4,3^4,2), (9,8,5,2^8), (9,8,6,3,2^7), (8^2,6,4,2^7), (8^2,7,4,3,2^6),$

 $(8,7^3,3^5,2), (9^2,8,3^2,2^7), (11,10,9,2^{12}), (11^2,10,2^{13}).$ It is easy to compute the corresponding π_2 is one of the graphic sequences $(1^2), (2,1^2), (3,1^3), (4,1^4), (4,2^2,1^2), (5,4,2,1^5), (5^2,2^2,1^4), (5,2^2,1^3), (5,1^5), (5,3,2^2,1^2), (5,3^3,1^2), (6,1^6), (6,2^2,1^4), (7,1^7), (8,1^8).$ So π is potentially $K_{1,1,6}$ -graphic.

Case 2. $d_n = 1$. Then $\pi'_n = (d'_1, d'_2, \ldots, d'_{n-1})$ satisfies $d'_2 \geq 6$ and $d'_8 \geq 2$. If π'_n satisfies (1) and (2), then by the induction hypothesis, π'_n is potentially $K_{1,1,6}$ -graphic, and hence so is π .

If π'_n does not satisfy (1), i.e. $d'_2=6$, then $d_1=d_2=7, d_3\leq 6$ and $n\geq 10$. Thus, $\pi_2=(d_3-2, d_4-2, d_5-2, d_6-2, d_7-2, d_8-2, d_9, \ldots, d_n)$. If $d_3\leq 4$, then π_2 is graphic. If $d_3=5$ and $d_8\geq 3$, then π_2 is also graphic. If $d_3=5, d_8=2$ and $\pi_2\neq (3,2,1)$, then π_2 is graphic. If $\pi_2=(3,2,1)$, then $\pi=(7^2,5,2^6,1)$, a contradiction. If $d_3=6$ and $d_8=2$, then $|\pi_2|\geq 3$. Since $\sigma(\pi_2)$ is even, $|\pi_2|\neq 3$. If $|\pi_2|\geq 7$, then π_2 is graphic. If $|\pi_2|=4$, then π is one of the sequences $(7^2,6,3,2^5,1),(7^2,6,2^6,1^2),(7^2,6,5,2^5,1)$. The sequences $(7^2,6,3,2^5,1)$ and $(7^2,6,2^6,1^2)$ are excepted and the sequence $(7^2,6,5,2^5,1)$ is not graphic. Since π is graphic, $|\pi_2|\neq 5$ and 6. If $d_3=6$ and $d_3\leq d_8\leq 5$, then π_2 is graphic. If $d_3=6, d_8=6$ and $d_{10}\geq 4$, then $d_1=1$ and $d_2=1$ is graphic. If $d_3=1$ and $d_1=1$ and $d_1=1$ and $d_1=1$ is graphic. If $d_1=1$ and $d_1=1$ and $d_1=1$ and $d_1=1$ is graphic.

If π'_n does not satisfy (2), then π'_n is one of the sequences $(7^2, 2^7), (7^2, 4, 1)$ 2^{6}), $(7^{2}, 6, 3^{2}, 2^{4})$, $(7^{4}, 3^{5}, 1)$, $(7^{2}, 6, 4^{2}, 2^{4})$, $(7^{3}, 6, 3^{5})$, $(7^{4}, 4, 3^{4})$, $(7^{2}, 6, 2^{7})$, $7,5,2^{7}$, $(8,7^{2},4,2^{7})$, $(7^{3},3^{2},2^{4},1)$, $(8,7,6,2^{7},1)$, $(7^{2},6,2^{8})$, $(8,7^{2},3,2^{6},1)$, $(8,7^2,3^2,2^5), (7^2,2^8), (7^3,3,2^5,1^2), (8,7^2,4^2,2^5), (9,8,7,2^9), (10,7^2,2^9), (7^3,2^9), (7^3,2^9), (10,7^2,2^9), ($ $\begin{array}{l} 5^3, 2^3), (8^3, 3^2, 2^6), (8^3, 4^2, 2^6), (7^3, 5, 4, 2^5), (7^3, 2^6, 1^3), (8^3, 2^9), (8, 7^2, 2^7, 1^2), \\ (8, 7^2, 2^9), (8^3, 2^{10}), (7^3, 2^8, 1), (9, 7^2, 3, 2^7), (7^2, 6, 2^6, 1^2), (7^3, 4, 2^6, 1), (8^2, 7, 1^2), \end{array}$ $(3, 2^7), (8, 7^2, 2^8), (7^3, 2^7, 1), (8^2, 7, 2^8, 1), (9, 7^2, 2^8, 1), (8^3, 3, 2^7, 1), (8^3, 4, 2^8),$ $(9^2, 8, 2^{10}), (9, 8^2, 2^9, 1), (7^3, 5, 4^2, 2^3), (10, 8^2, 2^{10}), (8^3, 2^8, 1^2), (9, 8^2, 3, 2^8),$ $(9^3, 3, 2^9), (10, 9^2, 2^{11}), (9^3, 2^{10}, 1), (10^3, 2^{12})$. Since π satisfies (2), π is one of the sequences $(8^2, 7, 3^2, 2^5, 1), (8, 7, 6, 3, 2^5, 1^2), (8, 7, 6, 3^2, 2^4, 1), (9, 7, 6, 1)$ $3, 2^6, 1), (9, 7^2, 3^2, 2^5, 1), (8, 7^2, 6, 3^5, 1), (9, 7^2, 4^2, 2^5, 1), (8^2, 7, 4^2, 2^5, 1), (9, 7,$ $(5, 2^7, 1), (8, 7^2, 3^2, 2^4, 1^2), (8, 7^2, 4^2, 2^4, 1^2), (8, 7, 6, 4^2, 2^4, 1), (9, 7^2, 4, 2^7, 1), (8, 7, 1),$ $7^3, 3^5, 1^2), (9, 7, 6, 2^7, 1^2), (8^2, 7, 2^9, 1), (8, 7, 6, 2^8, 1), (10, 7, 6, 2^8, 1), (9^2, 7, 2^9, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 6, 2^8, 1), (9, 7, 2^9, 1), (9, 7, 2^$ $(7^2, 2^7, 1^3), (8^2, 7, 2^7, 1^3), (8^2, 7, 4, 2^7, 1), (8, 7^2, 5, 4, 2^5, 1), (9, 7^2, 3, 2^6, 1^2), (8^2, 7, 2^7, 1^3),$ $(7, 3, 2^{6}, 1^{2}), (10, 7^{2}, 3, 2^{7}, 1), (9, 8, 7, 3, 2^{7}, 1), (9, 8^{2}, 2^{10}, 1), (8^{2}, 6, 2^{7}, 1^{2}), (9, 8^{2}, 2^{10}, 1), (9, 8^{2}, 2^{$ $7^2, 2^9, 1), (8^2, 6, 3, 2^6, 1), (8^2, 5, 2^7, 1), (8, 7, 2^8, 1), (8, 7, 5, 3, 2^5, 1), (8, 7, 5, 2^6, 1), (8, 7, 2^6, 1), (8, 7,$ 1^{2}), $(8, 7^{3}, 4, 3^{4}, 1)$, $(8, 7, 6, 4, 2^{6}, 1)$, $(8, 7^{2}, 5, 4^{2}, 2^{3}, 1)$, $(8, 7^{2}, 4, 3, 2^{5}, 1)$, $(8, 7, 6, 4, 2^{6},$ $4, 2^{6}, 1), (10, 9^{2}, 3, 2^{9}, 1), (9, 8^{2}, 3, 2^{7}, 1^{2}), (11, 10^{2}, 2^{12}, 1), (9, 8, 7, 2^{8}, 1^{2}), (8, 7^{2}, 1), (9, 8, 7, 2^{8}, 1^{2}), (11, 10^{2}, 2^{12}, 1), (11, 10^{2$

82, 2¹⁰, 1), (8, 7², 5, 2⁷, 1), (10, 9², 2¹⁰, 1²), (11, 9², 2¹¹, 1), (8, 7², 2⁶, 1⁴), (8, 7, 2⁷, 1), (10, 8², 3, 2⁸, 1), (9², 8, 3, 2⁸, 1), (10, 7², 2⁸, 1²), (9, 8², 4, 2⁸, 1), (10², 9, 2¹¹, 1), (10, 7², 2⁸, 1²). It is easy to compute the corresponding π_2 is one of the graphic sequences (1²), (2, 1²), (3, 1³), (4, 1⁴), (4, 2², 1²), (5, 4, 2, 1⁵), (5², 2², 1⁴), (5, 2², 1³), (5, 1⁵), (5, 3, 2², 1²), (5², 2, 1⁶), (5, 3³, 1²), (6, 1⁶), (6, 2², 1⁴), (7, 1⁷), (8, 1⁸). So π is potentially $K_{1,1,6}$ -graphic. \square

We now give an application of Theorem 1.3.

Corollary For $n \geq 8$,

$$\sigma(K_{1,1,6},n) = \begin{cases} 7n-5, & \text{if } n \text{ is odd,} \\ 7n-6, & \text{if } n \text{ is even.} \end{cases}$$

Proof. Take $\pi = (n-1, 6^{n-1})$ if n is odd and $\pi = (n-1, 6^{n-2}, 5)$ if n is even. Obviously, π is graphic. If π is potentially $K_{1,1,6}$ -graphic, then there are at least two terms in π which are greater or equal to seven, a contradiction. Hence, π is not potentially $K_{1,1,6}$ -graphic. In other words,

$$\sigma(K_{1,1,6},n) \geq \sigma(\pi) + 2 = \left\{ egin{array}{ll} 7n-5, & ext{if } n ext{ is odd,} \\ 7n-6, & ext{if } n ext{ is even.} \end{array} \right.$$

Let $n \geq 8$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ be a positive sequence with $\sigma(\pi) \geq 7n - 6$. We show that π is potentially $K_{1,1,6}$ -graphic.

- (1) By $n \ge 8$ and $\sigma(\pi) \ge 7n-6$, it is easy to check that π is not one of the sequences $(7^2, 2^7)$, $(7^2, 4, 2^6)$, $(7^2, 5, 3, 2^5)$, $(7^2, 6, 3^2, 2^4)$, $(7^2, 6, 4^2, 2^4)$, $(7^3, 6, 3^5)$, $(7^4, 4, 3^4)$, $(7^2, 6, 3, 2^5, 1)$, $(7^2, 6, 2^8)$, $(9, 7, 6, 2^8)$, $(8^2, 7, 3, 2^7)$, $(8, 7^2, 2^8)$, $(8, 7^2, 4, 2^7)$, $(8, 7^2, 3, 2^6, 1)$, $(8^2, 6, 2^8)$, $(7^3, 2^7, 1)$, $(7^2, 6, 2^6, 1^2)$, $(7^3, 3, 2^5, 1^2)$, $(7^3, 4, 2^6, 1)$, $(7^3, 5, 2^7)$, $(7^3, 5, 4, 2^5)$, $(7^3, 5^3, 2^3)$, $(8^3, 3^2, 2^6)$, $(8^3, 2^9)$, $(7^2, 6, 2^7)$, $(7^3, 3, 2^6)$, $(8, 7, 5, 2^7)$, $(8, 7, 6, 3, 2^6)$, $(7^2, 5, 2^6, 1)$, $(7^2, 6, 4, 2^6)$, $(7^3, 4, 3, 2^5)$, $(7^2, 2^8)$, $(8^3, 4^2, 2^6)$, $(7^3, 3, 2^7)$, $(9, 8, 7, 2^9)$, $(9, 7^2, 2^8, 1)$, $(8^2, 7, 2^8, 1)$, $(8, 7^2, 2^7, 1^2)$, $(8, 7^2, 2^9)$, $(7^3, 2^8, 1)$, $(10, 7^2, 2^9)$, $(9, 8^2, 3, 2^8)$, $(8^3, 3, 2^7, 1)$, $(7^3, 2^6, 1^3)$, $(8^3, 4, 2^8)$, $(9^2, 8, 2^{10})$, $(8^3, 2^{10})$, $(9, 8^2, 2^9, 1)$, $(8, 7^2, 3^2, 2^5)$, $(8, 7^2, 4^2, 2^5)$, $(7^3, 3^2, 2^4, 1)$, $(7^3, 4^2, 2^4, 1)$, $(7^4, 3^5, 1)$, $(8, 7, 6, 2^7, 1)$, $(9, 7^2, 3, 2^7)$, $(8^3, 2^8, 1^2)$, $(10, 8^2, 2^{10})$, $(9^3, 3, 2^9)$, $(10, 9^2, 2^{11})$, $(9^3, 2^{10}, 1)$, $(10^3, 2^{12})$.
- (2) We claim that $d_2 \ge 7$. Otherwise, $d_2 \le 6$. Then $\sigma(\pi) = d_1 + d_2 + \cdots + d_n \le n 1 + 6(n 1) < 7n 6$, a contradiction.
- (3) We claim that $d_8 \ge 2$. Otherwise, $d_8 \le 1$. Then $\sigma(\pi) = \sum_{i=1}^7 d_i + \sum_{i=8}^n d_i \le 42 + \sum_{i=8}^n \min\{7, d_i\} + \sum_{i=8}^n d_i = <7n-6$, a contradiction.

Thus, π is potentially $K_{1,1,6}$ -graphic by Theorem 1.3 and $\sigma(K_{1,1,6},n)$ being even. \square

Proof of Theorem 1.4 Use induction on s. By Theorem 1.1 and Theorem 1.2, Theorem 1.4 holds for s=2 and s=3. Now assume Theorem 1.4 holds for $s-1(\geq 2)$. We will prove by using induction on n that Theorem 1.4 holds for s. If n=s+2, then $d_1=s+1=n-1$. By Lemma 2.2, π is potentially $K_{1,1,s}$ -graphic. By Lemma 2.2, we can assume that π satisfies $n-2\geq d_1\geq \cdots \geq d_{s+1}\geq d_{s+2}=d_{s+3}=\cdots =d_{d_1+2}\geq d_{d_1+3}\geq \cdots \geq d_n$. If n=s+3, then $d_1=s+1$ and $\pi=((s+1)^{s+3})$, a contradiction. If

n=s+4, then $d_1=s+1$ or s+2. If $d_1=s+1$, then $\pi=((s+1)^{s+3},d_{s+4})$ and $\pi_2=((s-1)^s,s+1,d_{s+4})$. It is easy to check that π_2 is graphic by Theorem 2.4 and Theorem 2.8. If $d_1=s+2$ and $d_2=s+1$, then $\pi=(s+2,(s+1)^{s+3})$ and $\pi_2=((s-1)^s,s,s+1)$, which is graphic. If $d_1=s+2=d_2$ and $d_{s+2}=s+2$, then $\pi=((s+2)^{s+4})$ and $\pi_2=(s^s,(s+1)^2)$. If $d_1=s+2=d_2$ and $d_{s+2}=s+1$, then $\pi=((s+2)^x,(s+1)^{s+4-x})(x\geq 2)$ and $\pi_2=(s^y,(s-1)^{s+2-y})(y\geq 2,s+2-y\geq 1)$, which is graphic by Theorem 2.8. In the following, we assume that $n\geq s+5$ and $s\geq 3$.

If there exists an integer $t, 2 \le t \le s+1$, such that $d_t > d_{t+1}$, then the residual sequence $\pi_{s+2} = (d'_1, \ldots, d'_{n-1})$ obtained by laying off d_{s+2} from π satisfies $d'_1 = d_1 - 1, \ldots, d'_t = d_t - 1$. If $d_{s+2} \ge s+2$, then $d'_{s+2} \ge s+1$. By the induction hypothesis, π_{s+2} is potentially $K_{1,1,s}$ -graphic and so is π . If $d_{s+2} = s+1$, then $d'_{s+2} \ge s$. By the induction hypothesis, π_{s+2} is potentially $K_{1,1,s-1}$ -graphic. Thus, π is potentially $K_{1,1,s}$ -graphic from $d'_1 = d_1 - 1, \ldots, d'_t = d_t - 1(2 \le t \le s+1)$.

Now assume that $n-2 \ge d_1 \ge d_2 = d_3 = \cdots = d_{s+1} = d_{s+2} = \cdots = d_{d_1+2} \ge d_{d_1+3} \ge \cdots \ge d_n$. We consider the following two cases.

Case 1. $d_n=1$. Then the residual sequence $\pi'_n=(d'_1,\ldots,d'_{n-1})$ obtained by laying off d_n from π satisfies $d'_{s+2} \geq s+1$. By the induction hypothesis, π'_n is potentially $K_{1,1,s}$ —graphic and so is π .

Case 2. $d_n \ge 2$. If $d_{s+4} \ge s+3$, then π is potentially $K_{2,s+2}$ —graphic by Theorem 2.9. According to Theorem 2.7, π is potentially $K_{1,1,s}$ —graphic. Suppose that $d_{s+4} \le s+2$, we consider the following two subcases.

Subcase 2.1. $d_1 \geq s+2$. Then $d_{s+4} = s+1$ or $d_{s+4} = s+2$. If $d_{s+4} = s+2$, then the residual sequence $\pi'_1 = (d'_1, \ldots, d'_{n-1})$ obtained by laying off d_1 from π satisfies $d'_{s+2} \geq s+1$. By the induction hypothesis, π'_1 is potentially $K_{1,1,s}$ -graphic. If $d_{s+4} = s+1$, then $\pi = (d_1, (s+1)^{d_1+1}, d_{d_1+3}, \ldots, d_n)$. Denote $l = \max\{i | d_{d_1+1+i} = d_2\}$. Obviously $l \geq 1$. Thereby, $\pi = (d_1, (s+1)^{d_1+l}, d_{d_1+1+(l+1)}, \ldots, d_n)(d_{d_1+1+(l+1)} \leq s)$. It is easy to compute that $\pi_2 = ((s-1)^s, (s+1)^l, s^{d_1-(s+1)}, d_{d_1+1+(l+1)}, \ldots, d_n)$. If $l \geq 2$, then $d_1 - (s+1) + l + s \geq s+3 \geq \frac{1}{s-1} \lfloor \frac{(s+1+s-1+1)^2}{4} \rfloor = \frac{1}{s-1} \lfloor (s-1)^2 + 3(s-1) + \frac{9}{4} \rfloor = s+2 + \frac{2}{s-1}$ and π_2 is graphic by Theorem 2.3. If l=1, then $\pi_2 = ((s-1)^s, s+1, s^{d_1-(s+1)}, d_{d_1+3}, \ldots, d_n)$. It is easy to check that the residual sequence π'_{21} obtained by laying off the largest term s+1 from π_2 is graphic by Theorem 2.8. Thus, π_2 is graphic by Theorem 2.1.

Subcase 2.2. $d_1 = s+1$. Then $\pi = ((s+1)^{s+2+l}, d_{s+2+l+1}, \ldots, d_n)$, where $(d_{s+2+l+1} \leq s)$. Thereby, $\pi_2 = ((s-1)^s, (s+1)^l, d_{s+2+l+1}, \ldots, d_n)$. If $d_{s+2+l+1} \geq s-1$ and $l \geq 2$, then $l+s+1 \geq s+3 \geq \frac{1}{s-1} \left[\frac{(s+1+s-1+1)^2}{4} \right] = s+2+\frac{2}{s-1}$ and π_2 is graphic by Theorem 2.3. If $d_{s+2+l+1} \geq s-1$ and l=1, then $\pi_2 = ((s-1)^s, s+1, d_{s+2+l+1}, \ldots, d_n)$. According to Theorem 2.8, the residual sequence π'_{21} obtained by laying off the largest term s+1

from π_2 is graphic. Thus, π_2 is graphic according to Theorem 2.1. If $d_{s+2+l+1} \leq s-2$ and l=1, then $\pi_2=((s-1)^s,s+1,d_{s+2+l+1},\ldots,d_n)$. It is easy to see that the residual sequence π'_{21} is also graphic by Theorem 2.8. If $d_{s+2+l+1} \leq s-2$ and l=2, then $\pi_2=((s-1)^s,(s+1)^2,d_{s+2+l+1},\ldots,d_n)$. It is easy to check that the residual sequence π'_{211} obtained by laying off the largest term s from the residual sequence π'_{21} is graphic by Theorem 2.8. Thus, π_2 is graphic. If $d_{s+2+l+1} \leq s-2$ and $l\geq 3$, then $l+s\geq s+3\geq \frac{1}{s-1}[\frac{(s+1+s-1+1)^2}{4}]=s+2+\frac{2}{s-1}$ and π_2 is graphic by Theorem 2.3. Hence, π is potentially $K_{1,1,s}$ -graphic by Lemma 2.1. \square

References

- [1] Gang Chen, A note on potentially $K_{1,1,t}$ -graphic sequences, Australasian J. Combinatorics, 37 (2007) 21-26.
- [2] P. Erdős and T. Gallai, Graphs with given degrees of vertices, *Math. Lapok*, 11 (1960) 264-274.
- [3] E.M. Eschen and J.B. Niu, On potentially $K_4 e$ -graphic sequences, Australasian J. Combinatorics, 29 (2004) 59-65.
- [4] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, Vol.1, New Issues Press, Kalamazoo Michigan, 1999, 451-460.
- [5] Lili Hu and Chunhui Lai, On potentially $K_5 E_3$ -graphic sequences, accepted by Ars Combinatoria.
- [6] Lili Hu and Chunhui Lai, On potentially 3-regular graph graphic sequences, accepted by *Utilitas Math*.
- [7] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, *Discrete Math.*, 6 (1973) 79– 88.
- [8] J.S. Li and J.H. Yin, A variation of an extremal theorem due to Woodall, Southeast Asian Bulletin of Mathematics, 25 (2001) 427-434.
- [9] J.H. Yin and G. Chen, On potentially $K_{r_1,r_2,...,r_m}$ —graphic sequences, Utilitas Math., 72 (2007) 149–161.
- [10] J.H. Yin and J.S. Li, An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **26** (2003) 295-305.
- [11] J.H. Yin and J.S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, *Discrete Math.*, **301** (2005) 218–227.
- [12] M.X. Yin et al., On the characterization of potentially $K_{1,1,s}$ -graphic sequences, accepted by *Utilitas Math*.