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Abstract: For given a graph H, a graphic sequence 7 = (d;,d2,...,dn)
is said to be potentially H-graphic if there is a realization of m con-
taining H as a subgraph. In this paper, we characterize potentially
K\,16-positive graphic sequences. This characterization implies the
value of (K} 1,6,n). Moreover, we also give a simple sufficient condi-
tion for a positive graphic sequence = = (d1,dz,...,d,) to be potentially
K ,,s~graphic for n > s+ 2 and s > 2.
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1. Introduction

The set of all sequences m = (dj,ds,...,d,) of non-negative, non-
increasing integers with d; < n—1 is denoted by NS,,. A sequencew € NS,
is said to be graphic if it is the degree sequence of a simple graph G on
n vertices, and such a graph G is called a realization of m. The set of all
graphic sequences in NS, is denoted by GS,. If each term of a graphic
sequence 7 is nonzero, then 7 is said to be positive graphic. For a sequence
7 = (dy,ds,...,dn) € NS,, denote o(w) =dy +dz + -+ + d,. For given a
graph H, a sequence m € GS,, is said to be potentially H-graphic, if there
is a realization of 7 containing H as a subgraph. Yin and Chen [9] char-
acterized potentially K s-graphic sequences and potentially K2 4-graphic
sequences, where K, ; is the r x s complete bipartite graph. Hu and Lai
[6] characterized potentially K3 s-graphic sequences. Yin and Li [11] gave
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two sufficient conditions for # € GS,, to be potentially K} i, ..1,2-graphic,
where Kj,1,..,1,2 is the r; X 12 X --+ x ry complete ¢-partite graph with
7y =79 =+ =11 = 1 and r, = 2. Eschen and Niu [3] characterized
potentially K 1 2-graphic sequences. Hu and Lai (5] characterized poten-
tially K1 3-graphic sequences.In the following, the symbol z¥ in a sequence
stands for y consecutive terms, each equal to z.

Theorem 1.1 [3] Let n > 4 and © = (dy,dy,...,d,) € GS, be a
positive sequence. Then = is potentially K ;2-graphic if and only if the
conditions hold (1) d; > dp > 3 and dy > 2, (2) 7 # (3%),(32,24),(3%,23).

Theorem 1.2 [5] Let w = (d1,ds,...,ds) be a graphic sequence with
n > 5. Then 7 is potentially K i 3-graphic if and only if the conditions
hold (1) d2 > 4 and ds > 2, (2) 7 # (42,2%), (42,2°),(43,23) and (4°).

Recently, Yin et al. [12] characterized potentially K j,4—graphic se-
quences and potentially K ; s—graphic sequences.

In [4], Gould et al. posed an extremal problem on potentially H-graphic
sequences as follows: determine the smallest even integer o(H,n) such that
every positive sequence m € GS,, with o(n) > o(H,n) is potentially H-
graphic.

In this paper, we first characterize potentially K ;¢-positive graphic
sequences. That is the following.

Theorem 1.3 Let n > 6 and 7 = (d;,dy,...,d,) € GS, be a positive
sequence. Then 7 is potentially K ; ¢-graphic if and only if 7 satisfies the
following conditions: (1) d; > 7 and dg > 2, (2) 7 is not one of the following
sequences

n=9:(72,27),(72,4,2%),(72,5,3,25), (72,6,32,2%), (72,6, 42,29), (73,6,
35), (74, 4,3%), (73, 5%, 23), (78, 5, 42, 2%),

n=10: (12,2%),(8,7,5,27), (72,6,27), (7%, 3,25),(8,7,6,3,26), (72,5, %5,
1), (72,6,3,25,1), (72,6, 4, 25), (73,4, 3,2°), (8, 72, 32, 25), (8, 72, 42, 25), (73,
32,24,1), (73,42,24, 1), (74,35, 1), (73, 5,4,2%),

n=11:(826,2%),(8,7,6,27,1),(726,28), (9,7,6,28), (82,7,3,27), (8, 72,
28),(8,72,4,27),(8,72,3,25,1), (9, 72,3,27), (72, 6,25,12), (73,27, 1), (73, 3,
25,12),(7%,4,28,1),(73,3,27), (73,5, 27), (8%, 32, 2%), (83,42, 29),

n=12:(8%,29),(9,8,7,2%),(9,7%,28,1),(82,7,28,1),(8,7%27,12), (8,72,
29), (10,72,2°), (9, 82,3, 2%), (73,28, 1), (8%, 3,27, 1), (73,25, 1°), (8%, 4,25),

n=13:(928,219),(9,82,29,1), (10,82, 210), (83,28, 12), (83, 210), (9%, 3,29)

n=14: (10,92,211),(93,219,1),

n=15:(10%,212).

As an application of the characterization, it is straightforward to find
the value of o(K4,1,6,7). Moreover, we also give a sufficient condition for a
positive graphic sequence 7 to be potentially K ; ,—graphic.

Theorem 1.4 Let 7 = (d;,ds,...,d,) € GS, be a positive sequence
withn > s+2 and s > 2. If w # (3%) for s = 2, m # ((s + 1)*+3)(s is odd)
and dg42 > s+ 1, then 7 is potentially K7 s-graphic.
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2. Proofs of Theorem 1.3 and Theorem 1.4

In order to prove Theorem 1.3 and Theorem 1.4, we also need the fol-
lowing known results.

Let 7 = (d;,ds,...,d,) € NS, and 1 < k< n. Let

(dl -1,... 7dk—1 - lrdk+1 -1,... )ddk-l-l = I;ddk+23 cee 7dn)y

!l = if d 2 k,

7Y (di—1,...,dq, — 1,ddp+1y -1 Bk—1,Akp1y -y dn),
if di, < k.
Let m, = (d},d5,...,d,_;), where dy > --- > d],_, is the rearrangement
in non-increasing order of the n — 1 terms of 7. ) is called the residual
sequence obtained by laying off dj, from =.

Theorem 2.1 [7] Let 7 = (d1,dp,...,dn) € NS, and 1 < k < n.
Then m € GS,, if and only if 7, € GS,-1.

Theorem 2.2 [2] Let w = (d1,ds, . ..,d,) be a non-increasing sequence
of nonnegative integer with even o(m). Then 7 € GS, if and only if for any
t,1<t<n-1,

t n
2 di<t(t—1)+ 3 min{t,di}
i=1 i=t+1

Theorem 2.3 [10] Let w = (d1,ds,...,dn) € NS,, d; = m and o(n)
be even. If there exists an integer n;,n; < n such that d,;, > 2 > 1 and
n >3 I.KL’:“L’J , then w € GS,.

Theorem 2.4 [8] Let 7 = (dy,dz,...,dn) € NS, and o(m) be even. If
di —d, <land d; <n-1, then 7 € GS,,.

Theorem 2.5 [4] If = = (d1,ds,...,dn) € GS, has a realization
G containing H as a subgraph, then there exists a realization G’ of =
containing H as a subgraph so that the vertices of H have the largest
degrees of 7.

Theorem 2.6 [10] Let 7 = (di,...,dr,dry1,. .., drys,drposry. . dn) €
GS,, whered, > r+s—1andd, 2 7. If n > (r+2)(s— 1), then 7 is
potentially K, ;—graphic.

Theorem 2.7 [1] Let # = (d,ds,...,dn) € GSy. If 7 is potentially
K3 s4+2—graphic, then 7 is potentially K1,1,s—graphic.

Theorem 2.8 [11] Let w = (d1,ds,...,dn) € NS,, where d; = r and
o(w) is even. If d4q > 7 — 1, then = is graphic.

Theorem 2.9 [10] Let 7 = (d1,...,dr,dry1,-+ ., drpsy Griat1s o, dn) €
GS,,, whered, s > r+s—1and d,, > r. Then 7 is potentially K, ;—graphic.
In order to prove our main result, we need the following definition.

Letn>s+2and 7= (dl,dz,...,dn) €NS, withdy >s+1,dg42>2
and d, > 1. We define sequences mg, w1 and 7, as follows. Let mg = w. Let

™ = (d2 - 1,... ,ds+2 - 1,d§23,.. .y (1)),
where dﬁ‘la > --- > d is the rearrangement in non-increasing order of
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doys —1,...,da,41 — 1,da, 42, - ., dn. . .
My =(ds—2,...,dss2 — 2,d7,...,dD),

where o!‘s $3r 0y () is the rearrangement in non-increasing order of dg_)s -
d(l) -1, 4 d(l)
da+1 d2+4-27*

The following lemma is obvious from the definition of 2.

Lemma 2.1 Letn > s+ 2 and m = (d;,ds,...,dn) € GS, with
dy > s+ 1,ds42 > 2 and d,, 2 1. If mo is graphic, then 7 is potentially
K, ,1,s-graphic.

Lemma 2.2 Letn > s+ 2 and 7 = (d,ds,...,d,) € GS,, with
dy > s+1,ds42 > 2and d, > 1. If d; = n — 1 or there exists an integer
t,s +2 <t < dy + 1 such that d; > d;41, then 7 is graphic. Hence, 7 is
potentially K} ; s-graphic.

Proof. Since there exists an integer ¢,s + 2 < t < d; + 1 such that
ds > dyy1, the residual sequence 7] = (d},d5,...,d,,_,) obtained by laying
offdlfromﬂsatlsﬁ&sd—d,+1—1for1,-12 Lt=1LIfdy=n-1,

then the residual sequence 7] = (d},d5,..., ,,_1) sa.tlsﬁes di=diy1 -1
fori =12,...,n— 1. Since 7 is graphic, 7] is graphic by Theorem 2.1.
Thereby, 1r11 =(d5-1,. d'+1 l’d:ii"'z”’ .ydy_1) is graphic. It is easy

to see that =y is graphlc El

Lemma 2.3 Let 7 = (3%,2¥,1%), wherez+y+2z=n 2> 1 and o(7) is
even. Then m € GS,, if and only if = ¢ S, where S = {(2),(2?), (3,1),(3?),
(3,2,1),(3%2),(3%,1),(3%1%)}.

Proof. For n =1, since o(r) is even, 7 must be (2), which belongs to
S. For n > 2, we consider the following cases.

Case 1. n = 2. Then 7 is one of the sequences (3, 1), (22), (3%), (12). It
is easy to check that only one sequence (12) is graphic.

Case 2. n = 3. Since o(m) is even, = must be one of the sequences
(3,2,1),(32,2),(2%), (2, 12). The sequences (23) and (2,12) are graphic.

Case 3. n = 4. Then 7 is one of the sequences (33, 1), (3, 13), (34), (24),
(3,22,1),(22,12),(32,22), (1), (3%, 12). Only (32, 12) and (33, 1) are excepted.

Case 4. n = 5. Then m must be one of the graphic sequences (2, 14), (3,
2,13),(32%,2,1%),(33,2,1),(3,2%,1), (2%), (32, 23), (28, 12), (34, 2).

Case 5. n >6.Ifz > 0and 2 >0, then6=|_$3L4+lﬁ_| < n. Hence, 7
is graphic from Theorem 2.3. Otherwise, 7 is graphic by Theorem 2.4. O

Lemma 2.4 Let 7 = (4%,3Y, 2%,1™) with even o(n), z+y+24+m =n >
1 and z > 1. Then m € GS, if and only if = ¢ A, where A = {(4), (4, 2),
(42)’ (4’ 12)1 (4$ 31 1)’ (41 32): (4’ 22)1 (421 2)7 (43)) (4) 2, 12)’ (41 23)) (47 3: 21 1):
(47 327 2)) (42) 12)) (42, 22)1 (42, 3) 1)7 (42, 32)) (43, 2); (44), (41 32; 12)7 (41 37 13)’
(42,2,1%), (42,3,2,1), (43, 12), (43, 22), (43, 3, 1), (4%, 2), (42, 3,1%), (2, 19),
(43,2,1%), (44, 13), (4%, 1%)}.

Proof. It is easy to see that the sequences of the set A are not graphic.
Now we verify the sufficient condition. If n < 4 and z > 1, then = is not
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graphic. In other words, the following sequences are not graphic (4), (4, 2),
(42)) (4: 12)$ (4,3, 1): (4, 32)$ (4’ 22)1 (42’ 2)’ (43)’ (4a 2, 12)’ (4, 23)’ (4,3,2, 1);
(4,32,2), (42,12), (42,22), (4%, 3,1), (42, 3%), (4%, 2), (44). It is enough to con-
sider the following cases. For convenience, denote = = (d;,d, ..., dy,).

Case 1. n = 5. Consider the residual sequence 7] obtained by laying
off d; from 7. If z = 1 and 7} # (2),(22), then =} is graphic by Lemma
2.3 and so is 7. If 7} is (2) or (22), then 7 is (4,3%,1%) or (4,3,1%), a
contradiction. If 2 > 2 and ] # (3,1),(3%),(3,2,1),(32%2),(3%1) and
(82,12), then =} is graphic by Lemma 2.3. If 7} is one of the sequences
(3,1),(3%),(3,2,1),(3%,2),(3%,1),(32%,12), then 7 is one of the excepted se-
quences (42,2,12), (43,12), (42, 3,2, 1), (43, 3,1), (44, 2), (43, 22).

Case 2. n = 6. If dg¢ > 2, then 7} is graphic by Lemma 2.3. For
ds = 1and £ = 1, n] is also graphic. If d¢ = 1,z > 2 and 7] #
(3,1),(3,2,1),(33%,1),(3%,12), then =} is graphic by Lemma 2.3. If # is
one of the sequences (3,1),(3,2,1),(3%,1),(3%,12), then = is one of the
sequences (42,14), (42,3, 1%), (4%, 12), (43,2, 12), which is contradict.

Case 3. n =7.If d7 > 2, then n} is graphic by Lemma 2.3. For d7 =1
and z = 1, ] is also graphic. If d7 = 1,z > 2 and dg > 2, then ] is
graphic by Lemma 2.3. If d7 = dg = 1,z > 2 and =} # (3%,1%), then nf is
graphic. If 7} is (32,12), then 7 is (43,1%), a contradiction.

Case 4. n = 8. By Lemma 2.3, it is easy to check that 7] is graphic.
Hence, 7 is graphic.

Case 5. n > 9. Forn > 9 > ma.x{-;-[(“z:l)zj, [(4“4"'1)2]}, 7 is
graphic by Theorem 2.3 and 2.4. O

Lemma 2.5 Letn > 6and 7 = (d1,ds,...,d,) € GS,, with dy > 7. If
d, >3 and 7 # (73,6,3%),(74,4,3%), then = is potentially K ¢-graphic.

Proof. We use induction on n. Forn =8, d; = 7sinced; > 7. So
is potentially K, ; g-graphic by Lemma 2.2. Assume this Lemma holds for
n — 1(n > 9). It is enough to consider the following two cases.

Case 1. dy > 8.If d3 > 4, then the residual sequence 7}, = (d},...,d,,_,
obtained by laying off d, from 7 satisfies d],_; > 3 and d}, > 7. By the in-
duction hypothesis, 7/, is potentially K 1 ¢-graphic, and so is 7. If d3 = 3,
then m = (d;,d2,3"2). It is easy to compute the corresponding sequence
g = (3%,2Y,1%)(reordering the terms in 72 to make them non-increasing),
where z > 6. According to Lemma 2.3, 7o is graphic. So 7 is potentially
K 1 6-graphic by Lemma 2.1.

Case 2. d» = 7. By Lemma 2.2, we suppose that 7 satisfies n — 2 >
dy2--2dg=dg=-+=dg 42 >dg 43> ... 2 dy. It is enough to show
that o is graphic by Lemma 2.1.

If dg = 3, then m(m2) < 5,h(m2) = 1 and |wa| > 7, where m(w), h(m)
and |m| mean the largest positive term, the smallest positive term and the
number of the positive terms of m, respectively. If d3 < 6, then m(ms) <
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4,h(m3) = 1 and |m| > 7. According to Lemma 2.3 and 2.4, m; is graphic.
If d3 = 7, then 7o = (5,d4 — 2,d5 — 2,dg — 2,d7 — 2, 1,3"“’1‘1,22"1‘7). If
d7>5andn—dy—1>2, then 54 (n—dy—1) > 7> 3| S | and
is graphic by Theorem 2.3. If dy > 5andn—d; —1=1,thend; =n -2
and my = (5,dg — 2,ds — 2,dg — 2,d7 — 2,1,3,2"7°). If n — 9 > 2, then
6+(n—9)>8>2 %[E#ﬁj and 7, is graphic. If n — 9 < 1, then we
consider the residual sequence 75, obtained by laying off the largest term
of mwa(reordering the terms of 2 to make them non-increasing). It is easy
to check that 75, is graphic by Lemma 2.3 and 2.4. Thereby, 7 is graphic
by Theorem 2.1. If d7 =4 andn—d; —1+4+(d; - 7) > 3,ie. n > 11,
then 5+n—dy -1+ (d —7) >8> %[wj and g is graphic by
Theorem 2.1. If d7 = 4 and n = 10, then d; is 7 or 8 and the residual
sequence 7, is graphic and so is m2. If d7 = 4,7 = 9 and d4 < 6, then 7,
is graphic. If d; = 4,n = 9 and d4 = 7, then 5, is graphic by Lemma 2.4
and m € GS,,. If d7 = 3,ds < 6 and dg > 4, then =, is graphic by Lemma
2.3 and so is mo. If d7 = 3,d4y < 6,ds = 3 and ds > 4, then 75, is also
graphic. If d7 = 3,dy < 5 and dg = ds = 3, then m(m),;) < 3,|my;| = 2
and there must exist one term which is equal to two and one term equal
to one in ). it is easy to check that w3, is graphic. If d7 = 3,dy =6 and
dg = ds = 3, then there must exist one term which is equal to two and one
term equal to one in m5,. If 75, # (3,2,1), then 5, is graphic by Lemma
2.3. If w5, = (3,2,1), then 7= = (73,6, 3°%), a contradiction. If d7 = 3,ds =7
and dg > 4, then there must exist one term which is equal to one and one
term which is equal to two in 75,. Thus, w5, is graphic by Lemma 2.4 and
w € GSy. If d7 = 3,dy = 7,ds = 3 and ds > 4, then there are at most
two terms equal to four in m5;. If there are exactly two terms equal to four
in 7}, then mp = (53,13,37—41~1 241-7), Since o(my) is even, n — d; — 1
must be even. If n —dy — 12> 4,then 3+ (n—-d; - 1) > %[@%ﬂf_]
and 7, is graphic by Theorem 2.3. If n — d; — 1 = 2, then my is the
graphic sequence (53,13, 32,2"~19)_ If there is only one term which is equal
to four in ), and w5, # (4,2,12), then w}, is graphic by Lemma 2.4. If
mhy = (4,2,1%), then m = (74,4, 3%), a contradiction. If d7 = 3,ds = 7 and
ds = dg = 3, then mp = (52,14,37~41-1 241-7) [f |mp| > 12 > [MJ,
then 7y is graphic. If |w2| < 11, then 72 is one of the graphic sequences (52,

14,32), (52, 14,32, 2), (52, 14, 32, 22), (52, 14, 3%), (52, 1¢, 32, 23), (52, 14, 34, 2).

If ds = 4 and d3 < 6, then |mp| > 7 > %[“"’—?lﬁj and 7 is graphic. If
dg = 4,d3 =7 and d; < 6, then 7, is graphic by Lemma 2.3 and 2.4. If
dg = 4,d3 =d4y =7 and d7 > 5, then 75, is also graphic. If dg = 4,d3 =
d4 =7,d7 = 4 and |ma| > 8, then = is graphic by Theorem 2.3. If |n3] = 7,
then 7 is one of the graphic sequences (52,24, 4), (52, 32,22, 4), (5%, 4, 23,4),
(5%,42,22,4), (5%, 3,22,4), (54,22, 4).
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If dg = 5, then m; is graphic by Theorem 2.3, Lemma 2.3 and 2.4.
If dg = 6, then m(w3) = 6 and h(mg) > 3. If |m3| > 9 > maz{} [(6+4+1) _|,
1 LMJ} then m; is graphic. If [w2| = 7, then 7}, is graphic. If |mp| =

and djg > 4, then |mp| =8> 1 I_MJ If jmo| = 8 and dyo = 3, then m
is one of the graphic sequences (5,4°,6,3), (5% 43,86,3), (5%,4,6, 3)

If dg = 7, then w = (d, 79 +1+=, 6” 5% 4™ 3”‘(d1+2+’+y+‘+"‘))(a:, Y, 2,
m > 0) and mp = (55, 75+1, 6”"‘"1‘7, 5=,4m,3"-(d1+2+w+v+ff+m)). If64+z+
l1+y+d1 —7+22>92> é[‘”L:lLQJ, then m, is graphic by Theorem 2.3.
If6+2z+1+4+y+di —7+ 2z =7, then 75, is graphic by Lemma 2.4. If
6+z+1+y+dy — 7+ z =8, then 7 is one of the graphic sequences
(5%,7,6,4™,3n—m=10)) (56 7 5 4m 3n—m-10)) (56 72 4m gn-m-10)) O

Proof of Theorem 1.3 Assume that = is potentially K ) ¢-graphic.
(1) is obvious. It is easy to compute the corresponding 7 (re-ordering the
terms in 7 to make them non-increasing and zero omitted) of the excepted
sequences is one of the sequences (2), (22),(3,2,1), (4,2, 12), (4, 22), (4, 2%),
(5,22,1), (5,2,13), (6,22,12), (6,2,1%), (52, 3,15), (5, 4, 3, 1%), (52, 3,2, 13), (5,
23,1),(6,28,12), (5, 3,23), (5, 3%, 2), (7, 2,15), (8, 2, 1%), which are not graphic.

To prove the sufficiency, we use induction on n. It is enough to show that
7o is graphic by Lemma 2.1. Assume that n =8 and 7 = (d,do,...,d,) €
GS, satisfies (1) and (2). Then d; = 7 = n — 1 and = is potentially
K,1,6-graphic by Lemma 2.2. Now suppose that the sufficiency holds for
n—1(n > 9), and let # = (dy,do,...,dn) € GS, satisfy (1) and (2).
According to Lemma 2.2 and 2.5, we can assume that 7 satisfies n — 2 >
dy 2+-2dg=dg=-=dg422dgy43 2 - 2dyandd, <2.In
the following, we will use Theorem 2.5, repeatedly. We now prove that «
is potentially K ; ¢-graphic in terms of the following two cases.

Case 1. d, = 2. Consider =}, = (d},ds,...,d},_,), where dj > 6 and
dl,_; = 2. If nr}, satisfies (1) and (2), then by the induction hypothesis, 7},
is potentially K ; ¢-graphic, and so is w.

If 7/, does not satisfy (1), i.e., d5 = 6, then dy =

If dy = 7, then dy < 6. If dy = 2, then 7 = (d3 — 2,05,2"8). If
7y (zero omitted) is not (2),(22), (4, 22) or (4,23), then =, is graphic by
Lemma 2.3 and 2.4. If m is (2),(22),(4,22) or (4,23), then 7 is one of
the sequences (72,27), (72,28), (72, 4,2°),(72,6,27), (72,6,28), a contradic-
tion. If dy = 3 and ds < 4, then 7 is graphic. If dy = 3,d3 = 5 and
ds = 3, then my is graphic. If dg = 3,d3 = 5,dg = 2 and m # (3,2,1),
then m is graphic. If my = (3,2,1), then = = (72,5,3,2%), a contradic-
tion. If dy = 3,ds = 6 and dg = 3, then w5 is graphic. If dy = 3,d3 = 6
and dg = 2, then |mo| > 3. If |m] > 7, then 7, is graphic. Since o(m2)
is even, |mo| # 3. If |m2| = 4, then 7 = (72,6,32,2%), a contradiction. If
|wa| < 6, then my is graphic sequences (4,22,12),(4,2,1%) or (4,23,12). If
dy = 3,dg = 7 and dg = 3, then m(nz) = 5 and |mg| > 8. If |mo| >
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12 > [MJ, then mo is graphic. If |mp] < 11, then m is one of
the graphic sequences (5, 32,2, 15), (5,32, 22, 1%), (5, 32, 23, 15), (5, 34, 2, 15).
Ifdy = 3,d3 = 7 and dg = 2, then my is (5,2"78,1) or (5,2';-8,13). If
mp = (5,2"8)1) and n > 16, then 1 + (n — 8) > %l_@i’?’—l}—J and m
is graphic. If 12 < n < 15, then m is one of the graphic sequences
(5,24,1),(5,25,1), (5,28,1), (5,27, 1). Since 7 is graphic, n # 9. If n is 10 or
11, then 7 = (73, 3,2%) or (73,3,27), a contradiction. If mp = (5,2"~8%,13)
and n > 16, then 1 + (n — 8) > %I_w | and mg is graphic. Since
@ is graphic, n # 9. If 10 € n £ 15, then m is one of the graphic
sequences (5,22,13), (5,23, 13), (5,24,13), (5, 2%,13), (5,28,1%), (5,27, 1%). If
d4 = 4 and d3 < 5, then 73 is graphic. If dy = 4,d3 = 6 and dg = 2, then
there must exist at least two terms equal to two in m. If |m2| > 7, then
is graphic. Since 7 is graphic, |m2| # 3. If |m,| = 4, then = is (72,6,42,24)
or (72,6,4,2°%), a contradiction. If 5 < |m3| < 6, then = is one of the
graphic sequences (4,22, 12), (4,2%), (4,23,12), (4,25). If dy = 4,d3 = 6 and
ds = 3, then my is graphic. If dy = 4,ds = 6 and dg = 4, then w3 is also
graphic. If dy = 4,d3 = 7 and ds = 4, then w2 is graphic by Theorem 2.3.
If dy = 4,ds = 7 and dg = 3, then [my| > 8. If |mp| > 12 > |S+LHD®
then =y is graphic. If |wz| < 11, then the residual sequence 3, is graphic
and so is mp. If dy = 4,d3 = 7 and dg = 2, then =3 is one of the sequences
(5,2"7,1),(5,2"5,1), (5,2"~7,1%). It is easy to check that the sequences
(5,2"%,1) and (5,277, 13) are graphic. If my = (5,2"~7,1) and n > 14,
then 1+ (n—7) > %[g‘r""—?’lﬁj and my is graphic. If 11 < n < 13, then
w2 is one of the graphic sequences (5,2%,1), (5,2%,1), (5,25 1). Since 7 is
* graphic, n # 9. If n = 10, then = = (73,4, 3,25), which is contradict. If
dy =5,d3 = 5 and dg > 3, then m, is graphic by Theorem 2.3, Lemma 2.3
and 2.4. If d4 = 5,d3 = 5 and dg = 2, then |m| > 3. If |mp] > 4, then
mo is graphic. Since 7 is graphic, |m2| # 3. If d4 = 5,d3 = 6 and dg > 3,
then w3 is graphic by Theorem 2.3, Lemma 2.3 and 2.4. If dy = 5,d3 = 6
and dg = 2, then |m3| > 3. Since o(my) is even, |m2| # 3,4. If |mp| > 5,
then 7 is graphic. If d4 = 5,d3 = 7 and dg > 4, then m is graphic
by Theorem 2.3. If dy = 5,ds = 7 and dg = 3, then 7}, is graphic by
Lemma 2.3. If d4 = 5,d3 = 7 and dg = 2, then =3 is one of the sequences
(5,3,2778),(5,8,278,12), (5, 3,2""7), (5,3,2"7,12), (5,3,2""%),, (5, 3,
27-6), (5,3%,2"8, 1), (5, 32,277, 1), (5, 3%,2"%), (5,3%, 2" 7). If mp = (5,
3,2"~8) and n > 12, then it is easy to see that m is graphic. Since =
is graphic, n > 11. If n = 11, then = = (73,5,27), a contradiction. If
w2 = (5,3,2"7), then n > 10 since 7 is graphic. It is easy to check that
g is graphic for n > 11. If n = 10, then 7 = (73,5, 4, 2%), which is con-
tradict. If m; = (5,3,2"~%) and n > 10, then 75 is graphic. If n =9, then
7 = (73,5,4%,2%), a contradiction. If m, = (5,3%,2"8) and n > 10, then
o is graphic. If n = 9, then 7 = (73,53, 23), a contradiction. For 75 is one
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of the sequences (5, 3,27~8,12), (5,3,2777,12), (5, 3,2"%), (5, 32,28, 1),

(5,3%,2"7,1),(5,3%,27"7), it is easy to check that mo is graphic by 7 G
GS,. If dy = 6 and d3 = dg = 6, then m(m;) = 6 and h(m) =

If |m] > 10 > 1|_§wl-j, then 2 is graphic. If |my| < 9, then mp
is one of the gra.phlc sequences (6,48,2), (6,47,2), (6,45, 22) (62 48.2). If
dy = 6,d3 = 6 and 2 < dg < 5, then my is graphic by Theorem 2.3,

Lemma 2.4 and 7 € GS,,. If dy = 6,d3 = 7,dg = 6 and dyo > 4, then
8 > %[L"i‘?’—l):j and =g is graphic. If dy = 6,d3 = 7,dg = 6 and
dio < 3, then 75, is also graphic. If dy = 6,d3 = 7 and dg = 3, then
w5, is graphic. If dy = 6,ds = 7 and 4 < dg < 5, then m; is graphic.
If dy = 6,d3 = 7,d; > 4 and dg = 2, then =5, is also graphic. If
dq =6,d3 = 7,d7 < 3 and dg = 2, then 7, is one of the graphic sequences
(5,4’ 2n—8, 13), (51 4’ 2n—6’ 1), (5’ 4) 31 211.—8’ 12)1 (51 4’ 32) 211—8, 1)) (53 43) 2"_8s
]‘)’ (5’ 4? 2n_8’ 1)’ (5’ 4’ 2"_7’ 1)’ (5) 43 37 2n_8)’ (5’ 4’ 3! 2ﬂ_7)’ (5) 427 2"-_8, 1)1

(5,42,3,278), (5,42,2" 7, 1).

If d; > 8, then ds < 6. If d3 < 4, then 7 is graphic. If d3 = 5 and
dg = 2, then m(m2) = 3 and |ms| > 3. If w2 # (8,2,1), then = is graphic.
If 7o = (3,2,1), then 7 is (8,7,5,27), a contradiction. If d3 = 5 and
3 < dg < 4, then m is graphic. If d3 = 5 and dg = 5, then 9 > 1| &+3+1)°% |
and m, is graphic. If d3 = 6 and dg = 2, then |mp| > 3. If |m2| > 7, then
my is graphic by Lemma 2.4. Since o(n2) is even, |m| # 3. Since = is
graphic, |m2| # 5 and 6. If |mp| = 4, then 7 is (8,7,6,3,25),(9,7,6,2%) or
(8,7,6,5,2°). The sequences (8, 7,6, 3, 2%) and (9, 7,6, 28) are excepted and
the sequence (8,7, 6,5,25) is not graphic. If d3 = 6 and 3 < dg < 4, then

2
mo is graphic. If d3 = 6 and dg = 5, then |mg| > 9 > %[5&:&] and 7y is
graphic. If dg = 6 and dg = 6, then |my| > 9. If |my| > 10 > § [ {E+ZHD" |
then 7 is graphic by Theorem 2.3. Since o(m3) is even, |ma| # 9.

If 7/, does not satisfy (2), then =, is one of the sequences (72,27), (72,
4’ 26)1 (722 55 3’ 25)1 (72’ 28)) (72’ 6! 42} 24)1 (737 6) 35)’ (74’ 41 34)) (83 7’ 5) 27)!
(10,9%,21)(82,6,28), (72,6,27),(7%, 3, 2%), (8,7, 6, 3,25), (7%, 6, 4, 2), (7,4,
3,2%), (8,7%,32,25),(7%,6,32%,24), (73, 3,27), (72,6, 28), (9, 7,6, 28), (103, 212),
(8%,7,3,27),(8,7%,2%),(8,72,4,27), (8%, 2°), (8%, 219), (9, 72, 3,27), (73, 5,27),
(8,7%,4%,25),(73,5,4,2°), (7°,58,2%), (8%, 32, 29), (83, 42, 26), (83, 4, 28), (9,
8) 7) 29)) (8, 72’ 29)’ (10! 72) 29), (9’ 821 3) 28)) (92)8) 210)) (73, 51 42) 23)’ (10) 821
210),(93,3,29). Since 7 satisfies the condition (2), 7 is one of the sequences
(9,8,7,42,28), (9%,6,29), (10,8, 6,2°), (92,7, 3,28), (82,7, 3,2%), (82,7, 5,28),
(82)6) 29)7 (92,8? 211)) (82) 7’ 51 4) 26)7 (8277, 58’ 24)‘ (111 9’ 8) 211)7 (92, 87 42’27))
(10,8,7,3,28),(9,8,7,4,28), (102, 8,2!1),(10,9,7,2!°), (92,8, 4,2°), (9,8, 7,
210),(11,8,7,219), (10,9, 8, 3,2°), (82,7, 5,42,2%), (102, 9, 3, 21°), (82, 28), (82,
4,27),(82,5,3,2%), (82,6,32,25),(82%,6,42,2°%), (8%,7,6,3%,2), (9,8, 7, 32, 25),
(82 29), (82, 72 4,34,2),(9,8,5,2%),(9,8,6,3,27), (82 6 4,2"),(82%,7,4,3,25),
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(8,7,3%,2),(9%8,32%,27),(11, 10,9, 2'2), (112, 10,2'3). It is easy to com-
pute the corresponding 7 is one of the graphic sequences (12), (2, 12), (3, 13),
(4,1%), (4,22,12), (5,4, 2, 1), (52, 22, 14), (5, 22, 13), (5, 15), (5,3, 22, 12), 5,
33,12), (6,1°), (6,22,1%),(7,17), (8, 18). So = is potentially K, ¢-graphic.

Case 2. d, = 1. Then #/, = (dy,d5,...,d;,_,) satisfies d5 > 6 and
d§ > 2. If ], satisfies (1) and (2), then by the induction hypothesis, 7}, is
potentially K ; ¢-graphic, and hence so is .

If «!, does not satisfy (1), i.e. dj = 6, then d; = dy = 7,d3 < 6 and
n 2> 10. Thus, o = (d3—2,d4—-2,d5—2,d5—-2,d7—2,d8—2,d9,...,dn). If
d3 < 4, then 75 is graphic. If d3 = 5 and dg > 3, then 9 is also graphic. If
d3 = 5,dg = 2 and 7 # (3,2,1), then = is graphic. If mp = (3,2,1), then
7 = (72,5,25,1), a contradiction. If d3 = 6 and dg = 2, then |r3| > 3. Since
o(ms) is even, |mo] # 3. If |me| > 7, then mg is graphic. If |wa| = 4, then
7 is one of the sequences (72,6,3,25,1),(7%,6,2%,12),(72,6,5,25,1). The
sequences (72,6,3,25,1) and (72,6,25,12) are excepted and the sequence
(72,6,5,2%,1) is not graphic. Since 7 is graphic, |m2| # 5 and 6. If d3 = 6
and 3 < dg < 5, then w5 is graphic. If d3 = 6,dg = 6 and djo > 4, then
8> %[@'—'ﬁ*—lﬁj and 7, is graphic. If d3 = 6,ds = 6 and d;p < 3, then the
residual sequence w5, is graphic.

If 7/, does not satisfy (2), then =/, is one of the sequences (72,27), (72,4,
26)’ (72’ 6! 32’24)7 (747 357 1)’ (72’ 6’ 421 24)’ (73) 67 35)7 (747 41 34)' (72’ 6) 27)!
(7°,3,25), (72,5,3,2°),(7%,6,3,25,1),(8,7,6,3,2%),(7%,5,2%,1), (73,42, 24,

. 1)’ (82’ 61 28)! (73’ 51 27)’ (73’ 3! 27)1 (721 6) 4) 26)) (73! 4! 3’ 25)7 (9, 7’ 63 28)) (8)

7) 5) 27), (8$ 72) 4) 27)7 (73) 32’ 24) 1)) (8! 71 6! 27’ 1)) (72) 6) 28)7 (81 72’ 3! 26, 1),
(8,72,32,28),(72,28), (73,3, 2%,12), (8, 7%,4%,2°), (9, 8,7, 2°), (10, 72, 29), (73,
53’ 23)) (83? 321 26)1 (83! 42) 26)7 (73? 5’ 4’ 25)’ (73) 26’ 13)’ (831 29)’ (87 727 27! 12)7
(8) 723 29)’ (837 210)7 (73! 287 1)7 (9’ 72) 37 27)) (72) 6! 26) 12)) (73) 4’ 26) 1)) (827 7}
3? 27)’ (8) 72’ 28)) (73! 27? 1)7 (82’ 7) 28) 1)’ (91 72, 28, 1)3 (83’ 3’ 271 1)7 (83’ 4’ 28))
(92,8,219),(9,82,2°,1), (78,5, 42, 2%),(10, 82,210), (8%, 28,12), (9, 82, 3,28),
(93,3,29), (10,92,211), (93,219, 1), (10%,2!2). Since 7 satisfies (2),  is one
of the sequences (82,7,32,25,1),(8,7,6,3,2%,12),(8,7,6,32,241),(9,7,6,
3,25,1),(9,7%,32,25,1), (8,72,6,35,1),(9,7%,42,25,1), (8%,7,4%,25,1), (9,7,
5,27,1),(8,7%,32,2%,12),(8,7%,42,24,1%),(8,7,6,4%,24,1),(9, 7%,4,27,1), (8,
73,35,12),(9,7,6,27,12),(8%,7,2°9,1),(8,7,6,28,1), (10,7,6,2%,1), (92,7, 29,
1)’ (Sl 72! 28) 12)’ (97 82’ 28! 13)7 (9) 8’ 6’ 28) 1)’ (8’ 727 3’ 27) 1)) (92) 8’ 29) 12)? (g)
72) 27’ 13)) (82’ 7) 27! 13)) (82) 7) 4’ 27) 1)’ (8) 721 57 47 251 1)1 (9) 72) 37 26) 12)) (827
7,3,25,12),(10,72%,3,27,1), (9, 8,7,3,27,1),(9,82,2!9,1), (82,6,27,12), (9,
72,29,1),(8%,6,3,2°,1), (8%,5,27,1),(8,7,28,1),(8,7,5,3,2%,1),(8,7,5, 25,
12), (87 73’ 47 347 1)) (8’ 7, 63 4, 26! 1)’ (81 72) 5) 42! 23’ 1)’ (81 72’ 4’ 31 25’ 1)7 (8’ 71
4,28,1),(10,92,3,2°%,1),(9,82%,3,27,1%), (11, 10%,212,1), (9, 8, 7, 28, 12), (8, 72,
4,28 12),(8,72,5%,23,1),(8,7%,3,25,1%),(10,8,7,2° 1), (9, 82,32, 2%,1), (9,
82,42 25 1), (8,7,6,25,1%),(10,9, 8,219, 1), (11,72, 2°,1), (10, 82, 2°,12), (11,
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82,210 1), (8,72,5,27,1), (10,9%,219,12), (11,92, 211, 1), (8,72, 2%,1%), (8,7,
27,1),(10, 82, 3,28,1), (92,8, 3,28,1), (10,72, 28,12), (9, 82,4, 28,1), (102, 9,
211 1),(10,72,28,12). It is easy to compute the corresponding 7 is one of
the graphic sequences (12), (2,1%),(3,1%), (4,1%), (4,2%,1%), (5, 4,2, 1%), (5%,
22,14),(5,22,1°), (5,1°), (5,3, 2%,1%), (5%, 2,1%), (5, 3%,1%), (6,1°), (6, 2%, 1),
(7,17), (8,18). So = is potentially K11 6-graphic. O

We now give an application of Theorem 1.3.

Corollary For n > 8,

m—5, ifnisodd,
n — 6, if nis even.

Proof. Take 7 = (n — 1,6™1) if n is odd and 7 = (n — 1,6"2,5) if
n is even. Obviously, 7 is graphic. If 7 is potentially K ;¢-graphic, then
there are at least two terms in # which are greater or equal to seven, a
contradiction. Hence, 7 is not potentially K ;¢-graphic. In other words,
T —5, if nisodd,

Tn—6, if niseven.

Let n > 8 and 7 = (dy,ds,...,ds) € GS, be a positive sequence with
o(mw) > T — 6. We show that = is potentially K} ; ¢-graphic.

(1) By n > 8 and o() > Tn— 6, it is easy to check that 7 is not one of
the sequences (72, 27), (72, 4, 2°), (72, 5, 3, 2°), (72, 6, 3%, 2%), (72, 6,42, 24), (73,
6,3%), (74,4,34),(72,6,3,25,1),(7%,6,2%),(9,7,6,2%),(82,7,3,27), (8, 72,28),
(81 721 4’ 27)7 (8) 72’ 3’ 26’ 1)’ (821 6’ 28)’ (73’ 27’ 1)’ (72’ 6’ 26, 12)7 (73) 37 25’ 12)’
(7%,4,25,1),(7%,5,27),(73,5,4,2%), (73, 8%, 2%), (8%, 32, 29), (8%, 2°), (72, 6,27),
(73’ 3’ 26)7 (8) 71 53 27)7 (8, 71 6’ 37 26)7 (72’ 5’ 267 1)’ (72’ 6’ 4’ 26)) (73’ 47 3) 25)7 (72,
28)’ (837 42’ 26)’ (7373’ 27)’ (9’ 8’ 7) 29)’ (9’ 72’ 28’ 1)7 (82, 7’ 28? 1)! (8’ 72’ 27) 12))
(83 727 29)7 (73) 28’ 1)’ (107 72’ 29)’ (9’ 827 3’ 28)’ (83’ 3’ 27’ 1)’ (73’ 26! 13)’ (831 4,
25),(92,8,210), (8%,219), (9, 82,29, 1), (8, 7%, 82,2%), (8, 7%,4%,2%), (7°, 32,24,
1)’ (73’ 42, 24’ 1), (74’ 353 1)) (8) 7, 6? 27, 1)7 (97 72) 3’ 27)’ (83) 281 12)’ (10? 821 210)’
(9%,3,29), (10,92, 2!1),(9°,2', 1), (10%,2'2).

(2) We claim that dp > 7. Otherwise, dy < 6. Then o(7) =d) +da +
---+4+d, <n—1+46(n—1) < 7n — 6, a contradiction.

(3) We claim that dg > 2. Otherwise, dg < 1. Then o(m) = 31, di +
S adi <42+ Y gmin{7,di} + 3 [_gdi =< Tn — 6, a contradiction.

Thus, 7 is potentially K} ; g-graphic by Theorem 1.3 and o(K1,1,6,7)
being even. O

Proof of Theorem 1.4 Use induction on s. By Theorem 1.1 and
Theorem 1.2, Theorem 1.4 holds for s = 2 and s = 3. Now assume Theorem
1.4 holds for s—1(> 2). We will prove by using induction on n that Theorem
l4 holds for s. If n =5+ 2, thend; =8+ 1=n—1. By Lemma 2.2, 7 is
potentially K3 s—graphic. By Lemma 2.2, we can assume that 7 satisfies
n—2>d; 2 2dep1 2dsyo =dsy3 =" =dg42 2 dg,43 2+ 2 dn.
If n =s+3, thend; = s+ 1and 7 = ((s + 1)°*3), a contradiction. If

U(Kl,l,s, n) =

a(K1,1,6,n) > a'(ﬂ-) +2= {
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n=s+4,thend; =s+1ors+2. Ifd; = s+1, then 7 = ((s+1)**3, ds44)

and mp = ((s — 1)°,8 + 1,ds44). It is easy to check that m, is graphic.
by Theorem 2.4 and Theorem 2.8. If dy = s+ 2 and dp = s+ 1, then

7 = (s+2,(s+1)**3) and 7y = ((s—1)%, s, s+ 1), which is graphic. If d; =

s+2 =dp and dyy2 = s+2, then m = ((s+2)°**) and w2 = (5°, (s +1)2). If
dy =s+2=dy and dy42 = s+ 1, then 7 = ((s +2)%, (s + 1)**4~%)(z > 2)

and mp = (s¥,(s — 1)**2-¥)(y > 2,s+ 2 — y > 1), which is graphic by

Theorem 2.8. In the following, we assume that n > s+ 5 and s > 3.

If there exists an integer ¢,2 <t < s+ 1, such that d; > d;41, then the
residual sequence ms42 = (dj,...,d,_,) obtained by laying off ds12 from
wsatisfies dy =dy —1,...,d} =d; — 1. If dgy0 > s+ 2, thend , > s+ 1
By the induction hypothesis, 7,42 is potentially K; i ,—graphic and so is
w. If dgy2 = s+ 1, then d},, > s. By the induction hypothesis, 74,2 is
potentially K s—;—graphic. Thus, 7 is potentially K} s—graphic from
di=d-1,....dj=d; - 1(2<t < s+1).

Now assume that n -2 > dy > ds =d3 =---=dsy) =dsy2 =--- =
da,+2 2 dg,43 2 + -+ 2 dn. We consider the following two cases.

Case 1. d, = 1. Then the residual sequence =, = (di,...,d,_;)
obtained by laying off d,, from = satisfies d;, 5 > s+ 1. By the induction
hypothesis, 7/, is potentially K 1 s—graphic and so is m.

Case 2. d, > 2.If d,4.q > 3+3, then 7 is potentially K ;4.0—graphic by
Theorem 2.9. According to Theorem 2.7, 7 is potentially K ; s—graphic.
Suppose that ds4.q < s+ 2, we consider the following two subcases.

Subcase 2.1. d; > s+ 2. Thendsyy = s+ 1lordspq =s+2. If
ds+4 = s+ 2, then the residual sequence 7} = (dj,...,d;_,) obtained by
laying off d; from = satisfies d},, > s -+ 1. By the induction hypothesis,
m} is potentially K i,—graphic. If d;y4 = s+ 1, then 7 = (d1,(s +
)%+ dy 13,...,dpn). Denote | = maz{i|da,+14: = da}. Obviously ! > 1.
Thereby, 7 = (d1, (s + l)d""l,dd‘_,_“(g,,.l),...,dn)(ddl+1+(l+l) <s)ltis
easy to compute that mp = ((s—1)?, (s+1)}, shr—(s+1) ddl+1+(l+1), -y dn).
122 thendy — (s+1) +l+5>s+3> L Lrlbs b)) _ 15
12+3(s—-1)+3] = s+2+ -2 and mp is graphlc by Theorem 2.3. If I =1,
then ms = ((s — 1)%,8+ 1,sh—(s+1) dd, +3, - - -,dy). It is easy to check that
the residual sequence 75, obtained by laying off the largest term s+-1 from
o is graphic by Theorem 2.8. Thus, w2 is graphic by Theorem 2.1.

Subcase 2.2. d; = s+ 1. Thenm = ((s + 1)""2‘” doq24i41s---,dn),
where (ds424141 < 8). Thereby, m2 = ((s — 1)°,(s + 1)}, dsqati41, . - ,dn)
Ifds+2+,+1 >s—land!>2,thenl+s+1>s+3> L 1[iML] =
s+2+; — and 73 is graphic by Theorem 2.3. If dsyo4i+1 = s — 1 and
=1, then mg = ((s = 1)%,8 + 1,ds424141, . . .y dn). According to Theorem
2.8, the residual sequence m5; obtained by laying off the largest term s+ 1
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from m, is graphic. Thus, mo is graphic according to Theorem 2.1. If
ds+2+[+1 <s-— 2andl = 1, then T = ((8 bl 1)3,S+ l,ds+2+{+1, .. .,dn). It
is easy to see that the residual sequence 75, is also graphic by Theorem 2.8.
If d3+2+[+1 < s—2andl = 2, then T = ((8—1)3, (8+1)2,d3+2+[+1, I ,dn).
It is easy to check that the residual sequence 75, obtained by laying off
the largest term s from the residual sequence 75, is graphic by Theorem
2.8. Thus, w2 is graphic. If dgyo414+1 < s—2and! > 3,thenl+s>s+3 >
;;I—I[KML;I“LQ] = s+ 2+ -2; and m; is graphic by Theorem 2.3. Hence,
w is potentially K, ,—graphic by Lemma 2.1. O
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