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Abstract

An almost-bipartite graph is a non-bipartite graph with the property
that the removal of a particular single edge renders the graph bipar-
tite. A graph labeling of an almost-bipartite graph G with n edges
that yields cyclic G-decompositions of the complete graph Kant41
(i.e., cyclic (K2ne+1,G)-designs) was recently introduced by Blinco,
El-Zanati, and Vanden Eynden. They called such a labeling a «-
labeling. Here we show that the class of almost-bipartite graphs
obtained from Can, by adding an edge joining distinct vertices in the
same part in the bipartition of V(Czm) has a «-labeling if and only
if m > 3. This, along with results of Blinco and of Froncek, shows
that if G is a graph of size n consisting of a cycle with a chord, then
there exists a cyclic (Kant+1, G)-design for every positive integer ¢.

1 Introduction

If @ and b are integers we denote {a,a+1,...,5} by [a,b] (ifa > b, [a,b] = 0).
Let N denote the set of nonnegative integers and Z,, the group of integers
modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G
and the edge set of G, respectively. The order and the size of a graph G
are |V(G)| and |E(G)|, respectively.

Let V(Ki) = Zi and let G be a subgraph of Ki. By clicking G, we
mean applying the isomorphism i — i + 1 to V(G). Let H and G be
graphs such that G is a subgraph of H. A G-decomposition of H is a
set A = {Gy,Ga,...,G} of pairwise edge-disjoint subgraphs of H each
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of which is isomorphic to G and such that E(H) = '_, E(G:). A G-
decomposition of K} is also known as a (K, G)-design or a G-design of
order k. A (K}, G)-design A is cyclic if clicking is a permutation of A. For
a comprehensive source on graph decompositions we refer the reader to [5].
For an excellent recent survey on G-designs, see [1].

Let V(Ki) = {0,1,...,k — 1}. The length of an edge {i,5} in K is
min{ji — j|,k — |i — j|}. Note that clicking an edge does not change its
length. Also not;ce that if k is odd, then K} consists of k edges of length ¢
fori=1,2,..., 51

For any graphzc, a one-to-one function f : V(G) — N is called a labeling
(or a valuation) of G. In [12], Rosa introduced a hierarchy of labelings. We
add a few items to this hierarchy. Let G be a graph with n edges and
no isolated vertices and let f be a labeling of G. Let f(V(G)) = {f(u) :
u € V(G)}. Define a function f : E(G) — Z* by f(e) = |f(u) — f(v)),
where e = {u,v} € E(G). We will refer to f(e) as the label of e. Let
E(G) = {f(e) : e € E(G)}. Consider the following conditions:

&: F(V(6)) < [0, 2n),
€2: f(V(G)) € [0,n],
€3: E(G) = {z1,22,...,2,}, where for each i € [1,n] either z; = i or
z;=2n+4+1-1,
¢4: E(G) = [1,n].
If in addition G is bipartite with bipartition {A, B} of V(G) (with every
edge in G having one endvertex in A and the other in B) consider also
£5: for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

£6: there exists an integer A (called the boundary value of f) such that
f(a) £ Aforallae Aand f(b) > A for all b e B.

Then a labeling satisfying the conditions:

£1,£3: is called a p-labeling,

€1,04: is called a o-labeling;

£2,04: is called a SB-labeling.
A pB-labeling is necessarily a o-labeling which in turn is a p-labeling. If G is
bipartite and a p, ¢ or §-labeling of G also satisfies (¢5), then the labeling
is ordered and is denoted by p*, ot or 8%, respectively. If in addition (£6)

is satisfied, the labeling is uniformly-ordered and is denoted by p*+, o++
or B+, respectively.
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A [(-labeling is better known as a graceful labeling and a uniformly-
ordered (-labeling is an a-labeling as introduced in [12]. Labelings of the
types above are called Rosa-type because of Rosa’s original article [12] on
the topic. For a survey of Rosa-type labelings and their graph decomposi-
tion applications, see [8]. A dynamic survey on general graph labelings is
maintained by Gallian [11].

Labelings are critical to the study of cyclic graph decompositions as seen
in the following two results from [12] and [9], respectively.

Theorem 1 Let G be o graph with n edges. There exists a cyclic G-
decomposition of Kony1 if and only if G has a p-labeling.

Theorem 2 Let G be a graph with n edges that has a p*-labeling. Then
there exists a cyclic G-decomposition of Kony1 for all positive integers t.

If G with n edges is not bipartite, then the best that could be obtained
up until recently from a Rosa-type labeling was a cyclic G-decomposition
of Kon41. A non-bipartite graph G is elmost-bipartite if G contains an edge
e whose removal renders the remaining graph bipartite (for example, odd
cycles are almost-bipartite). In [4], Blinco et al. introduced a variation
of a p-labeling of an almost-bipartite graph G of size n that yields cyclic
G-decompositions of Kope41. They called this labeling a 4-labeling. They
showed that odd cycles (other than C3) and certain other 2-regular almost-
bipartite graphs admit v-labelings. In [6], it is shown that every 2-regular
almost-bipartite graph other than Cs and C3 U C; admits a y-labeling.

In this article, we show that the class of almost-bipartite graphs obtained
from Cs,, by adding an edge joining distinct vertices in the same part in
the bipartition of V(Cby,) has a v-labeling if and only if m > 3. When
combined with results from Blinco’s Ph.D. thesis [3] and a recent result
of Froncek [10], this shows that if G is a graph of size n consisting of a
cycle with a chord, then there exists a cyclic (Kant+1, G)-design for every
positive integer t.

2 Additional Definitions, Notation, and Some
Known Results

Let G be a graph with n edges and h a labeling of the vertices of G. We
call h a «y-labeling of G if the following conditions hold.

gl: The function h is a p-labeling of G.

g2: The graph G is tripartite with vertex tripartition A4, B,C with C =
{c} and b € B such that {b,c} is the unique edge joining an element
of Btoec.
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g3: If {a,v} is an edge of G with a € A, then h(a) < h(v).

g4: We have h(c) — h(b) = n.
Note that if a non-bipartite graph G has a y-labeling, then it is almost-
bipartite as defined earlier. In this case, removing the edge {c,b} from

G produces a bipartite graph. Figure 1 shows #-labelings of two almost-
bipartite graphs of orders 6 and 8, respectively.

0 2 4 0 1 2 4

Figure 1: 4-labelings of G(6,2) and of G(8,2).

Let G(2m,2h) denote the graph formed by adding an edge between
the endvertices of a path of length 2h in Co,,, where m > 2 and h > 1.
As stated earlier, we will show that G(2m, 2h) admits a +-labeling for all
m 2> 3. Note that G(2m, 2h) is in a subclass of Ci + e, the class of graphs
obtained by adding a chord e to the cycle Ci. In 1983, Delorme et al showed
in [7] that Cy + e is graceful. In 2003, Blinco re-looked in his Ph.D. thesis
[3] at labelings of Cj, + e as part of his investigation of decompositions of
complete graphs into f-graphs. Blinco showed that if Cj + e is bipartite,
then it admits an a-labeling. He also showed that if k is odd, then Cx + ¢
admits a ~y-labeling. He conjectured, but did not prove that if &k > 4 is even
and Cj + e is almost-bipartite, then Ci + e admits a y-labeling. That is the
case we cover in this paper. Although Cy4+ e cannot admit a y-labeling (see
Theorem 3), a recent (not yet published) result of Froncek [10] on cyclic
(Km,2 + e)-designs shows that there exists a cyclic (C4 + €)-decomposition
of Kyoeq1 for all positive integers ¢.

To simplify our consideration of the labelings, we will henceforth con-
sider graphs whose vertices are named by distinct nonnegative integers,
which are also their labels. Recall that by the label of the edge {z,y} in
such a graph we mean |z — y|. If G is a graph with n edges and if m is the
label of an edge e, let m* = min{m, 2n + 1 — m} (thus m* is the length of
e). If S is a set of edge labels, let $* = {m* : m € S}.

We denote the directed path with vertices zo,21,...,Tx, where z; is
adjacent to z;41, 0 < ¢ < k — 1, by (zo,21,...,2k). The first vertezx
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of this path is zg, the second verter is z;, and the last vertez is zi. If
G, = (zo0,z1,...,7;) and G2 = (yo,¥1,...,yx) are directed paths with
zj = Yo, then by G + G2 we mean the path (xo,z1,...,25,%1,¥2,. .., Yk)-

Let P(k) be the path with k edges and k + 1 vertices 0,1,...,k given
by (0,k,1,k—1,2,k—2,...,[k/2]). Note that the set of vertices of this
graph is AU B, where A = [0, |k/2]], B = [|k/2] + 1,k], and every edge
joins a vertex from A to one from B. Furthermore the set of labels of the
edges of P(k) is [1,k].

Now let a and b be nonnegative integers with @ < b and let us add
a to all the vertices of A and b to all the vertices of B. We will denote
the resulting graph by P(a,b, k). Note that this graph has the following
properties.

P1: P(a,b,k) is a path with first vertex a and second vertex b+ k. If k is
even, its last vertex is a + k/2.

P2: Each edge of P(a,b,k) joins a vertex from A’ = [a, |k/2] + a] to a
vertex with a larger label from B’ = [|k/2] + 1+ b,k + b).

P3: The set of edge labels of P(a,b, k) is b—a+1,b—a + k).

Now let R(a,b,k) be the path P(a,b, k) with its orientation reversed.
Note that this graph has the following properties.

R1: R(a,b,k) is a path with last vertex a. If k is even, its first vertex is
a+k/2

R2: Each edge of R(a,b,k) joins a vertex from A’ = [a, |k/2] + a] to a
vertex with a larger label from B’ = {|k/2] + 1+ b,k + b)].

R3: The set of edge labels of R(a,b,k) is [b—a+ 1,b—a + k].
Figure 2 shows P(6), P(3,5,6), and R(3,5,6).

3 4 5 6 6 5 4 3

11 10 9 9 10 1
) ©)

Figure 2: (2) P(6), (b) P(3,5,6), (c) R(3,5,6).
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3 Main Result

Theorem 3 Let G(2m,2h) denote the graph formed by adding an edge
between the endvertices of a path of length 2h in Cs,,, where m > 2 and
1 < h <m. Then G(2m,2h) has a v-labeling if and only if m # 2.

Proof. The graph G(2m,2h) is not bipartite, since it contains a cycle of
length 2h + 1, but it is clearly almost-bipartite. Without loss of generality,
we can assume that 2 < m/2. If m = 2, then G(4,2) is isomorphic to
K4 \ K3, which consists of two K3's sharing an edge e. In a v-labeling of
G(4,2), the edge e must have label 5. Let a be the vertex in A incident
with the edge f of length 1. Note that c—a = b+5—a. Thus if the label of
f is 1, a must be adjacent to b, while if the label on f is 10, then a must be
adjacent to ¢. In the first case c— a = 6, while in the second case b—a = 5.
Either way we have two edges with length 5.

We divide the rest of the problem into five cases depending on the par-
ities of m and h. At least one example is shown for each case.

Case 1 m and h are both even.

Let m = 2z and h = 2y. Thus our graph is a Cy, with a chord resulting in
a Cyy+1. We take the graph to be G) + G2 + G3 + G4 + (22 — 1,8z + 2,0)
plus the edge {8z + 2,4z + 1}, where

G1 = P(0,4z + 2y + 2,2y),
Gy = P(y,4z — y, 2y)’

G3 = P(2y, 2z + 2y, 2z — 4y),
Gy = P(z,z+ 1,2z — 2).

First, we show that G1 + G2 + G3 + G4 + (2¢ — 1,8z + 2,0) is a cycle of

Figure 3: A v-labeling of G(24, 8).

length 4. Note that by P1, the first vertex of G; is 0 and the last is y, the
first vertex of G is y and the last is 2y, the first vertex of G3 is 2y and the
last is z, the first vertex of G4 is = and the last is 2 — 1. For 1 < i < 4,
let A; and B; denote the sets labeled A’ or B’ in P2, corresponding to the
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path G;. Then using P2, we compute

A =[0,y], B = [4z + 3y + 3,4z + 4y + 2],
Az = [y,24], By = [4z + 1,4z + 9,

As = [2y, 4], B3 =[3z+1,4z — 2y),

Ay =[:z:,2:v—1], B4=[2ID+1,3:E—1].

Thus, Ay < Ay < A3 < A4 < By < Bs < By < B;. Also note that
V(G1) N V(Ga) = {y}, V(G2) N V(Gs) = {24}, V(Ga) NV(Gy) = {z} and
that, otherwise, G; and G; are vertex-disjoint. Therefore, G1+G2+G3+Gj4
is a path P of length 4z — 2 with first vertex 0 and last vertex 2z — 1. Since
V(P)n {2z - 1,8z + 2,0} = {2z — 1,0}, the graph G; + G2 + G3 + G4 +
(2z — 1,8z + 2,0) is a cycle of length 4z.

With the additional edge {82+2, 4z+1}, the resulting graph is G(4z, 4y)
and is tripartite with tripartition A, B,C, where A = A; U A U A3 U A4 U
{2z -1} = [0,2z — 1), B= B4UB3UByUB,; and C = {8z + 2}. With
b= 4z + 1 and ¢ = 8z + 2, we satisfy condition g2 for a v-labeling. Since
¢ — b = 4z + 1, condition g4 is satisfied. Moreover, if {a,v} is an edge in
our graph with @ € A, then a < v. Thus g8 is satisfied.

Therefore it remains to show that we have a p-labeling of G(4z, 4y). Let
E; denote the set of edge labels in G; for 1 < ¢ < 4. By P3, we have

E, =4z + 2y + 3,4z + 4y + 2),
Ey = [4z — 2y + 1,4x],

Bs = [2z+ 1,4z — 4y,
Ey=1[2,22 - 1].

Note that E} = [4z — 4y + 1,4z — 2y] and E} = E; for 2 < i < 4. More-
over, the path (2z — 1,8z + 2,0) consists of edges with labels 6z + 3 and
8z + 2. These labels correspond to edge lengths (6z + 3)* = 2z and
(8z + 2)* = 1, respectively. Thus the edges of G(4z,4y) have lengths
(Vi Er)u{2z,1} U {4z + 1} = [1,4z + 1]. Hence the defined labeling
is a p-labeling, and thus condition gl is satisfied. Therefore, we have a
~-labeling of G(4z, 4y).

Case 2 m is even and h is odd.

Let m = 2z and h = 2y + 1. Thus our graph is a Cy, with a chord resulting
in a Cgy43. Note that we must have z > 2y + 1 since we assumed h < m/2.
We will consider the case z = 2y + 1 separately.
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If z > 2y +1, we take the graph to be G1 + G2+ G3 + G4+ (2 - 2,2z +
1,2z,8z + 1,0) plus the edge {8z + 1,4z}, where

G) = P(0,4z + 2y + 4, 2y),

Gs = P(y, 4z —y — 2,2y + 2),

Gs = P(2y+ 1,2z + 2y + 3,2z — 4y — 4),
Gy=Pz-1,z+2,2z - 2).

First, we show that Gy + G2+ Gs + G4+ (20— 2,2z +1,2z,8z+1,0) is a

Figure 4: A ~-labeling of G(20, 6).

cycle of length 4z. Note that by P1, the first vertex of Gy is 0 and the last
is y, the first vertex of G is y and the last is 2y + 1, the first vertex of G
is 2y + 1 and the last is z — 1, the first vertex of G4 is £ — 1 and the last
is 2z — 2. For 1 < i < 4, let A; and B; denote the sets labeled A’ or B’ in
P2, corresponding to the path G;. Then using P2, we compute

A =1[0,4], By = [4z + 3y + 5,4z + 4y + 4],
Az =y, 2y +1], By = [4z,4z + 9,

Az =[2y+1,z—1], B3 = [3z + 2,4z — 2y — 1],
Ag=[z-1,22 - 2], By =2z + 2,3x].

Thus, Ay < A3 € A3 € A4 < By < B3 < By < B;. Also note that
V(G1) NV(Gz) = {y}, V(G2) NV(Gs) = {2y + 1}, V(Gs) N V(G,) =
{z — 1} and that, otherwise, G; and G; are vertex-disjoint. Therefore,
G1+ G2+ G3 + G4 is a path P of length 4z — 4 with first vertex 0 and last
vertex 2z — 2. Since V(P) N {2z - 2,2z + 1,2z,8z + 1,0} = {2z — 2,0},
the graph G; + G2 + G3 + G4 + (2z — 2,2z + 1, 22,8z + 1,0) is a cycle of
length 4z.

With the additional edge {82+1, 4z}, the resulting graph is G(4z, 4y+2)
and is tripartite with tripartition A, B, C, where A = A; UA2 U A3 U A4 U
{22:} e [0, 2:2:—2]U{2$}, B= {2$+ 1}UB4UBaUBzUBl and C = {8$+ 1}.
With b = 4z and ¢ = 8z + 1, we satisfy condition g2 for a v-labeling. Since
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¢ —b =4z + 1, condition g4 is satisfied. Moreover, if {a,v} is an edge in
our graph with a € A, then a < v. Thus g3 is satisfied.

Therefore it remains to show that we have a p-labeling of G(4z, 4y + 2).
Let E; denote the set of edge labels in G; for 1 < i < 4. By P3, we have

By =4z +2y + 5,4z + 4y + 4],
E; = [4z — 2y — 1,42],

E3 =2z +3,4z - 4y - 2],

Ey = [4, 2z 4 1].

Note that B} = [dz -4y — 1,4z -2y — 2] and E} = E; for 2 < i < 4.
Moreover, the path (2z — 2,2z + 1,2z,8z + 1,0) consists of edges with
labels 3,1,6z + 1 and 8z + 1. These labels correspond to edge lengths
3,1,(6z+ 1)* =22 + 2 and (8z + 1)* = 2, respectively. Thus the edges of
G(4z,4y+2) have lengths (UL, E¥)U{1,2,3,2z+2}U{dz+1} = [1,4z+1].
Hence the defined labeling is a p-labeling, and thus condition g1 is satisfied.
Therefore, we have a v-labeling of G(4z,4y + 2) when z > 2y + 1.

Now if z = 2y + 1, then our graph is G(8y + 4,4y + 2). Note that we
must have y > 0 since G(4,2) does not admit a <y-labeling. We take our
graph to be G} + G2 + Gs + (4y,4y + 3,4y + 2,16y + 9,0,12y + 9, 1) plus
the edge {16y + 9,8y + 4}, where

Gy = P(1,10y + 9,2y — 2),
Go =P(ya7y+2s2y+2),
Gs = P2y +1,2y+ 4,4y - 2).

First, we show that G1 + G2+ Gs + (4y, 4y + 3,4y + 2, 16y+9,0,12y+9, 1)

Figure 5: A v-labeling of G(20, 10).

is a cycle of length 8y + 4. Note that by P1, the first vertex of G; is 1 and
the last is y, the first vertex of G5 is y and the last is 2y + 1, the first vertex
of Gg is 2y + 1 and the last is 4y. For 1 <7 < 3, let A; and B; denote the
sets labeled A’ or B’ in P2, corresponding to the path G;. Then using P2,
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we compute

Al = [liy]? Bl = [11y+ 91 12y+ 7]7
Az =[y,2y+1], By = [8y+4,9y + 4],
Az =2y + 1,4y}, B3 = [4y + 4,6y +2].

Thus, A; < A; < A3 < B3 < By < B;. Also note that V(G)NV(Gs) =
{¥}, V(G2)nV(Gs) = {2y+ 1} and that, otherwise, G; and G; are vertex-
disjoint. Therefore, G1+G2+Gj is a path P of length 8y—2 with first vertex
1 and last vertex 4y. Since V(P)N{4y,4y+3,4y+2,16y+9,0,12y+9,1} =
{4y, 1}, the graph Gy + G2 + G3 + (4y,4y + 3,4y + 2,16y +9,0,12y + 9,1)
is a cycle of length 8y + 4.

With the additional edge {16y+9, 8y +4}, the resulting graph is G(8y+
4,4y + 2) and is tripartite with tripartition A, B,C, where A = A; U A3 U
A3U{4y+2,0} = [0,4y]u{4y+2}, B = {4y +3}UB3UB,UB, U {12y +9}
and C = {16y+9}. With b = 8y+4 and ¢ = 16y+9, we satisfy condition g2
for a 4-labeling. Since ¢ —b = 8y+5, condition g4 is satisfied. Moreover, if
{a, v} is an edge in our graph with a € A, then a < v. Thus g8 is satisfied.

Therefore it remains to show that we have a p-labeling of G(8y +4,4y+
2). Let E; denote the set of edge labels in G; for 1 < i < 4. By P3, we have

E; = [10y + 9,12y + 6],
E; = [6y + 3,8y + 4],
Bs = [4,4y +1).

Note that E} = [dy + 5,6y + 2] and E} = E; for 2 < i < 3. Moreover, the
path (4y,4y + 3,4y + 2,16y + 9,0,12y + 9, 1) consists of edges with labels
3,1,12y+ 7,16y + 9,12y + 9 and 12y + 8. These labels correspond to edge
lengths 3,1, (12y + 7)* = 4y + 4, (16y + 9)* = 2,(12y + 9)* = 4y + 2 and
(12y + 8)* = 4y + 3, respectively. Thus the edges of G(8y + 4,4y + 2) have
lengths (U2, E}) U {3,1,4y + 4,2,4y + 2,4y + 3} U {8y + 5} = [1,8y + 5].
Hence the defined labeling is a p-labeling, and thus condition gl is satis-
fied. Therefore, we have a v-labeling of G(8y + 4,4y + 2). Thus we have a
~-labeling of G(4z, 4y + 2).

Case 3 m is odd and A is even.

Let m = 22+ 1 and h = 2y. Thus our graph is a Cyz4o With a chord
resulting in a Cyyq1.
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We take the graph to be (1,82 +6,0,4z+2y + 3,2z)+ G1 + G2 + G3 +
G4 + G5 plus the edge {8z + 6,4z + 3}, where

G, =R(2z -2y +2,2x -2y + 4,4y — 4),
Gy =R(2z -2y + 1,42+ 1,2),

Gs = R(2z — 3y + 2,6z — 3y + 6,2y — 2),
Gy =R(z —y+2,5z+y+ 5,2z — 4y),
Gs = R(1,6z — 2y + 7,2z — 2y + 2).

First, we show that (1,8z+6,0,42+2y+3,2z)+G1+G2+G3+ G4+ Gs

Figure 6: A v-labeling of G(22, 8).

is a cycle of length 42+ 2. Note that by R1, the first vertex of G; is 2z and
the last is 2z — 2y + 2, the first vertex of G is 2z — 2y + 2 and the last is
2z — 2y + 1, the first vertex of Gs is 2z — 2y + 1 and the last is 2o — 3y + 2,
the first vertex of Gy is 2z — 3y + 2 and the last is z — y + 2, the first vertex
of Gs is £ —y +2 and the last is 1. For 1 < i < 5, let A; and B; denote the
sets labeled A’ or B’ in R2, corresponding to the path G;. Then using R2,
we compute

Ay = [2z - 2y + 2,2z], By = [2z + 3,2z + 2y},
A2=[2z—2y+1,2x—2y+2], B; = {4z + 3},

Az =[2z—3y+2,2z~2y+1], Bs=[6z—2y+6,6z—y+4],
As=[z—y+2,2z-3y+2], By=[6z-y+6,7z— 3y + 5],
As =[l,z~y+2], Bs = [Tz — 3y + 9,8z — 4y +9).

Thus, As < A3 < Az < Az < A; < By < B; < B3 < By < Bs. Also note
that V(G1) N V(G2) = {2z — 2y + 2}, V(G2) NV(Gs) = {2z - 2y + 1},
V(G3)NV(Gy) = {2z — 3y + 2}, V(G4) NV (Gs) = {z — y + 2} and that,
otherwise, G; and G; are vertex-disjoint. Therefore, G1+G2+G3+G4+Gs
is a path P of length 4z — 2 with first vertex 2z and last vertex 1. Since
V(P)N{1,8z+6,0,4z + 2y + 3,2z} = {1,2z}, the graph (1,8z+6,0,4z +
2y + 3,2z) + G1 + G2 + G3 + G4 + Gs is a cycle of length 4z + 2.
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With the additional edge {8z + 6, 4z + 3}, the resulting graph is G(4x +
2,4y) and is tripartite with tripartition 4, B, C, where A = {0}U4;UA,U
A3UA4UAs = [0,2z], B= B1UB;UB3UBUBs U{dz + 2y + 3} C
[2z + 3,82 — 4y + 9] and C = {8z + 6}. With b =4z + 3 and c =8z +6,
we satisfy condition g2 for a «-labeling. Since ¢ — b = 4z + 3, condition g4
is satisfied. Moreover, if {a,v} is an edge in our graph with a € A, then
a < v. Thus g3 is satisfied.

Therefore it remains to show that we have a p-labeling of G(4z + 2, 4y).
Let E; denote the set of edge labels in G; for 1 <7 < 5. By R3, we have

Ey = 3,4y - 2],
Ey=[2z+2y+1,2z+ 2y +2],
E3 = [4z + 5,4z + 2y + 2],

Es =4z +2y + 4,6z - 2y + 3],
Es =6z —2y+ 7,8z — 4y +8].

Note that Ef = Fy, E§ = E;, E = [dz — 2y + 5,4z + 2], E} = [2z +
2y + 4,4z — 2y + 3], and Ef = [dy — 1,2z + 2y]. Moreover, the path
(1,82 +6,0,42 + 2y+ 3, 2z) has edges with labels 8z + 5,8z 46,4z + 2y +3
and 2z + 2y + 3. These labels correspond to edge lengths (8z + 5)* =
2,(8z+6)* =1, (4z + 2y + 3)* = 4z — 2y + 4, and 2z + 2y + 3, respectively.
Thus the edges of G(4z + 2,4y) have lengths (U2, Ef) U {1,2,2z + 2y +
3,4z — 2y + 4} U {4z + 3} = [1,4z + 3]. Hence the defined labeling is a p-
labeling, and thus condition g1 is satisfied. Therefore, we have a y-labeling
of G(4z + 2,4y).

Case 4 misodd and h=1.

Let m = 2z+1 and h = 1. Thus our graph is a Cy; 42 with a chord resulting
in a C3. For z = 1, we give our labeling in Figure 1. For z > 2, we take
our graph to be Gy + G2 + (2z + 3,62 + 9,1,2,0,4z + 5, 5) plus the edge
{2,4z + 5}, where

G1 = P(5,2z + 4, 21),

G =Pz +5,2+ 7,22 —4).
First, we show that G; + G3 is a path of length 4z — 4. Note that by P1,
the first vertex of G is 5 and the last is £+ 5, the first vertex of Go isz+5

and the last is 22 4+ 3. For 1 < ¢ < 2, let A; and B; denote the sets labeled
A’ or B’ in P2, corresponding to the path G;. Then using P2, we compute

A =[5,z +5), B, =[3z + 5,4z + 4],
A =[x +5,2c+3], By =2z + 6,3z + 3.
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2 17 16 15 14 12 27

Figure 7: A ~-labeling of G(14,2).

Thus, A; < Az < By < By. Also note that V(G;) N V(G;) = {z + 5}, and
that, otherwise, G; and G, are vertex-disjoint. Therefore, G 4G is a path
P of length 4z—4. Since V(P)N{2z+3,62+9,1,2,0,4z+5,5} = {22+3, 5},
the graph G; + G2 + (2= + 3,62 + 9,1,2,0,4z + 5,5) is a cycle of length
4z + 2.

With the additional edge {2,42 + 5}, the resulting graph is G(4z + 2, 2)
and is tripartite with tripartition A, B, C, where A = {0}UA;UA2U{1} C
[0,22+3], B = {2}UB1UB,U{62+9} and C = {4z +5}. With b =2 and
¢ = 4z + 5, we satisfy condition g2 for a v-labeling. Since ¢ — b=4z+ 3,
condition g4 is satisfied. Moreover, if {a,v} is an edge in our graph with
a € A, then a < v. Thus g3 is satisfied.

Therefore it remains to show that we have a p-labeling of G(4z + 2, 2).
Let E; denote the set of edge labels in G; for 1 < i < 2. By P3, we have

El = [237, dx — 1],
E; =[3,2z - 2).

Note that Ef = E; and E = Ej. Moreover, the path (2z + 3,6z +
9,1,2,0,4z + 5,5) has edges with labels 4= + 6,6z +8,1,2,4z + 5 and 4z.
These labels correspond to edge lengths (4 +6)* = 4z +1, (6z+8)* =2z —
1,1,2, (4z+5)* = 4z+2 and 4z, respectively. Thus the edges of G(4z+2,2)
have lengths (E}UE3U{1, 2,22—1, 4z, 4x+1,4z+2}U{4z+3} = [1,4z+3).
Hence the defined labeling is a p-labeling, and thus condition g1 is satisfied.
Therefore, we have a y-labeling of G(4z + 2, 2).

Case 5 m is odd and h > 3 is odd.

Let m = 2z +1 and h = 2y+ 1 with y > 1. Thus our graph is a Cy;42 with
a chord resulting in a Cyy43. We take the graph to be G, + (2y — 1,6z +
5,2y+1)+ G2+ Gs + G4+ (2z,2x + 2,22 + 1,6z — 2y + 5,0) plus the edge
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{2z + 2,6z + 5}, where

G, = P(0,8z — 4y + 6,4y — 2),
Ge = P2y + 1,4z + 5,2y — 2),
G3 = P(3y,2z + 5y + 3,2z — 4y),
G4 = P(z +y,x + 5y, 2z — 2y).

First, we show that G; + (2y — 1,62 +5,2y+ 1)+ G2+ G3 + G4 + (22, 2z +

Figure 8: A 4-labeling of G(22, 10).

2,2z + 1,6z — 2y + 5,0) is a cycle of length 4z + 2. Note that by P1, the
first vertex of G is 0 and the last is 2y — 1, the first vertex of G2 is 2y +1
and the last is 3y, the first vertex of G3 is 3y and the last is z + y, the
first vertex of G4 is z + y and the last is 2z. Moreover, note that the path
(2y — 1,6z + 5,2y + 1) starts at 2y — 1 (the last vertex of G1) and ends at
2y +1 (the first vertex of Gz). For 1 < i < 4, let A; and B; denote the sets
labeled A’ or B’ in P2, corresponding to the path G;. Then using P2, we
compute

A =[0,2y — 1], B; =[8z -2y + 6,8z + 4],

Az =2y + 1, 3y], By =z +y+5,4z + 2y + 3],
Az =[3y,z + ), B3 =[3z+3y+4,4z+y + 3],
Ay = [z +y,22], By =[2z + 4y + 1,3z + 3y].

Thus, 4; < {2y—1,2y+1} SA3<A3<A;1<By<B3<By< {6z+5} <
B;. Also note that V(G3) N V(G3) = {3y}, V(G3)NV(G4) = {z +y}, and
that, otherwise, G; and G; are vertex-disjoint. Therefore, G +(2y—1, 6z+
5, 2y+1)+G2+G3+G4 is a path P of length 4z—2 with first vertex 0 and last
vertex 2z. Since V(P)N{0,6z—2y+5,2x+1,22+2, 2z} = {2z,0}, the graph
G1+(2y—1,6z+5,2y+1)+G2+G3+G4) +(2z, 22+ 2,22 +1,62~2y+5,0)
is a cycle of length 4z + 2.

With the additional edge {2z + 2,6z + 5}, the resulting graph is G(4z +
2,4y+2) and is tripartite with tripartition A, B, C, where A = A;UA3UA3U
AqU{2z+1} C [0,2z+1], B = {2z+2}UB,UB,UB3UB,U{6z~2y+5} C
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[2z + 4y + 1,8z + 4] and C = {6z + 5}. With b =2z + 2 and ¢ = 6z + 5,
we satisfy condition g2 for a y-labeling. Since ¢ — b = 4z + 3, condition g4
is satisfied. Moreover, if {a,v} is an edge in our graph with a € A, then
a < v. Thus g3 is satisfied.

Therefore it remains to show that we have a p-labeling of G(4z+2, 4y +
2). Let E; denote the set of edge labels in G; for 1 < 7 < 4. By P3, we have

E, =8z -4y + 7,8z + 4],

E; = [4z - 2y + 5,4z + 2],
E3=[2z+2y+4,4z — 2y + 3],
Ey=[4y+1,2z + 2y].

Note that Ef = [3,4y] and Ef = E; for 2 < i < 4. Also, the path
(2y — 1,6z + 5,2y + 1) has edges with labels 6z — 2y + 6 and 6z — 2y + 4.
These labels correspond to edge lengths (6x — 2y + 6)* = 2z + 2y + 1 and
(6z — 2y +4)* = 2z + 2y + 3, respectively. Moreover, the path (0,6z — 2y +
5,2z + 1,2z + 2, 2z) has edges with labels 6z — 2y + 5,4z — 2y + 4,1 and 2.
These labels correspond to edge lengths (6z — 2y + 5)* = 2z + 2y + 2,4z —
2y+4,1 and 2, respectively. Thus the edges of G(4z+2, 4y+2) have lengths
(UL Ef)u{2z+2y+1, 2z+2y+3}U{1, 2, 22+ 2y+2, 42— 2y+4}U{4z+3} =
[1,4z + 3). Hence the defined labeling is a p-labeling, and thus condition
gl is satisfied. Therefore, we have a v-labeling of G(4z + 2,4y + 2). O

Because every cycle with a chord (other than Cy + €) admits either an
a-labeling (by Blinco’s results [3]) or a <-labeling (by Blinco’s results (3]
or Theorem 3 here) and in light of Froncek’s result on cyclic (Km 2 + €)-
decompositions [10], we have the following corollary.

Corollary 4 Let G be a graph of size n consisting of a cycle Cp—1 with
a chord e. Then there exists a cyclic (Kanit1,G)-design for all positive
integers t.
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