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Abstract

Let G be a graph with vertex set V(G). For any S C V(G) we
use w(G — S) to denote the number of components of G — S. The
toughness of G, t(G), is defined as t(G) = min{|S|/w(G - S)|S C
V(G),w(G~S) > 1} if G is not complete; otherwise, set t(G) = +oo0.
In this paper, we consider the relationship between the toughness and
the existence of fractional (g, f)-factors. It is proved that a graph G
has a fractional (g, f)-factor if ¢(G) > (b* — 1)/a.

Key words: toughness; fractional (g, f)-factor; graph

1 Introduction

The graphs considered here will be finite undirected graph which may have
multiple edges but no loops. Let G be a graph with vertex set V(G) and
edge set E(G). For any S C V(G) we use G[S] and G — S to denote the
subgraph of G induced by S and V(G) — S. For a vertex =z € V(G), we use
N¢(z) to denote the set of vertices of V(G) adjacent to z, and dg(z) and
d(G) to denote the degree of z and minimum degree of G. A subset S of
V(G) is called a covering set (an independent set) of G if every edge of G
is incident with at least (at most) one vertex of S.

Let g and f be two nonnegative integer-valued functions defined on
V(G) with g(z) < f(z) for every z € V(G), and h : E(G) — [0,1] be
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a function. If g(z) < d&%(z) < f(z) holds for any vertex z € V(F)
where di(z) = 3.5, h(e we call G[Fy,] a fractional (g, f)-factor of G
with indicator function h where Fj, = {e € E(G)|h(e) > 0}. If g(z) = f(z)
or g(z) = f(z) = k, then a fractional (g, f)-factor is called a fractional f-
factor or a fractional k-factor.Other terminologies and notations not defined
here can be found in [2,6].

A graph is t-tough if |[S| > tw(G — S) holds for any § C V(G) and
w(G — S) > 1, where w(G — S) denotes the number of components of
G — S. A complete graph is t-tough for any positive real number ¢. If G is
not complete, there exists the largest ¢ such that G is {-tough, this number
is denoted by ¢(G) and is called the toughness of G, namely

t(G) = min{%w CV(G),w(G - 8) > 1},

for complete graph K, we define ¢(K,,) = +oo.

The toughness of a graph was first introduced by Chvétal in [3].Since
then, much work has been contributed to the relations between toughness
and the existence of factors and fractional factors of a graph.

G.Liu and L.Zhang discussed the sufficient condition for the existence
of fractional k-factors with k > 1 related to toughness of graph, and obtain
the following result.

Theorem 1.1[4] Let k > 2 be an integer. A graph G has a fractional
k-factor if t(G) > k —

Q.Bian also discussed the toughness condition for the existence of frac-
tional f-factors .

Theorem 1.2[1] Let G be a graph and f is an integer-valued function
on V(G) satlsfymga, < flz)<bwithl1<a<bandb>2forall z € V(G).
If ¢(G) > —"‘— 41 then G has a fractional f-factor.

In this paper we consxder the relationship between the toughness and
the existence of fractional (g, f)-factors,which extends the results of Liu’s
and Bian’s.

Theorem 1.3 Let G be a graph and let g, f be two nonnegative integer-
valued functions defined on V(G) satisfying e < g(z) < f(z) < b with
1<a<band b > 2 forall z € V(G), where a,b are positive integers. If
t{G) > bz“ , then G has a fractional (g, f)-factor.

Obvmusly, we can obtain Theorem 1.1 with @ = b = k. Since —+— -

B > i £=1, we can improve Theorem 1.2 with g(z) = f(z) for a.ll z €
V(G). From the example of [4], our result is also sharp in the sense of
f(z) = g(z) =k for all z € V(G).
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2 Proof of Theorem 1.3

To prove the result, we need the following lemmas.
Lemma 2.1[5] A graph G has a fractional (g, f)-factor if and only if
for any subset S of V(G).

9(T) — de-s(T) < f(S),

where T = {z € V(G) \ Slde-s(z) < g(z)}.
Lemma 2.2(3] If a graph G is not complete, then ¢(G) < 36(G). :
Lemma 2.3[4] Let G be a graph and let H = G[T] such that dg(z) =
k — 1 for every z € V(H) and no component of H is isomorphic to K},
where T' C V(G) and k& > 2. Then there exists an independent set I and a
covering set C = V(H) \ I of H satisfying

1
VDI < (k= I,

and

1
O] < (k=1 = I

Lemma 2.4[4] Let G be a graph and let H = G[T] such that §(H) > 1
and 1 < dg(z) < k ~1 for every z € V(H) where T C V(G) and k > 2.
Let T3,-+-,Tx—1 be a partition of the vertices of H satisfying dg(z) = j
for each z € T}, where we allow some T} to be empty. If each component
of H has a vertex of degree at most k — 2 in G, then G has a maximal
independent set I and a covering set C = V(H) \ I such that

k-1 k-1
> (k= g)e; <3 (k= 2)(k - 5)ij,
j=1 j=1

where ¢; = |C(\Tj| and i; = [INT}| for every j=1,---,k— 1.

Proof of Theorem 1.3. Suppose, by the contrary, that there exist
two integer-valued functions g and f satisfying all the conditions of the
theorem 1.3, but G has no fractional (g, f)-factors. From Lemma 2.1 there
exists a subset S of V(G) such that

9(T) — de-s(T) > f(S), (1)
where T = {z € V(G) \ Slde-s(z) < g(z)}.

Choose T such that T is minimal subject to (1). Suppose that there
exists z € T such that dg_s(z) = g(z). Then the sets S and T'— {z} satisfy
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(1), which contradicts the choice of T. Hence we have dg_s(z) < g(z) — 1
for all z € T. Obviously, dg_s(z) < b—1for all z € T. By Lemma 2.2,
we have

b2 -1, (- 2)(b+ 1)

5(G) >2(G)>2 > - (b+1)>b+1

Therefore S # 0 by (1) Let { be the number of the components of H' =
G[T] which are isomorphic to Kj and let T = {z € V(H')|dg_s(z) = 0}.
Let H be the subgraph obtained from H'—T; by deleting those components
isomorphic to Kj. If |V(H)| = 0, then

alS| < f(8) < g(T) = dg-s(T) < b|To| + bl
or
b
1<[8< ;(ITol +1).
Hence
|To| +1 > =
) b

Clearly
w(G-8)2|To|+121.

Ifw(G—s) > 1 then #(G) < gSks < 0D _ & This contradicts that
t(G) > & =15 % Huw(G-s)=1then |To|+i=1 Hence de-s(z) =

or dg_g (:x:) =0 for z € V(G)\ S. Since dg_g (z) + |S| > de(z) > 6(G) >
2t(G), we have |S] > 2t(G) — b+ 1 > t(G) > 2 = (|Ty| +1), this is a
contradiction.

Now we consider that |[V(H)| > 0 and §(H) > 1. Let H = H;|J H,
where H; is the union of components of H which satisfies that dg_g(z) =
b—1 for every vertex « € V(H;) and Hy = H — H;. By Lemma 2.3, H,
has a maximum independent set I; and the covering set C; = V(H;) — I,
such that

VD] < (b I 2
and
Cal < (b= 1= g3l ©

On the other hand, it is obvious that d(H;) > 1 and A(H2) < b—1. Let
T; = {z € V(Hp)|dg-s(z) = j} for 1 < j < b— 1. By the definition
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of H and H, we can also see that each component of Hy has a vertex of
degree at most b—2 in G —S. According to Lemma 2.4, H, has a maximal
independent set Iz and a covering set Co = V(H3) — I, such that

b—1 b—1
> (- <Y (b—2)(b - )i, 4)
Jj=1 j=1

where ¢; = |C2(T}| and ¢; = |[Io N Tj| for every j=1,---,b—1.
Set W=V(G)-S-Tand U = SUC,UC2U(Ne(I2) NW). Since

b=1
|Ca| + |Ng(I2) NW| < Y ji;, we obtain
Jj=1

b-—-1
U| < IS+l + > 3is, (5)
j=1
and
b—-1
w(G=U)2to+1+ L]+ i (6)

=1
where tg = |Tp|. Let ¢(G) = t. Then when w(G — U) > 1, we have
U] 2 tw(G - U). "
In addition, the above also holds when w(G — U) = 1. From Lemma 2.2,
U] 2 do-s(z) +18] 2 do(z) 2 6(G) 2 24(G) > tw(G - U)

holds for any z € T. By (5), (6) and (7), the following inequality

b-1 b-1
IS1+ (Cal + D" di; > tlto + ) + ||+ 3

j=1 j=1
or
b—1
IS|+1C1| =D (¢ —5)is + t(to + 1) + t|1y]
j=1

holds. From (1) we have
b'Tl - da_s(T) > a.|.S'|.
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Then

b—1 b—1
bto + bl + [V(H)| + > (b - 5)ij + Y _(b—d)e; +alCrl
=1 j=1
b—1
> a(|S| +1C1]) 2 ) _(at — aj)i; + at(to + 1) + at|1].
Jj=1
Therefore
b-1 b-1
Y (b= )+ |V(H) +a|Cil > Y (at —aj —b+j)is +at|la].  (8)
i=1 =1
By (2)and (3),we have
1 a
<(b-— —a— .
[V(H)| +alCil < (b - g7 +eb—a— g=)IA] ©)
By (4),(8) and (9), we have
= 1 a
3026V + @ g +eb=a=pplAl
b1
> 3 (at —aj — b+ j)ij + atll].
Jj=1

Thus at least one of the following two cases must hold.
casel. There is at least one j such that

b-2)b—-j)>at—aj—b+3j.
Then

at < (b-2)b—3j)+aj+b—3j
= b(b—2)+(a—b+1)j+b.
Ifa=b,thenat<a,(a—2)+j+aSaz—l,whichcontradictstz“2;1.
Ifa <b thenat < bb—-2)+(a—-b+1)+b=b0-2)+a+1=
(6% = 1) + (a — b) + (2 — b) < b* — 1, which contradicts ¢ > 93;‘—1-.
case 2. b— iy +ab—a—gh >at
In this case, if @ = b, then at < a2 — 1, which contradicts t > =1, If
a < b, since

< (a+1)pP+b—2a-1_(a+2)p® bV +2a—b+1
b+1 T ob+1 b+1 ’

at
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a+2sb+11
(b*+2a—b+1)—(b+1) =b* - 2b+2a = b(b— 2) + 2a > 0,
then

2 _
at <b®—1 or t<b 1.

This also contradicts the condition of Theorem 1.3.
The proof is complete.
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