Toughness and Existence of Fractional (g, f)-factors in Graphs *

Shuli Liu [†] Jiansheng Cai School of Mathematics and Information Sciences, Weifang University, Weifang 261061, P. R. China

Abstract

Let G be a graph with vertex set V(G). For any $S \subseteq V(G)$ we use $\omega(G-S)$ to denote the number of components of G-S. The toughness of G, t(G), is defined as $t(G) = min\{|S|/\omega(G-S)|S \subseteq V(G), \omega(G-S) > 1\}$ if G is not complete; otherwise, set $t(G) = +\infty$. In this paper, we consider the relationship between the toughness and the existence of fractional (g, f)-factors. It is proved that a graph G has a fractional (g, f)-factor if $t(G) \ge (b^2 - 1)/a$.

Key words: toughness; fractional (g, f)-factor; graph

1 Introduction

The graphs considered here will be finite undirected graph which may have multiple edges but no loops. Let G be a graph with vertex set V(G) and edge set E(G). For any $S \subseteq V(G)$ we use G[S] and G-S to denote the subgraph of G induced by S and V(G)-S. For a vertex $x \in V(G)$, we use $N_G(x)$ to denote the set of vertices of V(G) adjacent to x, and $d_G(x)$ and $\delta(G)$ to denote the degree of x and minimum degree of G. A subset G of G is called a covering set (an independent set) of G if every edge of G is incident with at least (at most) one vertex of G.

Let g and f be two nonnegative integer-valued functions defined on V(G) with $g(x) \leq f(x)$ for every $x \in V(G)$, and $h: E(G) \to [0,1]$ be

^{*}This work is supported by research grant NSFC (60673047) and the Natural Science Foundation of Shandong Province (Y2008A20).

[†]The corresponding author: Shuli Liu, mail address: School of Mathematics and Information sciences, Weifang University, Weifang 261061, P.R.China. E-mail: shuli007@163.com

a function. If $g(x) \leq d_G^h(x) \leq f(x)$ holds for any vertex $x \in V(F_h)$ where $d_G^h(x) = \sum_{e \ni x} h(e)$, we call $G[F_h]$ a fractional (g, f)-factor of G with indicator function h where $F_h = \{e \in E(G) | h(e) > 0\}$. If g(x) = f(x) or g(x) = f(x) = k, then a fractional (g, f)-factor is called a fractional f-factor or a fractional k-factor. Other terminologies and notations not defined here can be found in [2,6].

A graph is t-tough if $|S| \ge t\omega(G-S)$ holds for any $S \subseteq V(G)$ and $\omega(G-S) > 1$, where $\omega(G-S)$ denotes the number of components of G-S. A complete graph is t-tough for any positive real number t. If G is not complete, there exists the largest t such that G is t-tough, this number is denoted by t(G) and is called the toughness of G, namely

$$t(G)=\min\{\frac{|S|}{\omega(G-S)}|S\subseteq V(G),\omega(G-S)>1\},$$

for complete graph K_n , we define $t(K_n) = +\infty$.

The toughness of a graph was first introduced by Chvátal in [3]. Since then, much work has been contributed to the relations between toughness and the existence of factors and fractional factors of a graph.

G.Liu and L.Zhang discussed the sufficient condition for the existence of fractional k-factors with $k \ge 1$ related to toughness of graph, and obtain the following result.

Theorem 1.1[4] Let $k \geq 2$ be an integer. A graph G has a fractional k-factor if $t(G) \geq k - \frac{1}{k}$.

Q.Bian also discussed the toughness condition for the existence of fractional f-factors.

Theorem 1.2[1] Let G be a graph and f is an integer-valued function on V(G) satisfying $a \le f(x) \le b$ with $1 \le a \le b$ and $b \ge 2$ for all $x \in V(G)$. If $t(G) \ge \frac{b^2 + b}{a} - \frac{b + 1}{b}$, then G has a fractional f-factor.

In this paper we consider the relationship between the toughness and the existence of fractional (g, f)-factors, which extends the results of Liu's and Bian's.

Theorem 1.3 Let G be a graph and let g, f be two nonnegative integer-valued functions defined on V(G) satisfying $a \leq g(x) \leq f(x) \leq b$ with $1 \leq a \leq b$ and $b \geq 2$ for all $x \in V(G)$, where a, b are positive integers. If $t(G) \geq \frac{b^2-1}{a}$, then G has a fractional (g, f)-factor.

Obviously, we can obtain Theorem 1.1 with a=b=k. Since $\frac{b^2+b}{a}-\frac{b+1}{b}\geq \frac{b^2-1}{a}$, we can improve Theorem 1.2 with g(x)=f(x) for all $x\in V(G)$. From the example of [4], our result is also sharp in the sense of f(x)=g(x)=k for all $x\in V(G)$.

2 Proof of Theorem 1.3

To prove the result, we need the following lemmas.

Lemma 2.1[5] A graph G has a fractional (g, f)-factor if and only if for any subset S of V(G).

$$g(T) - d_{G-S}(T) \le f(S),$$

where $T = \{x \in V(G) \setminus S | d_{G-S}(x) \leq g(x) \}.$

Lemma 2.2[3] If a graph G is not complete, then $t(G) \leq \frac{1}{2}\delta(G)$.

Lemma 2.3[4] Let G be a graph and let H = G[T] such that $d_G(x) = k - 1$ for every $x \in V(H)$ and no component of H is isomorphic to K_k , where $T \subseteq V(G)$ and $k \ge 2$. Then there exists an independent set I and a covering set $C = V(H) \setminus I$ of H satisfying

$$|V(H)| \leq (k - \frac{1}{k+1})|I|,$$

and

$$|C|\leq (k-1-\frac{1}{k+1})|I|.$$

Lemma 2.4[4] Let G be a graph and let H=G[T] such that $\delta(H)\geq 1$ and $1\leq d_G(x)\leq k-1$ for every $x\in V(H)$ where $T\subseteq V(G)$ and $k\geq 2$. Let T_1,\cdots,T_{k-1} be a partition of the vertices of H satisfying $d_G(x)=j$ for each $x\in T_j$, where we allow some T_j to be empty. If each component of H has a vertex of degree at most k-2 in G, then G has a maximal independent set I and a covering set $C=V(H)\setminus I$ such that

$$\sum_{j=1}^{k-1} (k-j)c_j \le \sum_{j=1}^{k-1} (k-2)(k-j)i_j,$$

where $c_j = |C \cap T_j|$ and $i_j = |I \cap T_j|$ for every $j = 1, \dots, k-1$.

Proof of Theorem 1.3. Suppose, by the contrary, that there exist two integer-valued functions g and f satisfying all the conditions of the theorem 1.3, but G has no fractional (g, f)-factors. From Lemma 2.1 there exists a subset S of V(G) such that

$$g(T) - d_{G-S}(T) > f(S), \tag{1}$$

where $T = \{x \in V(G) \setminus S | d_{G-S}(x) \leq g(x) \}.$

Choose T such that T is minimal subject to (1). Suppose that there exists $x \in T$ such that $d_{G-S}(x) = g(x)$. Then the sets S and $T - \{x\}$ satisfy

(1), which contradicts the choice of T. Hence we have $d_{G-S}(x) \leq g(x) - 1$ for all $x \in T$. Obviously, $d_{G-S}(x) \leq b - 1$ for all $x \in T$. By Lemma 2.2, we have

$$\delta(G) \ge 2t(G) \ge 2\frac{b^2 - 1}{a} \ge \frac{(2b - 2)(b + 1)}{a} \ge \frac{b}{a}(b + 1) \ge b + 1.$$

Therefore $S \neq \emptyset$ by (1). Let l be the number of the components of H' = G[T] which are isomorphic to K_b and let $T_0 = \{x \in V(H') | d_{G-S}(x) = 0\}$. Let H be the subgraph obtained from $H' - T_0$ by deleting those components isomorphic to K_b . If |V(H)| = 0, then

$$a|S| \le f(S) < g(T) - d_{G-S}(T) \le b|T_0| + bl$$

or

$$1 \le |S| < \frac{b}{a}(|T_0| + l).$$

Hence

$$|T_0|+l>\frac{a}{b}.$$

Clearly

$$\omega(G-S) \ge |T_0| + l \ge 1.$$

If $\omega(G-s)>1$ then $t(G)\leq \frac{|S|}{\omega(G-s)}<\frac{\frac{b}{a}(|T_0|+l)}{|T_0|+l}=\frac{b}{a}$. This contradicts that $t(G)\geq \frac{b^2-1}{a}>\frac{b}{a}$. If $\omega(G-s)=1$ then $|T_0|+l=1$. Hence $d_{G-S}(x)=b-1$ or $d_{G-S}(x)=0$ for $x\in V(G)\setminus S$. Since $d_{G-S}(x)+|S|\geq d_G(x)\geq \delta(G)\geq 2t(G)$, we have $|S|\geq 2t(G)-b+1\geq t(G)>\frac{b}{a}=\frac{b}{a}(|T_0|+l)$, this is a contradiction.

Now we consider that |V(H)| > 0 and $\delta(H) \ge 1$. Let $H = H_1 \bigcup H_2$ where H_1 is the union of components of H which satisfies that $d_{G-S}(x) = b-1$ for every vertex $x \in V(H_1)$ and $H_2 = H - H_1$. By Lemma 2.3, H_1 has a maximum independent set I_1 and the covering set $C_1 = V(H_1) - I_1$ such that

$$|V(H_1)| \le (b - \frac{1}{b+1})|I_1| \tag{2}$$

and

$$|C_1| \le (b-1-\frac{1}{b+1})|I_1|.$$
 (3)

On the other hand, it is obvious that $\delta(H_2) \geq 1$ and $\Delta(H_2) \leq b-1$. Let $T_j = \{x \in V(H_2) | d_{G-S}(x) = j\}$ for $1 \leq j \leq b-1$. By the definition

of H and H_2 we can also see that each component of H_2 has a vertex of degree at most b-2 in G-S. According to Lemma 2.4, H_2 has a maximal independent set I_2 and a covering set $C_2 = V(H_2) - I_2$ such that

$$\sum_{j=1}^{b-1} (b-j)c_j \le \sum_{j=1}^{b-1} (b-2)(b-j)i_j, \tag{4}$$

where $c_j = |C_2 \cap T_j|$ and $i_j = |I_2 \cap T_j|$ for every $j = 1, \dots, b-1$. Set W = V(G) - S - T and $U = S \cup C_1 \cup C_2 \cup (N_G(I_2) \cap W)$. Since $|C_2| + |N_G(I_2) \cap W| \le \sum_{i=1}^{b-1} ji_j$, we obtain

$$|U| \le |S| + |C_1| + \sum_{j=1}^{b-1} j i_j, \tag{5}$$

and

$$\omega(G - U) \ge t_0 + l + |I_1| + \sum_{i=1}^{b-1} i_j, \tag{6}$$

where $t_0 = |T_0|$. Let t(G) = t. Then when $\omega(G - U) > 1$, we have

$$|U| \ge t\omega(G - U). \tag{7}$$

In addition, the above also holds when $\omega(G-U)=1$. From Lemma 2.2,

$$|U| \ge d_{G-S}(x) + |S| \ge d_G(x) \ge \delta(G) \ge 2t(G) > t\omega(G-U)$$

holds for any $x \in T$. By (5), (6) and (7), the following inequality

$$|S| + |C_1| + \sum_{i=1}^{b-1} j i_j \ge t(t_0 + l) + t|I_1| + t \sum_{i=1}^{b-1} i_j$$

or

$$|S| + |C_1| \ge \sum_{j=1}^{b-1} (t-j)i_j + t(t_0+l) + t|I_1|$$

holds. From (1) we have

$$b|T| - d_{G-S}(T) > a|S|.$$

Then

$$bt_0 + bl + |V(H_1)| + \sum_{j=1}^{b-1} (b-j)i_j + \sum_{j=1}^{b-1} (b-j)c_j + a|C_1|$$

$$> a(|S| + |C_1|) \ge \sum_{j=1}^{b-1} (at - aj)i_j + at(t_0 + l) + at|I_1|.$$

Therefore

$$\sum_{j=1}^{b-1} (b-j)c_j + |V(H_1)| + a|C_1| > \sum_{j=1}^{b-1} (at - aj - b + j)i_j + at|I_1|.$$
 (8)

By (2) and (3), we have

$$|V(H_1)| + a|C_1| \le (b - \frac{1}{b+1} + ab - a - \frac{a}{b+1})|I_1|. \tag{9}$$

By (4),(8) and (9), we have

$$\sum_{j=1}^{b-1} (b-2)(b-j)i_j + (b-\frac{1}{b+1} + ab - a - \frac{a}{b+1})|I_1|$$

$$> \sum_{j=1}^{b-1} (at - aj - b + j)i_j + at|I_1|.$$

Thus at least one of the following two cases must hold. case1. There is at least one j such that

$$(b-2)(b-j) > at-aj-b+j.$$

Then

$$at < (b-2)(b-j) + aj + b - j$$

= $b(b-2) + (a-b+1)j + b$.

If a = b, then $at < a(a-2) + j + a \le a^2 - 1$, which contradicts $t \ge \frac{a^2 - 1}{a}$. If a < b, then $at < b(b-2) + (a-b+1) + b = b(b-2) + a+1 = (b^2 - 1) + (a-b) + (2-b) \le b^2 - 1$, which contradicts $t \ge \frac{b^2 - 1}{a}$. case 2. $b - \frac{1}{b+1} + ab - a - \frac{a}{b+1} > at$

In this case, if a = b, then $at < a^2 - 1$, which contradicts $t \ge \frac{a^2 - 1}{a}$. If a < b, since

$$at < \frac{(a+1)b^2 + b - 2a - 1}{b+1} = \frac{(a+2)b^2}{b+1} - \frac{b^2 + 2a - b + 1}{b+1},$$

$$a+2 \le b+1,$$

 $(b^2+2a-b+1)-(b+1)=b^2-2b+2a=b(b-2)+2a>0,$

then

$$at < b^2 - 1$$
 or $t < \frac{b^2 - 1}{a}$.

This also contradicts the condition of Theorem 1.3.

The proof is complete.

References

- Q. Bian, On Toughness and Fractional f-factors, Ars Combinatoria. 87(2008),175-180
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. Macmillan, London (1976).
- [3] V.Chvátal, Tough Graphs and Hamiltonian Circuits, Discrete Math. 5(1973), 215-228.
- [4] G.Liu and L.Zhang, Toughness and The Existence of Fractional k-factors of Graphs, Discrete Mathematics. 308(2008),1741-1748
- [5] G. Liu, and L.Zhang, Fractional (g,f)-factors of Graphs, Acta Math. Scientia Ser B. 21(4)(2001),541-545.
- [6] Edward R. Scheinerman, Daniel H. Ullman, Fractional Graph Theory, New York, John Wiley and Sons, Inc. (1997)