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Abstract
We note that with only a slight modification, Su’s proof on the
fragments in k-critical n-connected graphs (see J. Graph Theory 45
(2004), 281-297) can imply the following more general result: every
non-complete W-locally k-critical n-connected graph has 2k + 2 dis-
tinct fragments Fi, F3, ..., Faryo such that FyNW, FoNW, ..., Fopyon
W are pairwise disjoint.

The graphs considered here are finite, undirected, and simple (without
loops or parallel edges). Let n,k be positive integers. Maurer and Slater in
[4] introduced the notion of k-critical n-connected graphs. A graph is called
a k-critical n-connected graph or simply an (n, k)-graph, if x(G - S) =
n — |S] holds for any S C V(G) with |S] < k, where x(G) denotes the
connectivity of G. A generalization of this concept is the W-locally k-
critical n-connected graphs or simply W — (n, k)-graphs (see [5], [3]): for
given W C V(G), FNW # { for every fragment F of G, k(G — W') =
n — |W'| holds for any W' C W with |W’'| < k. Clearly, for W = V(G) we
get back (n, k)-graphs. For (n, k)-graphs, Mader [2] conjectured that every
non-complete (n, k)-graph has 2k + 2 pairwise disjoint fragments. This has
been proved by Su recently in [6]. So we have.

Theorem 1 ([6]) Let G be a non-complete (n,k)-graph. Then G has at
least 2k + 2 pairwise disjoint fragments.
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By using this result, several other conjectures on (n, k)-graphs are im-
plied (see [6]). For W — (n, k)-graphs, the corresponding problem has been
discussed in [5], [1].

Theorem 2 ([5], [1]) Let G be a non-complete W — (n, k)-graph. Then G
has at least 2k + 2 distinct fragments and |W| > 2k + 2. In particular, if
2k > n, then G has 2k + 2 pairwise disjoint fragments.

We remark that T. Jordan showed in [1] that if 2k > n, then there exist
no non-complete W — (n, k)-graphs. In general, we can not expect that
W — (n, k)-graph contains at least 2k+ 2 pairwise disjoint fragments as the
following example shows.

Let n > 4 and K be a complete graph of order 2n. Let z;,...,Zn41 be
n+1 vertices of K. Let G be obtained by adding two adjacent vertices a1, az
to K and joining a; to Z1,...,Zn_1, joining a3 to 3, ..., Tn41. Clearly, if
W = {a1,a2,%1,...,Zn+1}, then G is a W — (n, 1)-graph. Note that G has
only four fragments Fy = {a}, F> = {a2}, F3 = K = {z3,...,Zp41}, F4 =
K—{z1,...,Zn1}. Asn >4, 3NF; #0.

But we note that Su’s Proof in [6] can imply the following more general
result with only a slight modification.

Theorem 3 Every non-complete W-locally k-critical n-connected graph
has 2k + 2 distinct fragments Fy, Fa,...,Foryo such that R N W, Fp N
W,..., Fop2 NW are pairwise disjoint.

As Su’s Proof is rather involved, we will go over some key steps and
illustrate the modification needed to prove the above theorem. For terms
not defined here, we refer the reader to [6].

Let G be a graph. For z € V(G), Ng(z) denotes the set of the vertices
which are adjacent to z in G. For F C V(G), let No(F) = (U ¢ Na(2)) -
Fand F = V(G) - (FUNg(F)). F is called a fragment of G if |Ng(F)| =
#(G) and F # 0. An inclusion minimal fragment is called an end, and a
fragment with minimum cardinality is called an atom. A fragment F is
said to be proper if |F| < |F}. Define

F(G) = {|F,T,F)|F is a proper fragment of G and T = Ng(F)}.

For Vo C V(G), let A(Vo) denote the set of the proper ends contained in
Vo, and b(Vp) the maximum number of pairwise disjoint ends of G which are
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contained in Vp. We use TN [A;,..., A\ #0 (or TN ([By,...,B,) #0) to
denote TNA; #@foralli € {1,...,A} (or TNB; # @forall j € {1,...,u},
respectively). The following properties of the fragments and the ends are
often used.

Lemma 1 (see [6] Lemma 1.1) Let F' and F' be two fragments of G, T =
Ng(F),T' = Na(F").

(1) FFNF #0, then |FNT'| > [FF nT|,|F nT|>[FnT.

(2) FFNF' #0#FNTF, then both FNF' and FNF' are fragments
of G, and Ng(FUF") = (TNTYU(TNFYU(FNT') = Ng([FnF).

(8) If F,F' are proper and FNF' # 0, then FNF' # 0, hence both
FNF and FNF' are fragments of G.

Lemma 2 (see [6] Lemma 1.2) Let F, F' be two proper fragments of G. If
F isanend, then FNF' =0 or FC F'.

We now sketch the proof of Theorem 3. Let G = (V, E) be a non-
complete W — (n, k)-graph. Clearly, if (V) > 2k + 2, then Theorem 3
holds. So we may assume that b(V) < 2k + 1.

Let Fy be a proper fragment of G with maximum cardinality and
[Fo, To, Fo) € F(G). Suppose that b(Fg) = Ao and Ay, - -, Ay, are Ag pair-
wise disjoint ends of G contained in Fy, and b(Fy) = pip and By, - - -, By, are
po pairwise disjoint ends of G contained in Fy. For the proper fragment
Fy with maximum cardinality, by applying Lemma 1 and 2 we have the
following properties.

Assertion 1 (see (6] Lemma 3.1)

(1) Any end which is contained in Fy but not equal to Fy is a proper
end of G.
: (2) If C is a proper end of G distinct to A,,---,Ax,, B1,-- -, By,, then

CN({AU---UANUBLU---UB,,) =0.

(3) I [F,T,F] € F(G) and TN[Ay,...,Ax] # 0 or TN[B,..., B, #
0, then FN(FyUFp) = 0, and hence FN(A;U---UAy,UB U-- ‘UB,,) =0,
and F C Ty.

By Assertion 1, we can choose ends group Ay, ..., Ay, B1,...,B, of G
such that the following conditions (P2) are satisfied:
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(i) The ends Ay,...,Ax, By,..., B, are pairwise disjoint.

(i) ¥ [F, T, F) € F(G) and TN[Ay,...,A\] #0or TN[By,..., B, # 0,
then Fﬂ(A1 U---UA4,UB; U"'UB,_;) =0.

(iii) Subject to (i) and (ii) A + ¢ maximum.

Define
C = {C € A(F)||F,T,F) € F(G) and T N [A;,...,A\] # B or TN
[Bi,...,B,) # 0}.

Since b(V) < 2k + 1, we have A < kor p < k. As G is a non-
complete W — (n, k)-graph, there is a triple [F,T, F] € F(G) such that
TN[A,..., A\ # 0ot TN[By,...,B,] # 8. SoC # 0. Let C =
{C1,...,C:}. Foreach i€ {1,...,r}, take a [F,T,F] € F(G) such that
the following conditions (P3) are satisfied.

(i) C; CF;.

(ii) T;n[Al,...,A,\] #0 Ol'T,'ﬂ[Bl,...,Bp,] #0.

(iii) |F;| = max{|F||[F,T,F] € F(G) and T N [A1,...,A)] # 0 or
TN([Bi,...,By)#0and C; C F}.

By (P3), there is a mapping ¢ between {C},...,C,} and Fi,..., F, such
that ¢(C;) = F; for i = 1,...,r. For simplification, let Fy,...,F; be the
distinct fragments of F,..., F; so that |F;| > --- > |F1|. As we shall not
use any special property of W, by applying Lemma 1 and Lemma 2 (as in
section 3 of [6]), we can prove the following statements.

Assertion 2 (see [6] Lemma 3.6) Let A(Fy) = {Cu,---,Cis}, s > 1.
Then

(1) A(F:) = 0.

(2) FNF=0,l=1,---,t—1.

() FNF=01=1,---,t—1.

(4) Suppose that [F\T,F] € F(G), TN [A1,...,Ax] # 0 or TN
(Bi,...,Bu)#0. f FNF, #0, then TNF, = 0.

(5) Suppose that [F,T,F] € F(G), TN[A1,...,Az] # 0 or TN
(Bi,...,Bu] #£0. FFNF, #0, then FC F,.

For i € {1,---,t}, consider the following proposition (Z;):
(i) A(F5) CAF)U- U A(Fj), =t i
() Ifje{t---,i},1<l<j, F;NF=0.
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(i) ¥ j € {t,---,i}, 1<I< §, FENF =0.

(iv) Suppose that [F,T,F] € F(G), T N[A1,...,Ar] # B or TN
[Biy---,Buo) #0. X j € {t,---,i} and FNF; # B, then TNF; = 0.

(v) Suppose that [F,T,F] € F(G), TN [A1,-..,Ax] # O or TN
[Bi,...,Buo) #0. I j € {t,---,i} and FNF, # 0, then A(F) — A(F,) U
- UA(F;) =0.

By Assertion 2, (Z;) is satisfied. By induction, we can prove that (Z;)
is satisfied. So we have.

Assertion 3 (see [6] Theorem 3.1)

(1) ,...,F; are pairwise disjoint.

(2)Fin(FiyU---UR) =0 fori=2,...,t.

(3) Suppose that [F,T,F] € F(G), and TN [A;,...,A\] #0 or TN
[Bi,...,Bu) #0. If for somei € {1,...,t}, FNF; =0, then TNF. = 0.

Foreachi =1,...,t,let A(F;) = {Ca,-...,Cia(s)}- Then,C = {Cn, ...,
Cia@)s---» Ct1y- -2 Ciay} = {Ch,. .., Cr }.

For R C W, define that R covers {A;,...,Ax} (or {By,...,B,}) if
RN[A,,...,A\)#0 (orif RN[B,,...,B,] # 0, respectively). Let Cp CC,
define that R covers Cp if for each Cyy € Co, RN (Cy UF;) # 0, where
Ca € A(F;). (This is different from the case of (n, k)-graphs.) For this
definition of cover, we can obtain the following result.

Assertion 4 (see [6] Lemma 3.8) If there is a vertex set R C W such that
R covers {Ay,..., Ay} (or {B,...,B,}) andC, then there is no [F,T,F] €
F(G) such that R C T. Hence, |R| > k+ 1 as G is a non-complete
W — (n, k)-graph.

In what follows, similarly to [6], define the A;-bipartite graph as in [6]
section 4, but for our purpose, we have to consider W. Before that, we
include a definition of Ag-bipartite in [6).

Let H = (X,Y) be a bipartite (perhaps Y = 0). H is called a Ag-
bipartite graph, if the following three conditions are satisfied: (i) For any
z € X, dy(z) =0or dy(zx) > 2. (ii) I S(Y) # @, then |T(Y)] > |ST)].
(iii) There is a matching saturating S(Y) in H. Where S(Y) = Ny (Y),
T(Y) = Ng(SY)).
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Let X, CC,Y, = {F,,...,F},} C {Fi,...,F1} (perhaps Y; = 0), such
that A(F;,)U---UA(F;,) C X,. Define a bipartite graph H, = (X,,Y}) as
follows: for C € X,,F;, € Y,, CF;, € E(H,) if and only if CNF,,N\W # 0.

Set Sy = Ny, (Yy), Ty = Nu,(Sy). The bipartite graph Hy is called a
A;-bipartite graph if the following conditions (P4) are satisfied.

(i) F;, NW,...,F, NW are pairwise disjoint, and for each C € A(F},)U
UAWF)), CNF,u---UF,))NW =40.

(ii) H, is a Ag-bipartite graph (for the definition see section 2 in [6]).

(iii) There is a Dy C X, — Sy and R, C W such that R, covers Dy,
|Ry| < |Dgl/2, and A(Fy)— Dy # 0 for j = 1,...,1 (if Yy # 0), and
Dg U'A(Fil)u'“UA(Et) 2 Xg _Sy‘

By using our definition for A;-bipartite graph, along the construction in
the proof of Theorem 4.1 of [6], we can show that the following counterpart
of Theorem 4.1 of [6] still holds, i.e.

Assertion 5 There is a A;-bipartite graph Hy = (X,Yy) with | X;| =r.

Define a bipartite graph H* as in section 5 of [6].

Let X* = X;U{A1,..., 45, B1,...,Bu},Y* =Y;, H* = (X*,Y™*). For
De X*,F, eY*, DF, € E(H*) if and only if DNFy; NW # 0.

Note that Hy is a subgraph of H*. Let M* be a maximum matching
of H*, set

M} = {Aiy € M*[A; € {Ay,---, Ah L,y €Y"}
M; = {Bjy € M*|B; € {By,---,B,},y €Y*}
M3 ={Cye M*|ICi € Xs,yeY*}.

Take a maximum matching M* in H* such that |M3]| is maximum, let
M; be a maximum matching of H;. By applying the properties of matching
in bipartite graphs, we can show.

Assertion 6 (see [6] Lemma 5.1) |M3| = | M|

By applying some arguments of the M*-alternating paths in bipartite
graph H*, we can show that H* contains an independent set I of many
vertices. By applying Assertion 4, we can show that |I| > 2k + 2. Hence,
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Assertion 7 (see [6] Theorem 5.1) H* contains an independent set of size
at least 2k + 2.

By our definition, the independent set in H* corresponds to the set
of fragments in G, in which any two fragments share no common vertices
in W. So, Assertion 7 implies that G contains 2k + 2 distinct fragments
B, ..., Fory0 such that F1NW, ..., Farp2NW are pairwise disjoint. Hence,
Theorem 3 is true.

W — (n, k)-graphs are closely related to an important graph class: k-
con-critically n-connected graphs introduced by Mader in [3]. A graph G is
called k-con-critically n-connected if £(G — V') =n — |V’| for any V' with
|V'| < k and the induced subgraph by V' connected. As noted by Mader in
[3], if G is k-con-critically n-connected, then G—{z}isa W — (n—1,k—1)-
graph with W = Ng(z). So Theorem 3 may be used as a tool to study
k-con-critically n-connected graph.
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