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Abstract

A graph G is said to be well-covered if every maximal independent
set of G is of the same size. It has been shown that characteriz-
ing well-covered graphs is a co-NP-complete problem. In an effort to
characterize some of these graphs, different subclasses of well-covered
graphs have been studied. In this paper, we will introduce the sub-
class of stable well-covered graphs, which are well-covered graphs that
remain well-covered with the addition of any edge. Some properties
of stable well-covered graphs are given. In addition, the relation-
ships between stable well-covered graphs and some other subclasses
of well-covered graphs, including the suprising equivalence between
stable well-covered graphs and other known subclasses, are proved.

1 Introduction

In this paper, assume any graph G = (V, E) is a finite simple graph with
vertex set V and edge set E. The notation u ~ v denotes that vertices
u and v are adjacent, while u » v denotes that they are not. Let d(v)
denote the degree of a vertex v, 6(G) the minimum d(v) in G, and A(G)
the maximum d(v) in G. The independence number of G, denoted a(G), is
defined as the maximum cardinality of all independent sets of G. We say
that a graph is well-covered if every maximal independent set of G has the
same cardinality.

Determining whether or not a graph is well-covered has been shown to be
co-NP-complete [1] [8]. Thus many subclasses of well-covered graphs have
been studied in an effort to characterize well-covered graphs with certain
properties. In 1991, Pinter [6] [7] introduced strongly well-covered graphs,
those well-covered graphs that remain well-covered with the deletion of any
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edge. Our interest lies in an analogous question: what can we say about
well-covered graphs that remain well-covered with the addition of any edge?

2 Properties of Stable Well-Covered Graphs

A graph G is stable well-covered if G is well-covered and the graph formed by
the addition of any edge e = uv, where «,v € V(G) and e ¢ E(G), is still
well-covered [2]. Before we prove some properties of stable well-covered
graphs we first prove a useful and more general property of well-covered
graphs in the following lemma.

Lemma 1: Let e be any edge such that e = uv, where u,v € V(G) and
e & E(G). If G has at most one isolated vertex and is a well-covered graph,
then (G + ) = a(G).

Proof: Suppose that G has at most one isolated vertex, is a well-covered
graph and e = uv where u,v € V(G) and e ¢ E(G). Clearly (G + ) <
a(G). By assumption, at most one of u and v is an isolate. Without loss
of generality, assume u is not an isolate. Let w be a neighbor of u in G.
Starting with w, greedily choose a maximal independent set I in G. Then
|I| = a(G) since G is well-covered. The set I is also maximal independent
in G + e since u ¢ I. Thus since a(G + €) cannot be larger than o(G),
a(G +e) = a(G). [ |

Remark 2: If G is a stable well-covered graph, then either G is K; or G
has no isolated vertices.

Theorem 38: If G is a stable well-covered graph of order n and G # K,
then A(G) <n-3.

Proof: Let G be a graph that fulfills the hypotheses of the theorem. Since
G is not complete, (G) > 2 and so since G is well-covered, A(G) <
n — 2. Suppose, by way of contradiction, there exists a vertex u such that
d(u) = n — 2. Let w be the vertex of G to which u is not adjacent. Then
the graph G + e = H, where e = uw, has a maximal independent set
of size one, namely {u}. By Remark 2 and Lemma 1, since a(G) > 2,
(G +e) > 2. Thus H is not well-covered and so G is not stable well-
covered, a contradiction. Thus A(G) < n - 3. ]

Let a neighbor w of v be called a private neighbor of v with respect to
aset S C V such that v € S and w ¢ S, if no other vertex of S is adjacent
to w.
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Theorem 4: A non-trivial well-covered graph G is stable well-covered if
and only if every vertex in any maximum independent set in G has a private
neighbor.

Proof:

(=) Suppose that G is a stable well-covered graph. If G is a complete
graph, then a(G) = 1 and so vacuously every neighbor of a vertex in
a maximum independent set is private. Thus we may assume G is not
complete.

By way of contradiction, let I be a maximum independent set of G and
u € I such that u does not have a private neighbor with respect to I (i.e.
the vertices of I — {u} dominate N(u)). Note that |I| > 2 since G is not
complete. Let w be another vertex of I. Then G + e where e = uw has
a maximal independent set of size a(G) — 1, namely I — {u}. Hence since
a(G + e) = a(G) by Remark 2 and Lemma 1, G + e is not well-covered,
a contradiction. Thus if G is stable well-covered then every vertex in any
maximum independent set in G has a private neighbor.

(<) Suppose that G is well-covered and every vertex in any maximum
independent set in G has a private neighbor with respect to the independent
set. By way of contradiction, suppose that there exists an edge e = uv
where u,v € V, e € E, such that A = G + e is not well-covered. Then
there exists a maximal independent set I of H containing u or v, without
loss of generality suppose v, such that |I| < a(G) —1 = a(G +¢€) — 1 by
Lemma 1. Since I is independent in G and G is well-covered, we must be
able to extend I to a maximum independent set in G. Since u is the only
possible vertex we could add, |I| = &(G) -1 and JU {u} = J is a maximum
independent set of G. By assumption, v has a private neighbor, w, in G
with respect to J. But then I U {w} is an independent set of H and so
I is not maximal in H, a contradiction. Therefore if every vertex in any
maximum independent set in G has a private neighbor, then G is stable
well-covered. |

Theorem 5: If G is a connected, stable well-covered graph and
G # K, K, then §(G) > 2.

Proof: Let G be a graph that fulfills the hypotheses of the theorem. By
way of contradiction, suppose §(G) < 2. By assumption, G is connected so
0(G) = 1. Let u € V(G) such that d(u) = 1. Let w be the vertex of G to
which u is adjacent, and let = # u be a neighbor of w. There must be such
an z since G # K, and G is connected. Let I be a maximal independent
set containing u and z. Since G is well-covered, I is also maximum. But «
has no private neighbor with respect to I, and so by Theorem 4, G is not
stable well-covered; a contradiction. Thus §(G) > 2. [ |
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Consider the disconnected graph H = Ky U K, where t > 2, with order
n=1t+2. Then o(H) =2, §(H) = 1 and A(H) = n — 3. Note that H
is stable well-covered since each component has at least two vertices and
so the addition of any edge will not eliminate the possibility of taking one
vertex from each of the original components in any maximal independent
set. Thus H highlights the importance of requiring the graphs in Theorem
5 to be connected, since H is stable well-covered but has minimum degree
of just one. In addition, H illustrates that our bound in Theorem 3 is best
possible.

3 Compared to Strongly Well-Covered Graphs

In 1991, Pinter [6][7] introduced strongly well-covered graphs. A well-
covered graph, G, is strongly well-covered if G — e is well-covered for all
e € E. In an attempt to characterize these graphs, Pinter proved the fol-
lowing theorem, which will be crucial to our comparison of these graphs
with the stable well-covered graphs.

Theorem 6[6): If G (G # K; or K3) is strongly well-covered, then G — v
is not well-covered for all v € V.

The following lemma, a general result for well-covered graphs shown by
Pinter [5], is very useful both in the proof below and in section 4.

Lemma 7[5]: If G is a well-covered graph without isolated vertices, then
(G —v) = &(G) for any v € V(G).

‘We now consider what can be said about G — v in stable well-covered
graphs.

Theorem 8: If G is stable well-covered, then G — v is well-covered for all
veV.

Proof: Let G be a stable well-covered graph. If G is a complete graph, then
G —w is also a complete graph for all v € V(G), and so G —v is well-covered.
Thus we may assume that G is not complete and so o(G) > 1.

By way of contradiction, suppose that G — v is not well-covered for
some v € V. Starting with a neighbor of v, greedily choose a maximal
independent set, I;, in G. Since G is well-covered, |[;| = a(G). Since
v ¢ I1, I is also maximal in G — v. By Lemma 7, a(G — v) = a(G) and
so since G — v is not well-covered, there exists a maximal independent set
of G — v, call it I, such that |I] < a(G) — 1. Since I, is independent
in G, there must be no vertex of I5 that is adjacent to v (i.e. I U {v} is
independent in G); otherwise Iz would be maximal in G contradicting the
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fact that G is well-covered. Let u be a vertex of I,. Then e = wv is not
an edge of G, and I; and I, are both maximal independent sets in G + e.
But |I;| > |I2] and so G + e is not well-covered, contradicting the fact that
G is stable well-covered. Hence if G is stable well-covered, then G — v is
well-covered for allv e V. [ |

It now follows that, other than the graphs K; and K>, the subclass of
graphs that are strongly well-covered is disjoint from the subclass of graphs
that are stable well-covered.

Corollary 9: If G # K;, K> and G is stable well-covered, then G is not
strongly well-covered.

Proof: If G is stable well-covered, then by Theorem 8, G — v is well-covered
for all v € V. But then by Theorem 6, G is not strongly well-covered. B

4 Compared to W2 & 1-Well-Covered Graphs

Staples introduced two classes of graphs called W,, and n-well-covered
[9][10] in 1975. A graph G is said to be in the class W, for positive in-
teger n if G has at least n vertices, and every n disjoint independent sets
in G are contained in n disjoint maximum independent sets. A graph G
is said to be n-well-covered if for all sets S C V(G) such that |S| = n and
oG - S) = a(G), G — S is also well-covered. Staples proved that these
classes were closely related.

Theorem 10[9): For any n > 1, a graph G is (n — 1)-well-covered if and
only if G € W,.

In particular, we are interested in the class of W, graphs which is equiv-
alent to the class of 1-well-covered graphs. Using the definition of 1-well-
covered together with Lemma 7, these two classes are the set of graphs G
for which G — v is well-covered for all vertices v € V(G). Thus the natural
question to ask given Theorem 8 is whether stable well-covered graphs and
W, graphs are equivalent classes of well-covered graphs.

Theorem 11: A connected graph G is stable well-covered iff G is in Ws.

Proof:

(=) Follows from Theorem 8.

(<=) Suppose G is in Ws, but G is not stable well-covered. Then there
exist u,v € V(G) such that e = uv ¢ E(G) and G + e is not well-covered.
Thus there exists a maximal independent set of G + e, call it I, such that
|| < aG). Since G is well-covered, either « or v (without loss of generality
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suppose u) is in /. But then I is maximal in G —v, since v ¢ I. By Lemma
7, &(G — v) = o(G) so |I| < a(G — v), which is a contradiction since G is
in Ws. Therefore if G is in Wy, then G is stable well-covered.

Hence, G is stable well-covered iff G is in Wj. |

Thus the class of stable well-covered graphs is equivalent to the class
of W, and 1-well-covered graphs. Now that we know this, it is clear that
Theorem 3 and Theorem 5 are actually special cases of more general results
in [10] for the maximum and minimum degree in W,, graphs. Note that
if you know that the independence number of the graph is at least three,
the Staples result gives a stronger bound on the maximum degree. We
leave the proofs of our special cases here to illustrate alternate approaches,
specifically how Theorem 4 may be utilized to prove theorems about stable
well-covered/ W, graphs. Knowing that stable well-covered, W5 and 1-well-
covered graphs are equivalent subclasses, gives us multiple ways to approach
proving properties of this family of graphs.

For further results comparing stable well-covered graphs with the well-
dominated and o = « subclasses of well-covered graphs, see [4].
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