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Abstract -

Given a digraph D, its competition graph C(D) has the same
vertex set as D and an edge between two vertices  and y if there
is a vertex u so that (x,u) and (y,u) are arcs of D. Motivated by
a problem of communications, Kim and Roberts [2002] studied the
competition graphs of the special digraphs known as semiorders and
the graphs arising as competition graphs of acyclic digraphs satisfying
conditions so called C(p) or C*(p). While they could completely
characterized the competition graph of an acyclic digraph satisfying
C(p), they obtained only partial results on C"(p) and left the general
case open. In this paper, we answer their open question.
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1 Introduction

Throughout this paper, we only consider simple graphs and simple digraphs.
Suppose D = (V, A) is a digraph (for all undefined graph-theoretical terms,
see [1]). Its competition graph G = C(D) has the same vertex set and has
an edge zy if for some vertex u € V, the arcs (z,u) and (y,u) are in D.
If G is any graph, then adding sufficiently many isolated vertices produces
a competition graph of an acyclic digraph ([10]). The smallest k so that
GUI, is a competition graph of an acyclic digraph is called the competition
number of G and is denoted k(G). Clearly, then, k(G) > 1 whenever G
is connected and has more than one vertex. The notion of competition
graph arose from a problem in ecology and has since found application
in problems of coding, channel assignment in communications, scheduling,
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and the modeling of complex systems arising in the study of energy and
economic systems. (See [9] and [11] for details.) The long literature of
competition graphs is summarized in several survey papers, [4], [7], [11].
There have been a number of papers about competition graphs of specific
classes of digraphs. For instance, competition graphs of strongly connected
digraphs have been studied in [2], of Hamiltonian digraphs in [2] and [3], of
interval digraphs in [6}, and for various classes of symmetric digraphs in [8]
and [9). In the same context, motivated by a problem of communications,
Kim and Roberts [5] characterized the competition graphs of the special
digraphs known as semiorders. They defined conditions on digraphs called
C(p) and C*(p) and studied the graphs arising as competition graphs of
acyclic digraphs satisfying conditions C(p) or C*(p).

To define conditions C(p) and C*(p) on a digraph D = (V, A), we need

a relation on V: Given a, b € V, we say a supervises b if (b,u) € A for
u € V implies (a,u) € A. ’
If p > 2 is an integer, we say that D satisfies condition C(p) if whenever §
is a set of p vertices of D, there is a vertex z in S so that z is supervised
by every vertex in S\ {z}. A variant C*(p) of condition C(p) is defined as
follows: If p > 2 is an integer, we say that D satisfies condition C*(p) if
whenever S is a set of p vertices of D, then there is a vertex z in S so that
z supervises every vertex in S\ {z}. Kim and Roberts [5] characterized
the competition graph of an acyclic digraph satisfying condition C(p) com-
pletely. However, for the condition C*(p), they gave only partial results:
They characterized the competition graphs of digraphs satisfying condition
C*(p) for p=2, ..., 5. The rest of this paper is devoted to characterizing
the competition graphs of acyclic digraphs satisfying condition C*(p) for
general p.

We begin by presenting some simple but useful properties on C*(p)
given by Kim and Roberts [5].

In the rest of this paper, it is assumed that any digraph has no loops
and therefore the competition graph of a digraph is a simple graph.

If there is a vertex z in the set S that supervises every vertex in S\ {z},
we call z a head of S and denote any such vertex by h(S) by a somewhat
ambiguous notation. (If there is more than one head, the context will tell
us which is denoted by h(S).)

Proposition 1.1 ([5]) Ifp < g, then C*(p) implies C*(q).

For a vertex set X of G and a vertex v of G, we mean by v ~ X that v
is adjacent to every non-isolated vertex in X \ {v}.

Proposition 1.2 ([5]) If G = C(D) for some digraph D satisfying the
condition C*(p) and S C V(G) with |S| = p, then:
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Figure 1: A digraph D satisfying C*(4). If either y or z is in a 4-element
set, then it is a head. The set {u,v,w,z} is the only 4-element set not
containing y or z and v is its head. However, D does not satisfy C*(3).
To see why, take 3-element set {u,w,z}. Since u, w, z form directed cycle
% — £ = w — u, none of them can be a head.

(1) h(S) % 8.

(2) If S has any vertices not isolated in G, then h(S) cannot be isolated
inG.

Lemma 1.3 ([5]) Let D be a digraph satisfying condition C*(p), G =
C(D), and g be the number of isolated vertices in G. Then:

(1) The size of an independent set T of vertices none of which is isolated
in G is at most max{1l,p —q — 1}.

(2) If G has an independent set T of exactly p— g — 1 > 1 vertices that
are not isolated in G, then every vertez outside of T not isolated in G
is adjacent to every vertex of T and every pair of vertices not isolated
in G other than vertices of T are adjacent.

2 Main Results

Throughout the rest of the paper, for a graph G with n vertices, G means
the complement of a graph G, i.e., G¢ = K, — E(G). In addition, for a
vertex set W of a graph G (resp. digraph D), W means V(G) \ W (resp.
V(D) \ W) and G[W] means the subgraph of G induced by W.

Given a graph G, we will use the following notations:
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Figure 2: A branch set U = {z;,%2,%3,%4,Z5} and the subgraph H of G
induced by U '

V& = {v e V(G) | degg(v) 2 1};
We = {ve V(G) |1 < degg(v) < V5| -2}
Ig = {v e V(G) | degg(v) = 0}.

Note that Vi \ Wg = {v € V(G) | v ~ V£} and that V(G) is the disjoint
~ union of (V& \ Wg), Wg, and Ig.
Lemma 1.3 can be generalized as follows:

Lemma 2.1 Let D be o digraph satisfying condition C*(p), G = C(D),
|V&| =r, and |Ig| = q. Suppose that ¢ < p— 1. Then the size of W is at
mostp—q—1.

Proof. By contradiction. Suppose that |Wg| > p—g—1. Let S = WgUI.
Then |S| > p. Let |S| = ¢. Since D satisfies C*(¢) by Proposition 1.1, S
has a head h(S) that must be contained in Wg. Since any vertex in Wg is
not isolated in G, h(S) ~ Wg by Proposition 1.2 (1). Furthermore, since
every vertex not in S has degree r — 1, it is adjacent to all vertices in Wg
and therefore h(S) ~ 5. Thus h(S) ~ V& and so it has degree r — 1, which
is a contradiction. Hence |[Wg| < p— ¢ — 1 and the lemma follows. a

We will characterize the competition graph G of an acyclic digraph
satisfying condition C*(p) in terms of a set U of non-isolated vertices of G
such that for any v € V& — U, v ~ V4. We call such a set a branch set of
G. (See Figure 2 for illustration.)

The following follows from Lemma 2.1:
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"Lemma 2.2 Suppose that p > 2 and G is the competition graph of a di-
graph D satisfying the condition C*(p) with |V| = r and |Ig| = q where
r 2 p—q > 1. Then there is a branch set of G with size p—q—1. Moreover,
if |Wel =p—q— 1, then Wg is the unique branch set that has p—q— 1
elements. :

Proof. Since r > p—q > 1, it is true that there are at least p— g vertices of
degree at least one. By Lemma 2.1, |Wg|<p—-g¢-1. If |Wg|=p—q—-1,
then W is a branch set of size p— ¢—1 and we are done. Moreover if U is a
branch set distinct from Wg, then there is an element y € Wg \ U. By the
definition of Wg, y is a non-isolated vertex of degree at most r — 2, which
contradicts the assumption that U is a branch set. Thus Wg is a unique
branch set of size p — ¢ — 1. Now suppose that |[Wg| < p— g — 1. Then
V& — Wi has at least p — g — |Wg| vertices. For a subset J of V& — Wg
with size p— g — |Wg| — 1, it can easily be checked that Wg U J is a branch
set with size p—q — 1. a

By definition, it is obvious that the set W itself is a branch set and that
every branch set includes Wg.

The join GV H of two disjoint graphs G and H is the graph with vertex
set V(G) UV (H) and edge set E(G)UE(H)U {uv | u € V(G),v € E(G)}.

Lemma 2.3 Suppose that G is a graph with |V&| = r and |Ig| = q. Let
U be a branch set of G and H = G[U]. Then G = (K,_;V H)U Ig where
Ul =Lt

Proof. Since every vertex not in U U I¢ is adjacent to every vertex in
G — Ig except itself, it is true that G = (K,—; V H) U Ig. m]

Lemma 2.3 tells us that the structure of the competition graph of a
digraph satisfying C*(p) is determined by that of the subgraph induced by
a branch set. In the following, we will give necessary conditions for a graph
being the competition graph of a digraph satisfying C*(p) in terms of its
branch sets.

If there is an arc from a vertex in a vertex set S to a vertex in a vertex
set T in a digraph, then we say that there are arcs from S to T for short.
Given a vertex set S of a digraph D, we denote the out-neighborhood of S
by

N}(S) = {v €S| thereis an arc from a vertex in S to v}.

The following lemma shows that the competition graph of an acyclic digraph
D satisfying condition C*(p) has a branch set of size p— ¢— 1 with at most
g out-neighbors in D:

Lemma 2.4 Suppose that p > 2 and G is the competition graph of a di-
graph D satisfying the condition C*(p) with |V4| = r and |Ig| = q where
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r>p—q>1. Then there exists a branch set U of G with size p—d— 1
satisfying |[N3(U)| < q.

Proof. Since r > p — ¢ > 1, there is a branch set of size p— g — 1
by Lemma 2.2. Let U be a branch set of size of p — ¢ — 1 such that
INE(U)| is as small as possible. Suppose that [N (U)| > g. We will reach
a contradiction. Since [N, (U)| > g, there is a vertex w € U U I such that
(u,w) is an arc in D for some u € U. Let T =U U Ig U {w}. Then |T|=p
since w & U U Ig. Since D satisfies the property C*(p), T has a head h(T).
Since w has in-neighbor u € T, h(T') cannot be w. For otherwise there
would be a loop incident to w in D by the definition of a head. Since w
is a non-isolated vertex not belonging to branch set U, w ~ V& and so, by
Proposition 1.2 (1), h(T') ~ V. Let U’ = UU{w}\h(T). Since h(T) ~ V¢,
U’ is still a branch set of size p — ¢ — 1.

We claim by contradiction that there is no arc from a vertex in U’ to
head h(T'). Assume that there is an arc from a vertex v in U’ to head h(T).
Then v € U' C T. By the definition of head, there is an arc (h(T), h(T")) in
D, which is a contradiction. Thus there is no arc from a vertex in U’ to head
h(T). Hence h(T) ¢ N (U'). In addition, since N} (w) C N (h(T)) \ {w}
and w € N} (U),

NEU') € NjU)\ {w}.
This contradicts the choice of U and the proof is complete. m]

Lemma 2.5 Suppose that p > 2 and G is the competition graph of an
acyclic digraph D satisfying the condition C*(p) with |Vg| =r and |Ig| = ¢
wherer > p—q > 1. Let U be a branch set of G with size p — q — 1,
H =G[U), and Iy # 0. Then the following hold:

(1) Np(U) C Ig;

(2) If NA(VE) NIy = {21,22,...,35} (s > 1), then there erist distinct
vertices z1, z2, ..., 25 m UU Ig \ Iy such that there is a directed
(zi,2i)-path P; in D such that every internal vertez of P; belongs to
Iy and z; has an in-neighbor in Ig for eachi=1, ..., s.

Proof. We show (1) by contradiction. Suppose that N3 (U) ¢ Ig. Then
there exlsts v € NA(U)\ Ig. Then v ¢ U U Ig and, by the definition of
Uyv~U. Let T = UUIg U {v}. Since |T| = p, T has a head h(T).
Since v has an in-neighbor in T, h(T) # v. Since v ~ U, it is true that
h(T) ~ U by Proposition 1.2 (1). This implies that H has no isolated

vertices, which contradicts the hypothesis that H has an isolated vertex.
Thus, N} (U) C Ig.
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Now we prove that (2) holds. Since Iy C U, every vertex in Iy has
degree at least 1 in G and so each has an out-neighbor in D. Since N} (U) C
I¢ by (1), each vertex in Iy has an out-neighbor in U U Ig. Take z; €
Np(VE)NIg fori=1,..., s and denote it by z;, . Since N} (VE)NIgx C Iy,
z;, has an out-neighbor z;, in UUIg. Since D has no loop, z;, # zi,. If z;,
isin V#UIg, then we rename it 2; and we are done. If z;, is in Iz, then z;,
has an out-neighbor z;, in U U Ig. Since D is acyclic, z;, is distinct from
z;, and z;,. We repeat this process for z;; and so on. Since Iy is finite
and all of z;; are distinct, the process will eventually end up obtaining a
vertex z;, in VU Ig. We have found 2; by renaming z;, z;.

Suppose that z; = z; for some i # j, 1 < 4,j < s. By definition, there
exist directed (z;, 2;)-path P; and (x;, 2;)-path P; such that all the vertices
other than 2; (resp. z;) on P; (resp. P;) are in Iyy. Let v be the first vertex
common to P; and P;. Then the vertex immediately preceding v on F; is
adjacent to the one immediately preceding v on P; in C(D). However, since
both of them belong to Iy, they are isolated in H and so not adjacent in
H. Since H is an induced subgraph, they are not adjacent in C(D). Thus
~ we reach a contradiction. Hence all of z; are distinct and this completes
the proof of (2). o

Now we are ready to present a necessary condition for a graph being the
competition graph of an acyclic digraph D satisfying the condition C*(p):

Theorem 2.6 Suppose that p > 2 and G is the competition graph of an
acyclic digraph D satisfying the condition C*(p) with V3| =r and |Ig| = q
where r > p—q > 1. Then there is a branch set U of G with sizep—q—1
such that k(H — Ig) < q for H = G[U]. ,

Proof. By Lemma 2.4, there is a branch set U of size p — ¢ — 1 satisfying
INE(U)| < g. Suppose that

q < k(H — I).

If NA(V) = Ig, then the competition graph of the subdigraph of D in-
duced by V% U Ig is V% U Ig. Then k(H — Iy) < q, which contradicts the
assumption that g < ¥(H — Igy). Thus

NE (Vi) \Ie #0. )

If Iy = 0, then [N(U)| > ¢ since ¢ < k(H). This contradicts the
choice of U. Thus Iy # 0. Then, by Lemma 2.5 (1), NA(U) C I¢.
Hence N (V) \ Ie C Iy. This and (1) imply that NE(VE) N Ig # 0.
Let Np(V§) NIy = {z1,%2,..,2,}. Then by Lemma 2.5 (2), there exist
vertices 21, 22, ..., 2, in V% U Ig such that there is a directed (z;, 2;)-path
in D and z; has an in-neighbor in Iy foreachi =1, ..., s.
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Let D* be the subdigraph of D induced by the vertex set U U I. Since
NA(U U Ig) = 0, we have C(D*) = HU Ig. Now we construct a digraph
D™ as follows: Let

V(D**) =V (D).
Then we let »

A(D**) =A(D*) - {(v,zi) | (v,2:) € A(D*),i=1,2,...,8}
—{(v,z:)| (v,2:) € A(D*),i =1,2,..., 8}
U {(v, )] (v, 2;) € A(D*),i = 1,2,...,s}.

Then the acyclic labelling for D is still valid for D** since newly added arcs
still go from higher indices to lower indices. We shall claim that C(D** —
Iy) = (H - Ig) U I in the following. Suppose that there are vertices y;
and y. in H such that arcs (y1,2;) and (y2,2;) for some ¢ € {1,2,...,s}
are in D*. Since there is an in-neighbor z of z; that belongs to Iy, it is
true that z, y,, y2 form a clique in C(D*), which contradicts the fact that
z is isolated in H. Thus deleting the arcs in {(v, 2;) | (v, 2;) € A(D*)} from
D* does not delete any edge in H in the competition graph of the resulting
digraph. The arcs in {(v,z;)|(v,z;) € A(D*)} are replaced by the ones
in {(v,2;)| (v,z;) € A(D*)} in D**. Thus C(D** — Jg) = (H — Jyg)U Ig
where Jg = N*(V}) N Iy. In addition, since any vertex in Iy \ Jy has no
incoming arcs from a vertex in U by the definition of Jy,

C(D* =Iy)=C((D*" - Ju) = In\Ju)=((H—-Ju) - Ig\Jg)UIlg
=(H-Iyg)Ulg.
This implies that k(H — Igr) < g, which contradicts the assumption that
k(H —Iy) > q. 0

The following theorem characterizes the competition graphs of acyclic
digraphs satisfying the condition C*(p). We denote by I, the set of ¢
isolated vertices.

Theorem 2.7 Suppose that p > 2 and G is a graph with |V4| = r and
|Ig| = q. Then G is the competition graph of an acyclic digraph satisfying
the condition C*(p) if and only if G is one of the following graphs:

(1) I, where ¢ > 0;
(2) K, UI, wherer > 1 and g > 0;

(3) HU I, where H is a graph without isolated vertices, [V(H)| = r <
p—gq, and 0 < k(H) < ¢;

(4) (Kr—p+q+1 V H)U I, where H is a graph with p — ¢ — 1 vertices,
r>p—gq,and0< k(H -Ig) <q.
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Proof. To show the ‘only if’ part, suppose that G is the competition
graph of D satisfying condition C*(p). By the acyclicity of D, G has at
least one isolated vertex. If G does not have edges, then G = Ig = I,.
Now we suppose that there are at least two non-isolated vertices (it is
impossible for a graph to have exactly one non-isolated vertex), that is,
r > 2. If [V(D)| < p, then D satisfies the condition C*(p) (vacuously).
Since G has r non-isolated vertices and ¢ isolated vertices, it is true that
G = HU I, for a graph H without isolated vertices and |V (H)| = r. Since
C(D) =G = HUl,, k(H) < g, by the definition of competition number.
Since |V(D)} = r + g, it is true that 7+ ¢ < p and so r < p—¢g. Thus
G is of Type (3) if |V(D)| < p. Now suppose that [V(D)| > p. Then,
since [V(D)| =r +g¢,itistruethat r > p—q. fp—¢g—-1<1, then G
is of Type (2) since the maximum size of independent set of vertices none
of which is isolated in G is 1 by Lemma 1.3. Thus it remains to consider
the case p — ¢ — 1 > 1. By Theorem 2.6, there is a branch set U of size
p— g — 1 such that k¥(H — Iy) < q for H = G[U]. Then, by Lemma 2.3,
G = (Kr—pter1 VH)UI,.

Now we show the converse. We will construct an acyclic digraph D
satisfying the condition C*(p) for each type of graph.

If G is of Type (1), then D with vertex set V(G) and the empty arc set
vacuously satisfies C*(p), and C(D) =G.
© IG=K,Ul,forr >1and g >0, then define an acyclic digraph D as
follows: V(D) = V(G) and A(D) = {(z,y)|z € K,y € I;}. We can easily
check that G = C(D) and D satisfies the condition C*(p).

Suppose that G is of Type (3). Since k(H) < g, there exist acyclic
digraphs D with C(D) = (H)UI,. Sincer < p—g, it is true that |V(D)| < p
and so this digraph D satisfies the condition C*(p) vacuously.

Finally suppose that G is of Type (4). Since k(H — Iy) < g, there is
an acyclic digraph D' such that C(D') = (H - Ig) U I,. Without loss of
generality, we may assume that D' is minimal among such digraphs. Let

T'={(z,9) |z € V(H)U I,y € V(H) U I;}.

We first suppose that Iy # 0. Let Iy = {4,142,...,%} and o be a vertex
in I,. We define a digraph D as follows: Let

V(D) =V(G).
Then we let

A(D) =TUA(D') - {(v,0) | (v,a) € A(D")}U{(v,i) | (v,a) € A(D")}
U {(i.‘i+l,i.‘i) |.7 = 1’2" "’l - 1} U {(il:a)}’

(See Figure 3 for an illustration.)
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Figure 3: Given a subgraph L of K7 with 4 vertices z, y, 41, i3 and
k(H — Iy) = 1, an acyclic digraph D satisfying the condition C*(6) whose
competition graph is (K3 V H) U {a} constructed as indicated in the proof
of Theorem 2.7.

From the fact that no arcs from a vertex in D’ to a vertex in D' are
added and the way in which the arcs are added, it can easily be checked
that D is still acyclic. Now take a subset T of V(D) with |T'| = p. Then it
contains a vertex v in V(H) U I since |V(H)U I,| = p— 1. It is clear from
the construction of D that v is a head of T'. Thus D satisfies the condition
C*(p)-

It is rather tedious but not difficult to check that E(C(D)) = E(G). O

The results on C*(p) (p =1, ..., 5) in [5] follow from the above theorem
in a much simpler way than in [5] as shown in the following.

Corollary 2.8 ([5]) Let G be a graph. Then G is the competition graph
of an acyclic digraph satisfying condition C*(5) if and only if G = I or
G = K,Ul, forr > 1,¢>00rG = K,—eUl forr > 2, orG = K.~ P3UI;
forr>3o0rG=K,—KgUIL forr>3.
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Proof. Suppose that G is the competition graph of an acyclic digraph
satisfying condition C*(5). Let r and g be the numbers of vertices of degree
at least one and isolated vertices, respectively. Then G is of one of the four
types in Theorem 2.7. If G is of Type (1), then G = I, for ¢ > 0. If G is of
Type (2), then G =K, U, forr>1,¢>0.

If G is of Type (3), then r < 5 — g. Since ¢ > 1, it is true that r < 4,
andsor=2o0r3. Ifr=2,then G=L, f L=K,and G=KyUL, if L
is an empty graph for ¢ > 0. If r = 3, then G = K3 U I; if L is an empty
graph and G = K3 — eU I} if L has only one edge.

If G is of Type (4), then G = (Ky—54¢+1 VH)UI, where 5-¢—1>0.
Thus g =1,2,0r 3. Then |V(H)|=5-¢q—1=23,2,or 1. Now if ¢ = 3,
then H is a trivial graph; if ¢ = 2, then H = I, or Kp; if ¢ = 1, then
H=I,PRUIL, P3s,or K3. Hence G=K, Ul forr>20orG=K, UL
forr>3orG=K,—eULforr>3orG=K,-KsUIL forr >4or
G=K,-PULforr>4orG=K,—eULforr>40orG=K, Ul
forr > 4.

Since G is of one of the types given in Theorem 2.7, the converse holds.
- ,

3 Closing Remarks

In this paper, we completely characterize the competition graph of an
acyclic digraph satisfying the condition C*(p). This answers an open ques-
tion given by Kim and Roberts [5].

It seems to be interesting to characterize the competition graph of a
digraph satisfying the condition C*(p). The lemmas 2.1-2.4 are still valid
for digraphs satisfying the condition C*(p) without the acyclicity being
guaranteed. In addition, characterization of the competition graph of a
digraph satisfying the condition C(p) remains open.
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