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ABSTRACT. In [5], the first author posed the problem of determining the
spectrum of (K3, K4 — e)-designs. In this article, we solve this problem,
and also determine the spectrum of (K4, K4 — e)-designs with exactly one
K, (or, equivalently, the spectrum of (K4 — €)-designs with a hole of size
4). We also improve the bound for embedding a partial S(2,4,v) into a
(K4, K4 — e)-design given in [5].

1. INTRODUCTION

A Ky-design [a (K4 — e)-design, and a (K4, K4 — e)-design, respectively]
of order n is a decomposition of the complete graph K, into copies of Ky,
the complete graph on 4 vertices [into copies of K4 — e, the complete graph
on 4 vertices from which one edge was deleted, and into copies of K4 or
K4 — e, respectively]. Of course, a Ky4-design of order n is the same as a
Steiner system S(2,4,7n). In [5], the first author obtained a polynomial size
embedding of a partial Steiner system S(2,4,v) into a (K3, K4 — e)-design,
i.e. a decomposition of the complete graph into copies of K4 or K4 — e.
He also posed the problem of determining the spectrum for (K4, K4 — €)-
designs, i.e. the set of all orders for which there exists a (K4, K4 — e)-design.
For the sake of brevity, from now on a (K4, K4 — e)-design will be termed a
K*-design, and the spectrum will be denoted by K*. Thus K* = {n : there
exists a K*-design of order n}.

A K*-design (or a (K, — e)-design) of order n with a hole of size m,
sometimes termed an incomplete (n, m)-design, is a partition of edges of
K, \ K, into copies of K4 or K4 — e (into copies of K4 — e, respectively).

In this article, we prove the following.

Theorem A. K* ={n:n>4,n¢ {5,7,8,9}.

We also determine the spectrum for K*-designs with a unique Ky-block
(or, alternatively, the spectrum for (K4 — e)-designs with a hole of size 4);
this spectrum will be denoted by K;*, and a K*-design with a unique K-
block will be called a K}-design.

Theorem B. K),* = {n: n=2 or4 (mod 5), n > 4, n # 7,9}.
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In a K*-design, a K4-block will be indicated b .

1 ) y figure brackets, e.g.
{a,b,c,d} while a (K, — e)-block will be indicated by square bracketss, :.g.
[a,b,¢,d] with {c,d} the omitted edge. It follows that [a,b,¢,d], [a,b,d,c]
[b,a,c,d), [b,a,d, c] all denote the same (K4 — e)-block. o
" We recall a classical result of Hanani [3] and a well-known result from
Theorem 2.1. An 5(2,4,n) (i.e., a K4-design of order n ists if and
only if n=1 or 4 (mod 12). ! o of ) evists if an

Theorem 2.2. A (K, — e)-design of order n ezists if and only if n =0 or
1 (mod 5), v # 5.
Next we record the following obvious lemma.
Lemma 2.3. The following are eguivalent:
(i) There ezists a K*-design of order n with ezactly one K4-block;
(i1) There exists a (K4 — e)-design of order n with a hole of size 4;
(i13) There ezists a (K4 — e)-design with a hole of size 2.

Lemma 2.4. There exists no K*-design of order n forn=17,8,9.

Proof. (i) n = 7: since K7 has 21 edges, any K*-design of order 7 neces-
sarily contains one K4-block and three (K4 — e)-blocks. If {a,b,c,d} is the
K -block then each of a, b, ¢,d must occur in a (K4 — e)-block as a vertex
of degree 3 (since K- is regular of degree 6), and no two of a,b,c,d may
appear as adjacent vertices in the same (K4 — e)-block, as they are already
adjacent in the unique Kj4-block. But there are only three (K4 — e)-blocks,

a contradiction.
(ii) » = 8 the only solution in nonnegative integers of the equation

6z + 5y = 28 is £ = 3,y = 2, thus a K*-design of order 8 would necessarily
consist of three K4-blocks and two (K, — e)-blocks. But it is impossible to
pack three Kj-blocks in a Kj.

(iii) n = 9: in a K*-design of order 9 either there are six (K4 — e)-
blocks and one Kj-block, or there are six K4-blocks. The latter is im-
possible since there exists no S(2,4,9). So assume the former, and let
A, B,C,D,1,2,3,4,5 be the vertices of Ko, and let {A, B,C, D} be the K;-
block. Then there are two more (K4 — e)-blocks through each of A, B, C, D;
say, w.l.o.g., [4,1,2,3] and [4,5, A, B] are the two (K4 — e)-blocks contain-
ing A. Now B has to occur in a (K, — €)-block which requires a path with
two edges on {1,2,3} disjoint from the path (2,1,3) - a contradiction. O
Lemma 2.5. 12 € K;*, i.e., there erists a K*-design of order 12 with a
unique K4-block.

Proof. The blocks of the design are {1,5,9,11}, and (1,2,3,4],(1,6,8,12],
[2,5,8, 10}, [2,11,6,7],(3,4,8,11],[3,6,9,10],[3,12,5,7], [5,6,4,7),
[7,10,1,4],(8,9,7,10], 9, 12,2,4], [11,12,8,10]. O

Lemma 2.6. 14 € K;*.

Proof. Let V = Z13 U {co}. The blocks of the design are {0,3, 5,12} (the
unique Ky-block), and [4,6,0,1], (5,7, 1,2], [2,8,3,6],{4,9,3,7],[5,10,4,8],
[6,9,5,11], [7,12,6, 10}, [8,11,0,7), [1,12,8,9}, 9, 10,0, 2], 1, 11,3, 10],
[2,4,11,12], [1,2,0, o0}, [00, 7, 0, 3], 6, 10,3, 00}, [o0, 11, 5,12], [00,8,4,9]. O
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Lemma 2.7. 17 € K;*.

Proof. With V = {0,1,..., 16}, the blocks are [0, 5, 4, 6
[9,10,0,5], [0, 13,11, 12], [0, 16, 14, 15}, [4,6, 1, 2], [[5,’7,’1,’2]1,,[[1
[1,14,11,12), [1,13,15, 16], [2,11,8,9], [2, 16, 10, 12], [2, 14, 13,
[3,4,13,14),[3,5, 11, 16], [6,8, 3, 16], [9, 12, 3, 6], [3, 10, 7, 15],
[4,9,15,16], [4,10,11,12), 12, 15,5, 8], [5, 8, 13, 14], [6, 15, 7, 11],
[6,10,13,14], 7,9, 13, 14], [7, 11, 12, 16], and {0, 1, 2,3}. O

Lemma 2.8. 19 X",

Proof. With V = {0,1,...,18}, the blocks are [0, 5,4, 6], [7,8,0, 1],
[9,10,0,1],[11,12,0, 1], [0, 15, 13, 14}, [0, 18, 16,17], [1, 13,4, 5], [1, 16, 6, 14],
[1,15,17,18], [4,6,2, 3], [5,7, 2, 3], [8, 9,2, 3], [2, 10, 11, 12], [2, 18, 13, 14],
(2,16, 15,17, [3, 14, 10, 11], 3, 12, 15, 18], [3, 13, 16, 17], [9, 12, 4, 5],
[4,14,7,8), [4, 10, 15,17), [4, 11, 16, 18], [5, 15, 8, 11], [14, 17,5,9],

[5. 10,16, 18}, [6, 15,7, 9], [11, 17,6, 7], 6,8, 10, 18], [6, 14,12, 13}, 7,9, 16, 18],
[7.13,10,12],[11,13,8,9], [8, 12, 16,17], and {0,1,2,3}. O

Lemma 2.9. 22 € K,*.

Proof. Let V = 23U {4, B,C, D}. The blocks are [i,i + 1,7+ 3,i + 7,
i € Zug, and [A,8,0,17), [4,1,9,10], [4,2,11,12], [4,13,3,4],[A, 14,5,6],
[4,7,15,16], [B, 10,0,2], [B,11,1,3), [B, 4,12, 14], [B, 5,13, 15], [B, 16,86,8),
(B.17,7,9],[C, 14,0,10}, [C; 5,1,9], [C, 2,6, 16],[C, 17,3, 13], [C. 8,4, 12],
[C/11.7.15}, [D,5,0,10], [D, 14,1,9], [D, 2, 7,15}, [D,8,3,13], [D, 17,4, 12],
[D,11,6,16],(0,9,4,13], 3,12, 7,16}, [6,15,1,10}, and {4, B,C,D}. O

Lemma 2.10. 24 € K;*.

Proof. With V = {0,1,...,23}, the blocks are [0,5,4, 6},{7,8,0,4],
9,10,0,4], 11, 12,0, 4], [13, 14,0, 5], [15,16,0,5], [17, 18,0,5], [19, 20,0, 5],
0.23.21,22], [4,6,1,2], 5,7, 1,2}, [8,9,1,2],[10,11,1,2), (12,13, 1,3],
14,15,1.3], (16,17, 1,3}, [1,21,18,19], [1,20,22,23], [2, 15,12, 13),

2,14, 16,17, (2, 23, 18,19, [2, 21,20, 22), [4, 18,3,13],[3,5,8,9),
3.19.6,7), [3, 10,20, 21], [3, 11,22, 23], [4, 19, 14, 15}, [4, 16,20, 21},
4.17,22,23),[5, 10,22, 23], 5, 21,11, 12], [6, 10,7, 8], [9, 11,6, 7],

12,20, 6.7), [6, 22, 13, 14], [6, 21, 15,17}, [6, 16,18, 23], [7, 13, 16, 21],
7,18,14.22), [7, 15, 17, 23], [13,23,8,9], [14,21,8,9], (8, 17,11,12],

8,22, 15,16], 8, 18, 19, 20], [9, 12, 16, 18], [19, 22,9, 12}, [9, 20, 15,17,
15,18, 10, 11}, 16, 19, 10, 11], {12, 14, 10, 23], [13, 17,10, 19), 11,20, 13, 14],
and {0,1,2,3}. O

Lemma 2.11. 27 € K;*.

Proof. Let V = Zs x {1,2,3,4,5} U {o01,002}. The following 14 base
blocks modulo 5 determine 70 (K4 — €)-blocks of a (K4 — €)-design with a

hole of size 2:

[021 44,00, °°2]a [001; 13,01, 15]1 [002) 23, 011 35]1 [11)027()1’31]1 [127 0s, 0Oz, 32}:
(13,04,03, 33], 14,05, 04, 34), [0, Os, 25, 45, [01, 12, 24, 44, [21, 34, 03, 23],

[041 35,01, 21]’ 02, 33, 0s, 25]) [041 15,02, 32]7 [321 43,04, 25]°

Adjoining now the edge {ooy,002} to any of the blocks of the first orbit
produces the unique K4-block which completes the proof. O

=3
= 00 oo
o
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Lemma 2.12. 29 € K,*.

Proof. Let V = Z5 x {1,2,3,4} U {00;, 002, 003,004}. The i

base blocks yield the 80 (K, — e)-blof:ks of the dgsire:i}K 1 ‘-degi)gur?:wmg 1
[001, 137 011 42]1 [002: 431 011 02]; [003) 03’ 241 25]’ [0041 031 44, 45]7

04! 35: 001, 002], [011 127 003, 004]’ [04a 051 011 02]7 [14’ 351 011 22]1

[24’ 15701742]1 [341 457 01; 12}1 01732: 441 25]’ [11’ 33, 01) 31 )
(11, 12,02, 3], [02, 13, 03, 33], [03, 14, 04, 34], [03, 15,05,35}

Lemma 2.13. 37€ K,*.

Proof. Let V = Z;; x {1,2,3}U{o0;,002,003,004}. The following 12 base
blocks yield the 132 (K4 — e)-blocks of a K *-design:

[001) 62’ 017 03]7 [°°2y 82: 017 13], [003) Ol, 102: 103]) [°°4$ 637 11) 02]7

[41’ 72’ 01’ g1 ) [117 31’ 01’ 52]: [42) 731 02’ 92]! [02: 12; 32: 23]: [61) 437 03) 93]7

[03, 13,44, 33), [12, 13,01, 11], [01, 52, 23,43]. O

Lemma 2.14. 39 € K;*.

Proof. We will construct a K;*-design of order 39 with a sub-K;*-design
of order 12 embedded in it. Let V = Zy; U X, where X = {z; : i = 1,2,
...,12}. It is an easy exercise to see that any of the circulants C(27;1,13),
C(27;4,8), C(27;5,11) and C(27; 3, 6) can be decomposed into three 2-path
factors (a 2-path factor in a graph G is a factor whose each component is
a path with 2 edges). Let F;,i =1,2,...,12, be these 2-path factors. For
each z; and a 2-path (a,b,¢) € F;, form the (K4 — €)-block [z;, b, a, c]; this
yields 108 (K;—e)-blocks. Adjoin to this the 27 (K4 —e)-blocks obtained by
developing modulo 27 the base block [0,2,9,12], as well as the 12 (K4 —¢)-
blocks of a K *-design of order 12 (cf. Lemma 2.5) on the set X, for a total
of 147 (K4 — e)-blocks of a desired K;*-design of order 39. O

Lemma 2.15. 57 € K1*.

Proof. We will construct a K *-design of order 57 with a sub-K *-design of
order 24. Let V = Z33UX where X = {z; : i =1,2,...,24}. The complete
graph Kas on Z33 can be decomposed into 24 2-path factors (a solution
to the handcuffed prisoners problem, see [4]).Let these 2-path factors be
Fy,..., Fo4. Associate z;, for i = 1,2,...,24, with F; the same way as in
the proof of Lemma 2.14; this produces 24.11 (K4 — e)-blocks. Adjoin to
this the 54 (K4 — e)-blocks of a K1*-design of order 24 on X. U

Lemma 2.16. 59 € K;*.

Proof. Let V = Z;; x {1,2,3,4,5} U {001, 002,003,004 }. The following 31
base blocks yield the 341 (K4 — e)-blocks of the desired K;*-design of order
59:

01, 531 01’62]’ [0027 937 Ol ) 62]1 [047 351 001, 002]’ [003’ 031 64: 65]’

004,03, 104, 85], [01, 82, 003, 004], [01, 02, 64, 0], [104, 75, 61, 02],

02, 15’ 21, 03]» [72) 1057 51) 83]) [233 04, 01’ 02]’ [103a 104; 019 12]) [02a 431 74’ 85]:
027 63’ 34’ 55]1 [54$ 95; 021 43]) [241 451 021 63]) [017 51, 25a 35]a [02a 52, 11, 41]’

03) 53; 101’ 81]: [04: 54’ 91, 21]) 053 55, 104: 04]3 [11, 62a 01, 31]; [12a 831 02’ 32]’
13) 541 033 33]’ [147 105) 041 34]) 111 75’ 011 31]) [31) 73; 01: 71]) [321 44) 02! 72]1

337 35v 03) 73]$ [31’ 84, 01, 71]1 [323 25a02) 72]- O
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Lemma 2.17. 67 ¢ ) S

Proof. Let V = 2, x {1,2 3}u{oo
! » 2, 1,002,003, 004}. The fi i
blocks yield the 441 (K4 ~ e)-blocks of a K 1 ‘a-des‘itgn of gr‘;);i‘og;:n & 21 bose
[gol) 22) 01: 13]1 [002; 42, 01’ 143]; [0031 01: 921 143]: [004’ 03: 01 ) 02]1
[ 1, 192) 01: 131]1 [811 152r 01, 181]1 [01) 311 11)202]; [417 91,013 202]’
[62,83,02,13,], [8, 13, 0, 18], [02, 12, 32, 73], [0z, 42, 92, 134],
[[:2158'3, 33, %3}3][,1[21158360% 1]8:1{}, [0s, 13,104, 33}, [03, 43, 8, 9],
2,4VU3,V), 11, 233)1)1)032’618505$2
[01,43,82,102]. - 1y 3 3] [ 1,92 3,163])
Note that in Lemmas 2.12. 2.13, 2.16 i
the ntans B p , » and 2.17, {00}, 002,003,004} is

Lemma 2.18. 69 € K;*.

Proof. We construct a K;*-design of order 69 with a sub-K; *-desi
order 12. Let V = Z5; u X wheran ={z;:i= 1,2,...,12}.111; iessgnsﬂo;
verified that each of the circulants C(57;1,2), C(57;18,21), C(57;9, 24),
C(57;14,28) can be decomposed into three 2-path factors, for a total of
12 2-path factors; let F; : ¢ = 1,...,12 be these 12 2-path factors. As-
sociate z;,¢ = 1,...,12 with F; the same way as in the proof of Lemma
2.14; one obtains 19.12 = 228 (K, — e)-blocks. Adjoin to this the 228
(K4 — e)-blocks obtained by developing modulo 57 the four base blocks
[0,4,10,16], [5,20,0,12], [0, 30,17,19], [23,26,0,48], and the 12 (K, — e)-
blocks of a K;*-design of order 12 on X. O

3. THE MAIN CONSTRUCTION AND
K*-DESIGNS WITH A UNIQUE BLOCK OF SIZE 4

A commutative quasigroup with holes, (V,0,H), is a (finite) set V, |V | =
v, H = {H1,Hs,...,H,} is the set of holes, |H;| = h;, H; N H; = 0 for
i3 j, X¢_,hi = v, and o is a binary operation on V defined for all z,y € V'
such that z € H;, y € H; and i # j, and satisfying oy =yoz. Ifi=
then z oy is undefined. In other words, z oy is defined if and only if x and
y belong to different holes.

It is well known that

(i) a commutative quasigroup of order v with all holes of size 2 exists if
and only if v > 6 and v = 0 (mod 2) [7];

(ii) a commutative quasigroup of order v = 3 (mod 6) with all holes of
size 3 exists if and only if v > 9;

(iii) a commutative quasigroup of order v = 1 (mod 6) with one hole of
size 7 and all other holes of size 3 exists if and only if v > 19; and

(iv) a commutative quasigroup of order v = 5 (mod 6) with one hole of
size 5 and all other holes of size 3 exists if and only if v > 17 [6]

Now we are able to formulate our main construction which when spec-

ified will enable us to prove our main results.

Main construction. Let (X,0,H) be a commutative quasigroup of order
n with holes H = {Ha,...,H,}, |Hi| = hi, let T be a set, TN X = B,
|T| =t £ 9. Assume that for some i € {1,2,...,s}, there ezists a K*-
design of order 5h; + t, and for each j € {1,2,...,s8}, j # i, there exists
a K*-design of order 5h; + t with a hole of size t. Then there exists a
K*-design of order 5n +t.
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Proof. Let (H; x ZsuT C;) be a K*-desi
Proc , -design of order 5h; + ¢, and f
% # z,d let (H;x Zg, C;) be a K *-design of order 5h;+t with a hole of s;)zreiagg
d',ffan Iet}:lcl= Ui Ck. For any ¢ € Hy,y € Hy, k # I (i.e. for any z,y from
ldell'ent oles), let B;, = {[(x,1), (y, i) (zoy,i+1),(zoy, i+2)]:i€ 25}
ad :t, Tq’ = UBzy. Then (X x Zs UT,BUC) is & K*-design of order
The first application of the Main Construction is the following.

Lemma 3.1. Let n =2 (mod 10), n > 12. Thenn € K*.

Proof. Let n = 10k + 2. The statement is certainly true for k = 1. 2 sj

a K, *-design of order 12 and 22 is given in Lemnllfa. 2.5 and Lemﬁasg{ge
respectively. Thus we may assume k > 3, i.e., n > 32. Let (X, ,0, H) be a
commutative quasigroup of order 2k with k holes H;, each of size 2. Set
V= (X X Z5) ) {001,002}, Vi = (H, X Z5) V) {001,002}, i=12...,k
Let (V1,B;) be a K;*-design of order 12 such that the pair {o01, 002} is
contained in the unique Ky-block. Let (V;, B;),i = 2,3,...,k, be a (K4—e)-
design of order 12 with a hole of size 2 on {00y, 00z}. It is straightforward
to see that the Main Construction yields a K;*-design of order n. O

We can proceed in a very similar manner when n = 4 (mod 10).

Lemma 3.2. Let n =4 (mod 10). Thenn € K;*.

Proof. Let n = 10k + 4. The statement is trivial for £ = 0, and for
k = 1,2, the corresponding K *-design is given in Lemma 2.6 and Lemma
2.10, respectively. So assume k > 3, i.e. n > 34. As before, let (X,0,H)
be a commutative quasigroup of order 2k with k holes, each of size 2. Set
now V = (X x Zs) U {c01, 002,003,004}, and use the K;*-design of order
14 given in Lemma 2.6, making sure that {c01, 002,003,004} is the unique
K-block (or the hole, respectively). O

Lemma 3.3. Let n =7 (mod 10), n > 7. Then n € Ky1*.

Proof. Let n = 10k + 7. A K;*-design of order 7 does not exist by
Lemma 2.4, while K;*-design of order n € {17,27,37,57,67} is given in
Lemmas 2.7, 2.11, 2.13, 2.15 and 2.17. Let (X,0,H) be a commutative
quasigroup of odd order 2k + 1 of type (ii), (iii), or (iv) (cf. beginning of
this Section), according as 2k + 1 = 3,1 or 5 (mod 6), with all holes of size
3, or the first hole H; of size 7 and all remaining holes of size 3, or the
first hole H; of size 5 and all remaining holes of size 3, respectively. Let
V = X x ZsU{001,002}. On Hy x ZgU{001, 002}, put a K;*-design of order
17, 37, or 27, respectively, according as our commutative quasigroup with
holes is of type (i), (iii), or (iv), respectively, making sure that the unique
K 4-block contains the pair {001,002}, These designs exist by Lemmas 2.7,
2.11 and 2.13. In each case, put on the remaining holes a K;*-design of
order 17 with a hole of size 2 (simply delete the edge {001,002} from the
unique Kj-block). Apply the Main Construction to complete the proof. [

Lemma 3.4. Let n =9 (mod 10),n > 9. Thenn € K,".

Proof. By Lemma 2.4, there is no K;*-design of order 9. A K;"-design
of order 19 and 29 is given in Lemmas 2.8 and 2.12; K;"-designs of orders
39, 59 and 69 which are not covered by the Main Construction, are given
in Lemmas 2.14, 2.16 and 2.18. Proceed as in the proof of Lemma 3.3, but
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take instead V = X x Zs U .
unique Ky-block. O fo01, 002, 003, 004}, with {o01, 002, 003, 004} the

fnx;)g.t; ot":l Theorem B. Combine Lemma 2.4 with Lemmas 3.1, 3.2, 3.3

4. K*-DESIGNS OF ORDER n = 3 (mod 5)

In Xie:rﬂof the prc:;/ious sect}ilon, inhorder to complete the proof of The-
orem one needs is to show the existence of K*-desi £
n=3 (mod 5),n > 13. esigns of order

Lemma 4.1. There ezists a K *-design of order 13 with a hole of size 3.

Proof. Take the Steiner system S(2, 4, v) (i.e. a K*-design where all blocks
are Ky-blocks), say, {0,1,4,6} (mod 13), and delete the edges between any
three noncollinear points, say 0,1,2. O

Lemma 4.2. There ezists a K*-design of order 18.

Proof. The complete tripartite graph Ky 4,4 can be decomposed into six
2-path factors. Indeed, if Z4 x {1,2,3} is the vertex set of K44 then, for
example, the six 2-path factors

F: (011 O2a03); (111 1, 13), (211 22, 23), (311 321 33)

F, : (03,1;,22), (13,21, 32), (23,31, 02), (33,01, 12)

F3 : (01, 13, 22)) (11: 23, 32), (213 33, 02)7 (31)03a 12)

Fy 1 (23,01,22),(33,11,32), (03,21, 02), (13,31, 12)

Fs: (011 031 22)) (111 131 32)1 (211 23, 02)) (31, 33, 12)
FG : (011 32) 03)1 (11’ 02) 13)7 (21’ 1a, 23), (31, 22) 33)

form a decomposition into six 2-path factors.

Let V = {a; : i = 1,2,3,4,5,6} U (Z4 x {1,2,3}). Form the set of
24 (K4 — e)-blocks {|a:,y,z,2] : (z,y,2) € F;,i € {1,2,3,4,5,6}}. Adjoin
to this set the three (K4 — e)-blocks of any (K, — e)-design on the set
{a1,a2,a3,a4,as5,a¢} and the three Ky-blocks Z4 x {i}, ¢ = 1,2, 3, to obtain
a K*-design of order 18. []

Lemma 4.3. There ezists a K*-design of order 18 with a hole of size 8.

Proof. Let V = Z1o U {1, Z2, 1, ¥2, 21, 22, w1, w2} Where z;,
Z2, Y1, Y2, 21, 22, W1, Wy are elements of the hole. Then the 25 (K4 —e)-blocks

[la 8: z, 552], [07 7) Z, IZ]; [6) 9) z, 1-‘2], [2) 4) zl’z2]) [3) 51 I, 272], [02 8) Y1, y2]1
[7: gs %, yz]a [4) 6, Y1, y‘Z]’ [27 5) %, y2]a [1) 33 Y1, y2]7 [11 41 21, 22], [57 73 21, 22],

6, 8: 21, 22]1 [Oa 3) 21, 2‘2]’ [2, 9’ 21, 22], [4’ 71 wy, w2]: [5» 8$ w, 'ID2], [3) 6, wy, w2]’
[O, 2’w17w2]a [11 gs wlvw2], [11 67 2: 7]: [2’ 71 3) 8]: [3) 8’ 4) g]a [41 g) 51 10])
[5,10,1,6] are the blocks of the design. O

Lemma 4.4. Let n =3 (mod 5),n > 13. Thenn € K*.

Proof. We employ again the Main Construction, just as in the proofs of
Section 3, using as ingredients a K*-design of order 13 together with the
K™-design of order 13 with a hole of size 3 (given in Lemma 4.1) when
n = 3 (mod 10), or a K*-design of order 18 together with a K *-design
of order 18 with a hole of size 8 (given in Lemmas 4.2 and 4.3) when

n =8 (mod 10). O

(3]
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g;o?:f" of Theorem A Combine Lemma 4.4 with Theorem B and Theorem

5. IMPROVING THE EMBEDDING BOUND

It was shown in [5] that a partial Steiner system S(2,4,n) can be em-
bedded in a K*-design of order < 8n + v/n + 84. Problem (2) in the same
paper [5] asks for a reduction of this bound. This is attained below. We
are able to prove the following.

Theorem 5.1. A partial K*-design of order n can be embedded in a K*-
design of order < 6n + 6.

Proof. We may assume w.l.o.g that n > 6 (a partial K *-design of order
4 or 5 may have at most one block). Let (Y,P) be a partial K *-design of
order n. Let m = n if n is odd, and let m =n + 1 if n is even. Let (X, R)
be a skew Room square of order m (cf. [2{) whereY C X. Put § = X x Zg,
and define a collection of blocks K as follows:

(1) For each z € X, let B, be the blocks of a (K4 — e)-design of order
6 on {z} x Zg; place the collection of blocks B = |J . x B: in K.

(2) For each z,y € X, z # y, place the set of six Ky-blocks {{(z, ), (v, 1),
(ryi+1),(c,i+4)}:4 € Zg} in K where {z,y} belongs to the cell (r,c) of
R. Then (X, K) is a K*-design of order 6m < 6n + 6.

Now, for each block b € P and for each edge {z,y} € b, remove the edge
{(=,0),(y,0)} from the block {(z,0),(y,0),(r,1),(c,4)} in K; at most one
edge from X x {0} is removed from any block. What is left of the block
{(,0),(y,0), (r, 1), (c, )} is the (K — e)-block [(r, 1), (c,4), (=,0), (v, )]
Assemble now the removed edges into a copy of P. The resulting collection
of blocks K(P) is a K*-design containing a copy of P embedded in level
X x{0}. O
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