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Abstract

Let G be a simple undirected graph. Denote by mi(G) the number
of maximal independent sets in G. In this paper we determine the
second and third largest number of maximal independent sets in
trees. Extremal trees achieving these values are also determined.
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1 Introduction

An independent set is a subset S of V(G) such that no two vertices in
S are adjacent in G. A mazimal independent set is an independent set that
is not a proper subset of any other independent set. A mazimum indepen-
dent set is an independent set of maximum size. Note that a maximum
independent set is maximal but the converse is not always true. Denote
by mi(G) (respectively, xi(G)) the number of maximal (respectively, max-
imum) independent sets in G.

One reason why upper bounds on mi(G) are of interest is that better
estimates on the size of mi(G) lead to improvements on the time analysis
of algorithms determining several hard graph invariants. Erdds and Moser
raised the problem of determining the maximum value of mi(G) for a gen-
eral graph of order n and the extremal graphs achieving the maximum
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value. This problem was solved by Moon and Moser [20]. Since then, re-
searchers have studied the problem for graphs with some basic properties,
see 1, 4, 6, 9, 14, 19, 21, 22, 23, 24]. For other related, including algorith-
mic, results on mi(G), see [3, 7, 10, 11, 12, 15, 16]. Compared to mi(G),
there are fewer results for the parameter xi(G), see [2, 8, 17]. A survey on
counting maximal independent sets in graphs can be found in [13].

In this paper, we determine the second and third largest number of
maximal independent sets in trees. Extremal trees achieving these values
are also determined.

2 Preliminaries

Lemma 2.1 [9] For any vertez = in a graph G, the followings hold.
(1) mi(G) < mi(G — z) + mi(G — N[z]).
(2) If z is a leaf adjacent to y, then mi(G) = mi(G — N|z]) + mi(G — N[y]).

Lemma 2.2 [9] For any two vertez disjoint graphs G and H, mi(GUH) =
mi(G)mi(H).

The following lemma is obvious.

Lemma 2.3 Let G be a graph of order n. If G contains two vertices x and
y, with d(z) =d(y) =1 end N(z) = N(y), then mi(G) = mi(G — z).

Define a baton B(i,j) as follows: Start with a basic path P with ¢
vertices and attach j paths of length two to the endpoints of P. Throughout
the paper, we use r to denote v/2.

For any n > 1, let

_ [ B(2,25%) or B(4,25?), ifn=0 (mod 2);
Ti(n) = { B(1,551), ifn=1 (mod2).

It follows from Lemma 2.1 that

. n=241, ifn=0 d 2);
mt) =am={ ot ERZY (o)

Theorem 2.4 [5, 11, 14, 21, 23] If T is a tree of order n, then mi(T) <
t1(n). Furthermore, the equality holds if and only if T = T1(n).

For forests, Jou [11] obtained the following result.
Theorem 2.5 [11] If F is a forest of order n, then

mi(F) < f(n) = { i1 Z: z) 5233 gg
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Furthermore, the equality holds if and only if F & F(n), where

_ | 2K, if n=0 (mod 2);
(n) = B(l nols a=1=20)UsK;, if n=1 (mod 2).

Let T>(n) denote the tree of order n defined as follows (see Figure 1): (1)
For n = 0 (mod 2) and n > 4, start with a star K 3 and attach l;—" paths
of length two to at most two leaves of the star K; 3. (2) For n =1 (mod 2)
and n > 7, start with a path P; and attach "' paths of length two to an
endpoint of the path Ps. From Lemma 2.1, we have

n—2 ifn= ;
mi(T3(n)) = t2(n) = { 3 "-’1 +1, gn E(]). EZﬁ gg,

nevenand n >

1 1

Figure 1: The tree Tg(n).

—

nevenand n>12 noddand n>7
I o W €
n=2§8 n=10

Figure 2: The tree T3(n).

Let Ts(n) denote the tree of order n defined as follows (see Figure 2):
(1) For n = 0 (mod 2) and n > 12, start with a path P; and attach 23%
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paths of length two to an endpoint of the path Ps. (2) For n =1 (mnod 2)
and n > 5, start with a path P4 and the tree 73(n — 4), and add an edge
between the center of Tj(n — 4) and an internal vertex of the path P;. It
follows from Lemma 2.1 that

7, if n=_8;
. LZr*+1, if n=10;
mi(T3(n)) = ts(n) = %n +2, ifn=0 (mod 2) and n # 8,10;
gl ifn=1 (mod 2).

3 Main Results

Theorem 3.1 let T be a tree of order n. If T 2 Py, Ti(n), i = 1,2, then
mi(T) < tz(n). Furthermore, the equality holds if and only if T = T3(n) or
T=P5.

Proof. We prove the theorem by induction on n. It is a straightforward
exercise to verify that the result holds for trees with at most eight vertices.
Let n > 9 and assume that the result holds for all trees of order less than
n. Let T be a tree of order n.

Let r and = denote two vertices of T at maximum distance from each
other. Both r and z are necessarily leaves, and we may assume that the
distance between r and z is a least three. We root T at r and let ¥ and
z denote the father and grandfather of the leaf z. We distinguish the
following cases.

Case 1. n=1 (mod 2) and n > 9.
If d(y) > 3, then y has at least two leaf sons, so it follows from Lemma
2.3 that
mi(T) = mi(T — z) < t1(n — 1) < t3(n).

We now consider the case d(y) = 2. Suppose that T — N[z} = T;(n —2).
Since T' 2 Ti(n), i = 1,2, it follows from the structure of T1(n — 2) that
T = T3(n). We now assume that T — N[z] & T1(n — 2). If z has a leaf son,
it follows from the induction hypothesis and Theorem 2.5 that

mi(T) mi(T — N[z]) + mi(T — N[y])

ta(n - 2) + f(n - 4)
%rn—l +1< %,,.n—l_

Al

Thus we may assume that all the descendants of z induce a matching.

Suppose that T — N{z] & To(n — 2). Since T % Ti(n), ¢ = 1,2, and .
the descendants of z induce a matching, it is not difficult to see that z €
{a, b, c}, where a,b, and c are as indicated in Figure 3.
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If z = q, it follows from Lemma 2.1 that

mi(T) mi(T — N[z]) + mi(T — N[y])
ta(n—2) +t1(n - 3)
%’r""l +2< %’r“‘l.

Equality holds if and only if n = 9 and T & P
Suppose that 2 = b. Since T' 2 T2(n), we have n > 11. It follows from
Lemma 2.1 that

mi(T) mi(T — Nlz]) + mi(T - N{y))
ta(n — 2) + 2t;1(n — 5)

8,.n—1 3,.n-1
37 +3< g™

If z =¢, it follows from Lemma 2.1 that

mi(T — N(z]) + mi(T — N[y])

t2(n — 2) + mi(T ~ N[y] — Nle]) + mi(T - N[y] — N[d])
pn=3 11439+ 2

Er‘n—l +3 S %'rn’"l.

mi(T")

Equality holds if and only if n =9 and T' 2 P,

a b d
—eo— oo

Figure 3: The tree T — N{z] & To(n — 2).

We now consider the case that T — N[z] 2 T;(n — 2), i = 1,2. Suppose
that d(z) = 232. Since all the descendants of z induce a matching, it
follows from the definitions of z and r that T 2 T(n) or T3(n). Thus we
may assume that d(z) < 252, Since T — N[y] consists of a matching of
d(z) — 2 edges and a tree of order n — 2d(z) + 1, it now follows from the

induction hypothesis that

mi(T — Nlz]) + mi(T — Ny])

t3(n — 2) + r2@@H=¢, (n — 2d(2) + 1)
3,n-3 +1.n—5 +r2d(z)—4

pn=1 4 p2d(z)—4

pn—1 +.r.n—9 < %7‘"_1.

mi{T")

Al

&

IA N
ojeole,

Case 2. n =0 (mod 2) and n > 10.
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The case n = 10 can be proved in the similar way as follows, so here we
only present the details of the case n > 12.

If d(y) > 3, then y has at least two leaf sons. Suppose that T — z =
Ti(n — 1); then it follows from the structure of T1(n — 1) that T & Ty(n).
Thus we may assume that T — z % T1(n —1). It follows from the induction
hypothesis and Lemma 2.3 that

mi(T) = mi(T — 2) < ta(n — 1) = 2—7‘""2 +1< %rn +2,

. 'We now consider the case d(y) = 2. Suppose that T'— N[z] = T} (n—2).
Since T' & Ti(n), i = 1,2, it is not difficult to see that z € {a,b,c,d, e},
where a, b, ¢,d, and e are as indicated in Figure 4.

Suppose that z = a; then it follows from T 2% Tj(n) that d(u) 2 3, i.e,,
d(v) £ § — 3. It follows from Lemma 2.1 that

mi(T) mi(T' — N{z]) + mi(T - N(y})
t1(n — 2) + mi(T — N{y] — N[8]) + mi(T — N{y} — N{u])
t1(n — 2) + f(n — 5) + r2(d@)-1)
w1 < Hrt 42,

IAT I

Figure 4: The tree T — N[z] = T1(n — 2).

If z = b, it follows from Lemma 2.1 that

mi(T) mi(T — N[a]) + mi(T — N[b})
2ty(n ~4) + f(n - 5)

S t2< fort 42

Suppose that z = c; then it follows from T' 2 Ti(n) that d(g) = 2. It
follows from Lemma 2.1 that

mi(T) mi(T — N(z]) + mi(T — Nly])

t1(n — 2) 4 rn—2d09)—4(p2d9)-1) 4 1)
=4 +1 +,,.n—6 +,,.n-2d(g)—4
it l< &t +2.

IA

If 2z = d and d(w) = 2, then T =& T3(n). Suppose that z = d and
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d(w) > 3; then it follows from Lemma 2.1 that
mi(T) mi(T — N{z]) + mi(T — Ny})
t(n — 2) + mi(T — Nly] - Nlel) + mi(T — Ng] - Nlw])
t1(n _ 2) + 7.2(d(w)-—2),rn—2d(w)-2 + pn—2d(w)—4 +1
=t 4 +1,.n—6 + pn—2d(9)-4 4 |
Brit2< £ 42

If z=e, then it follows from Lemma 2.1 that

mi(T) = ml(T N[d]) + mi(T — Nle])
= dmt2<Hrnt2

We now assume that T — N[z] 2 Ti(n — 2). If z has a leaf son w, then
d(z) > 3 and z is isolated in T'— N|z]. If 2 has the unique leaf son w, then
all the descendants of z, other than w, induce a matching, and T — N|[z]
is a forest of order n — d(z) — 1 which contains at least d(z) — 2 isolated
vertices. Hence, it follows from Lemma 2.1 that

mi(T) mi(T — N{w]) + mi(T — N[z])

@)=ty (n - 2d(2) + 2) + f(n — 2d(2) + 1)
1.7&—4 + ,,.2(1(2)—4 + rn—2d(z)

™ 4248 < Lpt 12,

IAH

AT IA

If z has at least two leaf sons, then it follows from the structure of
Ti(n — 1) that T —w 2 Ti(n — 1), ¢ = 1,2. Hence, it follows from the
induction hypothesis and Lemma 2.3 that

mi(T) = mi(T — w)<t3(n-—1)— =2 1_76.7.114_2.

We now assume that z has no leaf sons, i.e., all the descendants of z
induce a matching. Suppose that T' — N[z] & T2(n — 2). Since T # Ti(n),
i = 1,2, and all the descendants of z induce a matching, we may assume

that z € {a,d}, where a and d are as indicated in Figure 5.
b c

Figure 5: The tree T — N[z] & Ta(n — 2).

If 2 = a, then T — N[y} is a tree of order n—3 and T — N[y] & Ti(n—3),
1 =1,2. It follows from the induction hypothesis that
mi(T) mi(T — N{z]) + mi(T — N[y])
t2(n 2) + ta(n — 3)
BT < 75T + 2.

HIA I
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Suppose that z = d. Since T 2 T»(n), we have d(b) > 2 and d(c) > 2.
Therefore T — N[y] is a tree of order n —3 and T — N(y] & Ti(n - 3). It
follows from the induction hypothesis that

mi(T) mi(T — Nz]) + mi(T - N(y])
ta(n — 2) +ta(n —3)
HE 1< Hrt 4+ 2.

Al

We now consider the case T — N{z| 2 T;(n — 2), i = 1, 2. Denote by T"
the tree obtained from T by deleting z and all its descendants. Clearly, T"
is a tree of order n —2d(2)+ 1. f T" 2 T;(n—2d(2)+ 1), i = 1,2, it follows
from the induction hypothesis that

mi(T) mi(T — Niz]) + mi(T — N[y])
ta(n — 2) + r24()=2t3(n — 2d(z) + 1)

13 7
ﬁ'r"+2< ﬁr"+2.

[[IVAN

If T' = T (n—2d(z)+1), it follows from the structure of T1 (n—2d(2)+1)
that T = T1(n) or T = T3(n).

If T/ = To(n—2d(2) +1), then the father of z must be one of the vertices
a,b,c,d,e, f, or g indicated in Figure 6. We note for later use that it follows
from the definition of T2(n — 2d(z) + 1) that d(z) < 258,

a b ¢ d e
—o—o—o

Figure 6: The tree T' & Ta(n — 2d + 1).

Suppose that az € E(T). If d(z) = 2, then T = T3(n). Thus we may
assume that 3 < d(2) < 25%. Hence T — N[z] # Ti(n - 2), ¢ = 1,2, and
T — N[y is a forest consisting of a matching of d(z) — 2 edges and a tree of
order n — 2d(z) + 1 which is not isomorphic to T1(n — 2d(2) + 1). It follows
from the induction hypothesis that

mi(T — N{z]) + mi(T — N[y])
ta(n — 2) + r2ED =Dty (n — 2d(2) + 1)
;_g,rn-& +2 +r2d(z)—4 < 116,,.71. +2.

mi(T)

Al

Equality holds if and only if T — N[z] & T3(n — 2) and d(z) = 258, i,
T T3(n). ’
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If bz € E(T), it follows from Lemma 2.1 that

mi(T) mi(T — N{a]) + mi(T — N[b])
r2d(z)—2,rn—2d(z)—2 + 7..2l:l(z)—2(7..71.—211(2)—4 + 1)
_3_,'.11 + 7.2d(z)—2
ﬁ'l‘n < 1_76',’.71 + 2.

IA I

If cz € E(T), it follows from Lemma 2.1 that

mi(T) = mi(T — Nla]) +mi(T - N[b])
= ty(n—2)+ 722 (n - 2d(z) - 2)
= 3pn 4 p2d(=)-2 4
< Lrttl<Erm42

Suppose that dz € E(T). Clearly, T — N[a] 2 T1(n—2) and T — N[b] &
Ti(n — 3). It follows from the induction hypothesis that

mi(T) mi(T — Nla]) + mi(T — N[b])
ta(n—2) + t2(n - 3)
H=Th 1< T+ 2.

iIA

Suppose that ez € E(T). Clearly, T — N[b] &2 Ti(n —3), i = 1,2. It
follows from the induction hypothesis that

mi(T) = mi(T — Nla]) + mi(T — N[8])

t1(n —2) +ts(n —3)
E 1< ot 42,

Al

If fz € E(T), then T — N[a] = To(n — 2) and T — N[b] & Ti(n — 3),
i=1,2. It follows from the induction hypothesis that

mi(T) = mi(T — Nla]) + mi(T — N[3])
ta(n —2) +ta(n - 3)
%r“ < -l%'r" +2.

Suppose that gz € E(T). If d(e) = 2, then T = Ts(n). If d(e) > 3, then
T — N[b) 2 Ti(n - 3), i = 1,2. It follows from the induction hypothesis

(VAN

that
mi(T) = mi(T — N{a]) + mi(T — N[p])
< tiln-2)+t3(n—3)
= EHrt+l< Hri+2
This completes the proof. [ |
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