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Abstract

Given a sequence X = (z1,232,' - ,%x), let Y = (y1,92, -+ ,yx) be a
sequence obtained by rearranging the terms of X. The total self-variation
of Y relative to X is {x(Y) = 1%, lsi — :]. On the other hand, let
G = (V, E) be a connected graph and ¢ be a permutation of V. The total
relative displacement of ¢ is 34(G) = Y. (.4, cv ld(z, y) — d(é(z), (),
where d(z,y) means the distance between = and y in G. It’s clear that
the total relative displacement of ¢ is a total self-variation relative to the
distance sequence of the graph.

In this paper, we determine the sequences which attain the maximum
value of the total self-variation of all possible rearrangements Y relative
to X. Applying this result to the distance sequence of a graph, we find a
best possible upper bound for the total relative displacement of a graph.
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1 Introduction

Let G = (V, E) be a connected graph and ¢ be a permutation of V. Define the
total relative displacement of the permutation ¢ to be §3(G) = 3 (s#y}cV ld(z, y)—
d{é(z), #(y))|, where d(z,y) means the distance between z and y, i.e., the length
of a shortest path between z and y. This parameter is related to the sorting
problem in computer science[2] and it measures the disorderliness of data. Char-
trand, Gavlas and VanderJagt{l] considered this concept. They also studied
the near-automorphisms of graphs, i.e., permutations that attain the minimum
value 7(G) of the nonzero total relative displacement of the graph G. They got
a lot of fundamental properties including the property #(G) > 2 which we will
cite later. On the other hand, Fu et al.[2] studied the maximum value of the
total relative displacements among all permutations of a graph G, denoted by
7*(G), and called it the chaotic number of G. In [2], the problem of finding
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7*(Kny nz, - ,n,) Was transformed into a quadratic integer programming prob-
lem, and a characterization of the optimal solution was proposed, and then a
polynomial time algorithm was given to solve the problem.

In the next section, we will develop the concept of the total self-variation of
a sequence Y relative to a given sequence X. How to determine the sequences
which attain the maximum value M = max{{x(Y) : Y is obtained by rear-
ranging the terms of X} was solved by Mitchell in [3]. For the convenience of
the reader, we describe the determination in our way to make our exposition
self-contained. Then applying this result to the distance sequence of a graph,
we find an upper bound for the total relative displacements of all permutations
of a graph. And then we construct infinitely many graphs of all orders that
attain the upper bound. These constructions show that the upper bound is

best possible.

2 Main Results

Given a sequence X = (z1,%2,23, '+ ,%k), let Y = (y1,¥2,¥3,"-* ,ux) be a
sequence obtained by rearranging the terms of X. The total self-variation of
Y relative to X is (x(Y) = Y._, |lvi — zi|. Define n*(X) = max{¢x(Y) :
Y is a sequence that obtained by rearranging the terms of X'}.

Let’s determine the sequences which attain 7*(X).

Theorem 2.1. Let X = (z1,%2,23,*,%x) be a sequence of real numbers.
Sort X into a non-decreasing sequence. Suppose that the resulted sequence is
Y = (2;(1), Tr(2)s** * » Tr(x)) for some permutation 7 of {1,2,---,k}. Let o be
the permutation that maps 7(1) to 7(n), 7(2) to 7(n —1),- -+, and 7(n) to 7(1).
If Yo = (To(1)r Ta(2),** * 1 To(n)), then n*(X) = (x(Yo).

To prove Theorem 2.1, let’s consider the following concepts and properties

first.

We say that a sequence X = (1, %2, %3, - ,Zx) has a conversion (z;,z;) in
X ifi < j and z; < z;. The number of conversions with z; as the first component
is denoted by nx(z;) and the number of conversions in X is denoted by n(X).
It is clear that n(X) = Z:;l nx(z;) and X is a non-increasing sequence if and
only if n(X) =0.
Lemma 1. Let X = (z1,%2,23," -+ ,2%) be a sequence and (x;,z;) be a con-
version in X. If Y is a sequence obtained by exchanging z; and z; in X, then

n(X) > n(Y).
Proof. The following facts are clear:
1. nx(z) =ny(m) ifl<iorl>j;

2. nx(z;) =ny(z:) + 1+ |{z1:i <l < j, and 7 > z;}];
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3. nx(z1) 2 ny(m) if i << j;
4. nx(z;) = ny(z;) — {zi1:i <1< j, and z; > z;}|; and
5. {m:i<l<j, and o >z} 2 {2 :i <l <3, and 7y > z;}|.

Hence n(X) = Z:;l nx(zy) > Z,k:l ny(z) = n(Y). ]

Lemma 2. Let X = (z1,2,23, -+ ,Zk) be a non-decreasing sequence. If Yy =
(Tk) Th-1, Th—2, " -+ , 21), then n*(X) = (x(Yo).

Proof. Since for a finite sequence X the value n*(X) exists, it is sufficient to
prove that if Y # Y, then we can find a sequence Z such that {x(Z) > (x(Y)
and n(Z) < n(Y).

Suppose that Y = (y1,¥2, -+ , ¥x) 7 Yo. There are two numbers ¢ and j such
that 1 <i < j <k and y; < y;. Let Z be the sequence obtained by exchanging
the two terms y; and y; in Y. Then n(Z) < n(Y) by Lemma 1.

Case 1. If z; = z; then it is clear that {(x(Z) = {x(Y).

Case 2. If z; < z;. We can divide this case into 6 subcases, i.e. (i) z; < z; <
vi <yj; (i) 2 Sy <z <yj () i Sy <y; <z (V)3 <2 S 95 <
zj; (V) i < yj < @ < zj; and (vi) 3 < 2; < z; < y;. For each subcase, it
is clear that {x(Z) —(x(Y) = |y; — il + |y — 25| — |y — 23| = |y; — 5] = 0.

Therefore, Lemma 2 is proved. a

Proof of Theorem 2.1.

Let Y’ = (27(k), Zr(k—1)>"** »Tr(1))- Then by Lemma 2, n*(Y) = {y(Y’).
Since n*(X) = n*(Y),n*(X) = 2*(Y) = {y(Y’) = (x(Yp). Hence Theorem 2.1
is proved. O

After determining the sequence that attains the maximum value of the total
self-variation relative to a given sequence, let’s apply Theorem 2.1 to get an
upper bound for the total relative displacements of permutations of graphs. For
convenience, we call a sequence X a distance sequence of a graph G of order ¢
if X consists of the distances between (;) unordered pairs of distinct vertices of

G.

Corollary 2.2. Let G = (V, E) be a graph of order ¢ and X be the distance
sequence of G. Then §4(G) < 7*(G) < *(X) for any permutation ¢ of V.

Since 04(G) is a total self-variation relative to a distance sequence X, Corol-
lary 2.2 is clearly true. To see that Corollary 2.2 does give a best possible upper
bound for 7*(G), let’s consider the following results.

Lemma 3. Let G = K;\{e} with t vertices (¢ > 3) and X be the distance
sequence of G, where e € E(K;). Then n(G) = m*(G) = 9*(X) = 2.
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The proof is obvious and we omit it.

Lemma 4. Let G = K;\{e1,e2} with ¢ vertices (¢t > 4) and X be the distance
sequence of G, where e, e2 € E(K;) are distinct. Then 7*(G) = 7*(X) = 4.

(2)-2
Proof. Consider the distance sequence X = (1,1,1,---,1,2,2) of G. Then by

Theorem 2.1, it is clear that #*(G) < n*(X) = 4.
Suppose that e; = {a1,a2} and ez = {a3,as}. There are two cases:

Case 1: e; and e; are not disjoint.
Without loss of generality, suppose that a; = a3. Since ¢ > 4, there is
another vertex a € V(G). Let ¢ = (a1 a) be a transposition of V(G).
Then
64(G) = |d(a1, az)—d(a, a2)| +|d(as, as) — d(a, a4)| +|d(a, a2) - d(a1, a2)| +
|d(a, a4) - d(a1, a.4)| =4.

Case 2: e; and ej are disjoint.
Let ¢ = (az a4) be a transposition of V(G). Then 64(G) = |d(az,a2) —
d(a1,a4)| + |d(as, aq) — d(as, az)| + |d(a1,a4) — d(a1,a2)| + |d(as3,a2) -
d(a3, a4)| = 4.

In both cases, 4 < 7*(G) < 7*(Xx) = 4. Therefore, 7*(G) = 4 = n* (X&)
o]

Lemma 5. Let G = K;\{e1, e2,e3} with t vertices (t > 5) and X be the distance
sequence of G, where ey, e, e3 € E(K¢) are distinct. Then 7*(G) = n*(X) = 6.
(2)-3
Proof. Consider the distance sequence X = (1,1,1,--+,1,2,2,2) of G. Then by
Theorem 2.1, it is clear that 7*(G) < 7*(X) = 6.
Suppose that e; = {a1, a2}, e2 = {as,as}, and e3 = {as,as}. There are five
cases as follows:

Case 1: Without loss of generality, suppose that a; = a3 and a4 = a¢. Since
t > 5, there is another vertex a € V(G). Let ¢ = (a1 a4 a) be a permuta-
tion of V(G). Then 64(G) = |d(a1, a2) — d(a4, a2)| + |d(as, as) — d(a4,a)| +
|d(as, as)—d(as, a)|+|d(a, a2)—d(a1, az)|+|d(a, a1)—d(as, a4)|+|d(as, a1) -
d(as, ag)| = 6.

Case 2: Without loss of generality, suppose that a; = a3 = as. Since ¢ > 5,
there is another vertex a € V(G). Let ¢ = (a1 @) be a transposition
of V(G). Then 84(G) = |d(a1,a2) — d(a,a2)| + |d(a3,a4) — d(a,a4d)] +
|d(as, as) —d(a, ae)|+|d(a, a2) — d(a1, az)|+|d(a, as) —d(as, as)| +|d(a, as) —
d(as,as)| = 6.
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Figure 1: e;, ez, and e3

Case 3: Without loss of generality, suppose that a; = a3, az = a5, and a4 = ag.
Since ¢ > 5, there is another vertex a, b € V(G). Let ¢ = (a1 a){a4 b) be
a permutation of V(G). Then 84(G) = |d(e,1, a2) —- d(a,e2)| + |d(as,a4q) —
d(a, b)| + |d(as, as) — d(as, b)| + |d(a, az) — d(a1, a2)| +[d(a, b) — d(a3, as)| +
|d(as, b) — d(as, as)| = 6.

Case 4: Without loss of generality, suppose that a; = ag. Let ¢ = (a1 as) be a
transposition of V(G). Then d4(G) = |d(a1, a2) — d(as, a2)| + |d(a3, aq) —
d(as,a4)| + |d(as,as) — d(a1,a6)| + |d(a2,as) — d(a1,a2)| + |d(as,as) —
d(as,aq)| + |d(a1,a6) — d(as,as)| = 6.

Case 5: Let ¢ = (a1 a3 as) be a permutation of V(G). Then &(G) =

|d(a1,az) — d(as,a2)| + |d(as,as) — d(a1,a4)| + |d(as, as) —- d(as, as)| +
|d(as, a2) — d(a1, a2)| + |d(as, as) — d(as, aq)| + |d(a1, ae) — d(as,as)| = 6.

In all cases, 6 < *(G) < *(Xx) = 6. Therefore, 7 (G) = 6 = n*(X&).

Theorem 2.3. Let G be a connected graph of order t and e € E(G). Then
7*(G) = 2 if and only if G = K;\{e}.
Proof. Lemma 3 gives the sufficient condition of 7*(G) =

If G = K;\E' and |E’| > 2, then by Lemma 4, we have n*(G) > n*(K:\{e1,e2}) =
4, where e;, e; are distinct edges in E’. Hence we have that if 7*(G) = 2, then

G = K\{e}. _
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Theorem 2.4. If G is a connected graph of order ¢ and e;,e; € E(G). Then
7*(G) = 4 if and only if G = K,\{e1,e2} or G = K1 3.

Proof. It is easy to see that if G = K;\{e1,e2} or G = K1 3, then 7*(G) = 4.
Suppose that 7*(G) = 4.

1. If t < 4, then it is easy to see that only K,\{e;,e2} and K3 are the
graphs with 7*(G) = 4.

2. Ift > 5and G = K\E' with |E’| > 3, then by Lemma 5, we have
7*(G) > n*(K\{e1,e2,es}) = 6, where €, ey, e3 are distinct edges in E’.
Therefore, we have that if 7*(G) = 4, then G = K;\{e1, e2}. O

A graph is called a complete splitting graph, denoted by Sp, », if the vertex
set can be partitioned into two subsets A and B with |A| = m and |B| = n such
that each pair of vertices in A are unadjacent, each pair of vertices in B are
adjacent and each vertex in A is adjacent to each vertex in B. The maximum
total relative displacement of Sy, m can be found as follows.

Theorem 2.5. 7*(Sm,m) =" (X) = 2(3).
(7)+m? (%)
Proof. Consider the distance sequence X = (1,1,1,---,1,2,2,---,2) of Spu .

Then 7*(Spn,m) < 7*(X) =2(3).
Let ¢ be a permutation which maps A into B and vice versa. Then d¢(Sm,m) =

2(3)-
Hence 7*(Sm,m) = 1" (X) = 2(7)- =

According to Theorem 3, 4, 2.5, the upper bound in Corollary 2.2 can be
attained by a family of infinitely many graphs of all orders. In other words, the
upper bound is best possible.
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