Embedding handcuffed designs into a maximum packing of the complete graph with 4-cycles *

Gaetano Quattrocchi
Dipartimento di Matematica e Informatica
Università di Catania
viale A. Doria 6
95125 Catania
ITALIA
quattrocchi@dmi.unict.it

Abstract

A packing of K_n with copies of C_4 (the cycle of length 4), is an ordered triple (V, \mathcal{C}, L) , where V is the vertex set of the complete graph K_n , \mathcal{C} is a collection of edge-disjoint copies of C_4 , and L is the set of edges not belonging to a block of \mathcal{C} . The number n is called the order of the packing and the set of unused edges L is called the leave. If \mathcal{C} is as large as possible, then (V, \mathcal{C}, L) is called a maximum packing MPC(n, 4, 1). We say that an handcuffed design H(v, k, 1) (W, \mathcal{P}) is embedded into an MPC(n, 4, 1) (V, \mathcal{C}, L) if $W \subseteq V$ and there is an injective mapping $f: \mathcal{P} \to \mathcal{C}$ such that P is a subgraph of f(P) for every $P \in \mathcal{P}$. Let $S\mathcal{H}(n, 4, k)$ denote the set of the integers v such that there exists an MPC(n, 4, 1) which embeds an H(v, k, 1). If $n \equiv 1 \pmod{8}$ then an MPC(n, 4, 1) coincides with a 4-cycle system of order n and $S\mathcal{H}(n, 4, k)$ is found by Milici and Quattrocchi, Discrete Math., 174 (1997).

The aim of the present paper is to determine $\mathcal{SH}(n,4,k)$ for every integer $n \not\equiv 1 \pmod{8}$, $n \geq 4$.

AMS classification: 05B05.

Keywords: Graph design; Embedding; Path.

^{*}Supported by MIUR and by C.N.R. (G.N.S.A.G.A.), Italy.

1 Introduction

Let G be a subgraph of K_n , the complete undirected graph on n vertices. A G-design of K_n is a pair (V, \mathcal{B}) , where V is the vertex set of K_n and \mathcal{B} is an edge-disjoint decomposition of K_n into copies of the graph G. If $B \in \mathcal{B}$ we say that B is a block (or a G-block) of the G-design. The set \mathcal{B} is called the block-set. A G-design of K_n is also called a G-design of order n.

A G-design is balanced if each vertex belongs to the same number of blocks. Obviously not every G-design is balanced.

An handcuffed design H(v, k, 1) [5] is a balanced P_k -design of K_v , where P_k is the simple path with k-1 edges (k vertices) $[a_1, a_2, \ldots, a_k] = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}$. Clearly an H(v, 2, 1) (V, \mathcal{P}) exists for every $v \geq 2$ because V is a v-set and \mathcal{P} is the set of all 2-subsets of V. Hung and Mendelsohn [4] proved that an H(v, 2h + 1, 1) ($h \geq 1$) exists if and only if $v \equiv 1 \pmod{4h}$, and an H(v, 2h, 1) ($h \geq 2$) exists if and only if $v \equiv 1 \pmod{2h-1}$.

A 4-cycle system of order n is a C_4 -design of K_n , where C_4 is the 4-cycle (cycle of length 4) $(a_1, a_2, a_3, a_4) = \{\{a_1, a_2\}, \{a_2, a_3\}, \{a_3, a_4\}, \{a_1, a_4\}\}$. It is well-known [6] that the spectrum for 4-cycle systems is precisely the set of all $n \equiv 1 \pmod{8}$.

Let G_1 be a subgraph of G_2 . We say that a G_1 -design (W, \mathcal{P}) of order v is *embedded* into a G_2 -design (V, \mathcal{C}) of order n if $W \subseteq V$ and there is an injective mapping

$$f: \mathcal{P} \to \mathcal{C}$$

such that P is a subgraph of f(P) for every $P \in \mathcal{P}$.

The following embedding problem arises: for every admissible integer n determine the set of the integers v such that there exists a G_2 -design of order n which embeds some G_1 -design of order v. This embedding problem has been investigated in many cases [1, 2, 3, 7, 8, 9]. Milici and Quattrocchi [7] gave a complete answer to the embedding problem of an H(v, k, 1) into a 4-cycle system of order n. The following question arises: what can we say when $n \not\equiv 1 \pmod 8$?

A packing of K_n with copies of C_4 is an ordered triple (V, \mathcal{C}, L) , where V is the vertex set of K_n , \mathcal{C} is a collection of edge-disjoint copies of C_4 , and L is the set of edges not belonging to a block of \mathcal{C} . The number n is called the *order* of the packing and the set of unused edges L is called the *leave*. If \mathcal{C} is as large as possible, then (V, \mathcal{C}, L) is called a maximum packing MPC(n, 4, 1).

An MPC(n,4,1) can be considered as the natural generalization of a 4-cycle system of order n when $n \not\equiv 1 \pmod 8$. In fact, an MPC(n,4,1) with $n \equiv 1 \pmod 8$ coincides with a 4-cycle system of order n. In this paper we give a complete answer to the embedding problem of an H(v,k,1) into an MPC(n,4,1).

Definition 1.1 An H(v, k, 1) (V, P) is embedded into an MPC(n, 4, 1) (W, C, L) if $V \subseteq W$ and there is an injective mapping

$$f: \mathcal{P} \rightarrow \mathcal{C}$$

such that P is a subgraph of f(P) for every $P \in \mathcal{P}$.

Example 1.1 An H(3,2,1) on vertex set $V = \{0,1,2\}$ embedded into an MPC(7,4,1) on vertex set $W = V \cup \{a_0,a_1,a_2,a_3\}$: $L = (a_0,0,a_1,1,a_2)$, $C = \{(0,1,a_3,a_2),(0,2,a_0,a_3),(1,2,a_1,a_0),(a_2,a_1,a_3,2)\}$.

Example 1.2 An H(5,2,1) on vertex set $V = \{0,1,\ldots,4\}$ embedded into an MPC(11,4,1) on vertex set $W = V \cup \{a_0,a_1,\ldots,a_5\}$: $L = (3,a_4,a_5)$, $C = \{(0,1,a_0,a_1),(0,2,a_1,a_2),(0,3,a_2,a_3),(0,4,a_5,a_0),(1,2,a_0,a_2),(1,3,a_3,a_1),(1,4,a_0,a_3),(2,3,a_1,a_4),(2,4,a_2,a_5),(3,4,a_4,a_0),(a_4,0,a_5,1),(a_2,2,a_3,a_4),(a_1,4,a_3,a_5)\}.$

Example 1.3 An H(5,3,1) on vertex set $V = \{0,1,\ldots,4\}$ embedded into an MPC(10,4,1) on vertex set $W = V \cup \{a_0,a_1,\ldots,a_4\}$: $L = \{[i,a_i] \mid i = 0,1,\ldots,4\}$, $C = \{(i,3+i,2+i,a_{4+i}),(a_i,a_{1+i},a_{3+i},2+i) \mid i = 0,1,\ldots,4\}$ (the sums are (mod 5)).

Example 1.4 An H(5,3,1) on vertex set $V = \{0,1,\ldots,4\}$ embedded into an MPC(11,4,1) on vertex set $W = V \cup \{a_0,a_1,\ldots,a_5\}$: $L = (a_0,a_1,a_3)$, $C = \{(0,1,4,a_0),(1,2,0,a_1),(2,3,1,a_2),(3,4,2,a_3),(4,0,3,a_4),(2,a_0,a_2,a_1),(2,a_4,a_2,a_5),(4,a_1,a_4,a_3),(0,a_5,a_3,a_2),(1,a_0,a_4,a_5),(3,a_1,a_5,a_0),(0,a_3,1,a_4),(3,a_2,4,a_5)\}.$

Definition 1.2 Denote by SH(n,4,k) the set of the integers $v, v \ge k$, such that there exists an H(v,k,1) embedded into an MPC(n,4,1).

The aim of the present paper is to determine $\mathcal{SH}(n,4,k)$ for every integer $n \geq 4$ and k = 2, 3.

When an MPC(n, 4, 1) coincides with a 4 cycle system of order n, the spectrum SH(n, 4, k) is given in the following theorem.

Theorem 1.1 ([7]) Let $n \equiv 1 \pmod{8}$, $n \geq 9$. Then

- $SH(n, 4, 2) = \{v \mid 2 \le v \le \frac{n-1}{2}\};$
- $SH(n,4,3) = \{v \mid 5 \le v \le \frac{2n+1-\alpha(n)}{3}, v \equiv 1 \pmod{4}\}, \text{ where } \alpha(n) = 12 \text{ if } n \equiv 1 \pmod{24}, \ \alpha(n) = 4 \text{ if } n \equiv 9 \pmod{24} \text{ and } \alpha(n) = 8 \text{ if } n \equiv 17 \pmod{24}.$

Theorem 1.2 (Schöneim and Bialostocki [10]) For every integer $n \geq 4$ there exists an MPC(n, 4, 1) (V, C, L) and it is:

- $|\mathcal{C}| = \left\lceil \frac{n}{4} \left\lceil \frac{n-1}{2} \right\rceil \right\rceil$ if $n \not\equiv 5,7 \pmod{8}$,
- $|\mathcal{C}| = \left\lceil \frac{n}{4} \left\lceil \frac{n-1}{2} \right\rceil \right\rceil 1$ otherwise.

If $n \equiv 1 \pmod{8}$ then the leave L does not contain any edge. If $n \not\equiv 1 \pmod{8}$ then the non-packed edges may be chosen so that the leave L is isomorphic to a one-factor if n is even, a 3-cycle if $n \equiv 3 \pmod{8}$, two 3-cycles having a common vertex if $n \equiv 5 \pmod{8}$ and a 5-cycle if $n \equiv 7 \pmod{8}$.

$2 \quad \mathcal{SH}(\mathbf{n}, \mathbf{4}, \mathbf{2})$

Lemma 2.1 For every even integer $n \ge 4$, $\mathcal{SH}(n,4,2) \subseteq \{v \mid 2 \le v \le \frac{n}{2}\}$. For every odd integer $n \ge 5$, $\mathcal{SH}(n,4,2) \subseteq \{v \mid 2 \le v \le \frac{n-1}{2}\}$.

Proof. Let (V, \mathcal{P}) be the H(v, 2, 1) embedded into an MPC(n, 4, 1) (W, \mathcal{C}, L) . Then $\binom{n-v}{2} \geq \binom{v}{2}$.

Lemma 2.2 If $v \in \mathcal{SH}(2v+1,4,2)$, then $v+x \in \mathcal{SH}(2v+2x+1,4,2)$ for every $x \equiv 0 \pmod{4}$, $x \geq 4$.

Proof. Let (V, \mathcal{P}) be the H(v, 2, 1) embedded into an MPC(2v + 1, 4, 1) (W, \mathcal{B}, L) and let $x = 4k, k \ge 1$. Put $V = \{0, 1, \ldots, v - 1\}, W = V \cup \{v, v + 1, \ldots, 2v - 1, \infty\}, A_i = \{a_0^i, a_1^i, a_2^i, a_3^i\}, W_i = A_i \cup \{a_4^i, a_5^i, a_6^i, a_7^i, \infty\}$. For $i = 1, 2, \ldots, k$, let (W_i, \mathcal{B}_i) be a 4-cycle system of order 9 which embeds an H(4, 2, 1) on vertex set A_i (see Theorem 1.1). Let $\overline{V} = V \cup (\bigcup_{i=1}^k A_i)$ and $\overline{W} = W \cup (\bigcup_{i=1}^k W_i)$. Assign to \mathcal{C} the 4-cycles of $\mathcal{B} \cup (\bigcup_{i=1}^k \mathcal{B}_i)$ and the following:

- $(\rho, a_h^i, \rho + v, a_{h+4}^i)$, i = 1, 2, ..., k, $\rho = 0, 1, ..., v 1$, h = 0, 1, 2, 3;
- if $k \geq 2$, $(a_j^{i_2}, a_h^{i_1}, a_{j+4}^{i_2}, a_{h+4}^{i_1})$, $i_1, i_2 = 1, 2, \ldots, k$, $i_1 < i_2$, and j, h = 0, 1, 2, 3.

Then $(\overline{W}, \mathcal{C}, L)$ is an MPC(2v+2x+1, 4, 1) which embeds the H(v+x, 2, 1) on vertex set \overline{V} .

Theorem 2.1 For every even integer n, $n \ge 4$, $SH(n, 4, 2) = \{v \mid 2 \le v \le \frac{n}{2}\}$. For every odd integer n, $n \ge 5$, $SH(n, 4, 2) = \{v \mid 2 \le v \le \frac{n-1}{2}\}$.

 Therefore the above inclusions are proved if $\frac{n}{2} \in \mathcal{SH}(n, 4, 2)$ for every even $n \geq 4$ and $\frac{n-1}{2} \in \mathcal{SH}(n, 4, 2)$ for every odd $n \geq 5$.

Let n be even. We prove that $\frac{n}{2} \in \mathcal{SH}(n,4,2)$ for every even $n \geq 4$ by induction. Clearly $\mathcal{SH}(4,4,2) = \{2\}$. Suppose $\frac{n}{2} \in \mathcal{SH}(n,4,2)$. Let (V,\mathcal{P}) be the $H(\frac{n}{2},2,1)$ embedded into an MPC(n,4,2) (W,\mathcal{C},L) . Put $\overline{W} = W \cup \{\infty_1,\infty_2\}$, $\overline{L} = L \cup \{[\infty_1,\infty_2]\}$ and $\overline{\mathcal{C}} = \mathcal{C} \cup \{(\infty_1,x,\infty_2,g(x)) \mid x \in V\}$, where g is a bijection from V to $W \setminus V$. Then $(\overline{W},\overline{\mathcal{C}},\overline{L})$ is an MPC(n+2,4,2) which embeds the $H(\frac{n+2}{2},2,1)$ on vertex set $V \cup \{\infty_1\}$.

Let n be odd. By Theorem 1.1, $\frac{n-1}{2} \in \mathcal{SH}(n,4,2)$ for every $n \equiv 1 \pmod{8}$, $n \geq 9$. If $n \equiv 3,5,7 \pmod{8}$, then apply Lemma 2.2 to the starting cases $2 \in \mathcal{SH}(5,4,2)$, $3 \in \mathcal{SH}(7,4,2)$ and $5 \in \mathcal{SH}(11,4,2)$. Note that $2 \in \mathcal{SH}(5,4,2)$ is straightforward. The remaining two cases follow from Examples 1.1 and 1.2 respectively.

3 $\mathcal{SH}(\mathbf{n,4,3})$

Let

$$\theta(n) = \begin{cases} \frac{n-6}{2} & \text{if } n \equiv 0 \pmod{8}, \ n \ge 16; \\ \frac{n}{2} & \text{if } n \equiv 2 \pmod{8}, \ n \ge 10; \\ \frac{n-2}{2} & \text{if } n \equiv 4 \pmod{8}, \ n \ge 12; \\ \frac{n-4}{2} & \text{if } n \equiv 6 \pmod{8}, \ n \ge 14; \\ \frac{2n-11}{3} & \text{if } n \equiv 1 \pmod{6}, \ n \ge 13; \\ \frac{2n-3}{3} & \text{if } n \equiv 3 \pmod{6}, \ n \ge 9; \\ \frac{2n-7}{3} & \text{if } n \equiv 5 \pmod{6}, \ n \ge 11. \end{cases}$$

Lemma 3.1 $\mathcal{SH}(n,4,3) \subseteq \{v \mid 5 \le v \le \theta(n), v \equiv 1 \pmod{4}\}.$

Proof. Let (V, \mathcal{P}) be an H(v, 3, 1), $v \geq 5$, embedded into an MPC(n, 4, 1) (W, \mathcal{C}, L) .

Let n be even. The leave L is a one-factor whose edge set does not contain any edge of K_V . Then $n \geq 2v$ and, by $v \equiv 1 \pmod{4}$, the proof follows.

Let n be odd. Theorem 1.1 proves the lemma for $n \equiv 1 \pmod{8}$. Suppose $n \equiv 3, 5, 7 \pmod{8}$. Let \mathcal{B} be the set of blocks of \mathcal{C} having some block of \mathcal{P} as a subgraph. Put $\mathcal{D} = \mathcal{C} \setminus \mathcal{B}$. Every block of \mathcal{C} covers two edges of $K_{V,W\setminus V}$. Then $v(n-v) \geq \binom{v}{2}$. It follows $n \geq \frac{3v-1}{2}$. Suppose $n = \frac{3v-1}{2}$. Then $\mathcal{D} \cup L$ is a graph decomposition of $K_{W\setminus V}$. Every vertex x of $W\setminus V$ has odd degree in $K_{W\setminus V}$. Therefore the degree of x in L is odd. Moreover x has even degree in K_W , then the degree of x in L should be even. Therefore $n > \frac{3v-1}{2}$ and, by $v \equiv 1 \pmod{4}$, we get the proof.

Lemma 3.2 Let (W,C,L) be an MPC(n,4,1) with n even, $n \geq 4$. Then there exists an MPC(n+2,4,1) $(\overline{W},\overline{C},\overline{L})$ such that $W \subset \overline{W}$, $C \subset \overline{C}$ and $L \subset \overline{L}$.

Proof. Put $\overline{W} = W \cup \{\infty_1, \infty_2\}$, $\overline{L} = L \cup \{[\infty_1, \infty_2]\}$. Let \mathcal{B} be an edge-disjoint decomposition of the complete bipartite graph $K_{W,\{\infty_1,\infty_2\}}$ into subgraphs isomorphic to a 4-cycle. Put $\overline{\mathcal{C}} = \mathcal{C} \cup \mathcal{B}$.

Lemma 3.3 If $v \in SH(2v, 4, 3)$, then $v + 4 \in SH(2v + 8, 4, 3)$.

Proof. Let (V, \mathcal{P}) be an H(v, 3, 1) embedded into an MPC(2v, 4, 1) (W, \mathcal{C}, L) . Put v = 1 + 4k, $k \geq 1$. Let $A_i = \{a_1^i, a_2^i, a_3^i, a_4^i\}$, $B_i = \{b_1^i, b_2^i, b_3^i, b_4^i\}$, $A = \bigcup_{i=1}^k A_i$, $B = \bigcup_{i=1}^k B_i$, $D = \bigcup_{i=1}^k \{b_3^i, b_4^i\}$, $V = A \cup \{\infty_1\}$, $W = V \cup B \cup \{\infty_2\}$. Let (X, \mathcal{D}) denote an H(5, 3, 1) embedded into an MPC(10, 4, 1) $(X \cup Y, \mathcal{B}, L_1)$ with $X = \{1, 2, 3, 4\} \cup \{\infty_1\}$, $Y = \{5, 6, 7, 8\} \cup \{\infty_2\}$ and $[\infty_1, \infty_2] \in L_1$ (see Example 1.3). Now we construct an MPC(2v + 8, 4, 3) $(\overline{W}, \overline{C}, \overline{L})$. Put $\overline{W} = W \cup X \cup Y$, $\overline{L} = L \cup L_1$ and assign to \overline{C} the following 4-cycles:

- the blocks of $\mathcal{C} \cup \mathcal{B}$;
- $(1, a_1^i, 2, b_1^i), (1, a_2^i, 2, b_2^i), (3, a_3^i, 4, b_1^i), (3, a_4^i, 4, b_2^i), (a_3^i, 1, a_4^i, 5), (a_3^i, 2, a_4^i, 6), (a_1^i, 3, a_2^i, 5), (a_1^i, 4, a_2^i, 6)$ for $i = 1, 2, \ldots, k$;
- the blocks of an edge-disjoint decomposition of $K_{D,\{1,2,3,4\}}$, $K_{A,\{7,8\}}$, $K_{B,\{5,6,7,8\}}$ into 4-cycles.

It is easy to see that $(\overline{W}, \overline{C}, \overline{L})$ is an MPC(2v+8,4,1) which embeds an H(v+4,3,1) on vertex set $V \cup \{1,2,3,4\}$.

Lemma 3.4 Let $v \in SH(n, 4, 3)$, $n \equiv 3, 5, 7 \pmod{8}$. Then $v + 4 \in SH(n + 8, 4, 3)$.

Proof. Let (V, \mathcal{P}) be an H(v, 3, 1) embedded into an MPC(n, 4, 1) $(V \cup W, \mathcal{C}, L)$. Put v = 1 + 4k, $k \geq 1$, $A_i = \{a_1^i, a_2^i, a_3^i, a_4^i\}$, $A = \bigcup_{i=1}^k A_i$, $V = A \cup \{\infty\}$ and $W = \{b_j \mid j = 1, 2, \dots, n - 4k - 1\}$. By Theorem 1.1, there exists an H(5, 3, 1) (V_1, \mathcal{P}_1) embedded into a 4-cycle system of order $P(W_1, C_1)$. Put $P(W_1, C_1)$ and $P(W_1, C_1)$ Put $P(W_1, C_1)$ and $P(W_1, C_1)$ Put $P(W_1, C_1)$

- the blocks of $\mathcal{C} \cup \mathcal{C}_1$;
- $(1, a_1^i, 2, b_{2i-1}), (1, a_2^i, 2, b_{2i}), (3, a_3^i, 4, b_{2i-1}), (3, a_4^i, 4, b_{2i}), (a_3^i, 1, a_4^i, 5), (a_3^i, 2, a_4^i, 6), (a_1^i, 3, a_2^i, 5), (a_1^i, 4, a_2^i, 6)$ for $i = 1, 2, \ldots, k$ (as showed in the proof of Lemma 3.1, $n v > \frac{v-1}{2}$);

• the blocks of an edge-disjoint decomposition of $K_{W,\{5,6,7,8\}}$, $K_{A,\{7,8\}}$ and $K_{\{b_{2k+1},b_{2k+2},...,b_{n-4k-1}\},\{1,2,3,4\}}$ into 4-cycles.

It is easy to see that $(\overline{W}, \overline{C}, \overline{L})$ embeds an H(v+4, 4, 1) on vertex set $V \cup V_1$.

Lemma 3.5 Let $v \in SH(n,4,3)$, $n \equiv 3,5,7 \pmod{8}$. Then $v + 16 \in SH(n+24,4,3)$.

Proof. Let (V, \mathcal{P}) be an H(v, 3, 1) embedded into an MPC(n, 4, 1) (W, \mathcal{C}, L) . Put v = 1 + 4k, $V = \{0, 1, ..., 4k\}$ and $W = V \cup \{4k + 1, 4k + 2, ..., n - 1\}$. Let $A_i = \{a_1^i, a_2^i, a_3^i, a_4^i\}$, $A = \bigcup_{i=1}^4 A_i$, $B_i = \{\alpha_1^i, \alpha_2^i\}$, $B = \bigcup_{i=1}^4 B_i$, $\overline{V} = V \cup A$ and $\overline{W} = W \cup A \cup B$.

In order to construct the required MPC(n+24,4,3), we introduce the following notation. Let $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$, $T = \{t_1, t_2\}$, $U = \{u_1, u_2\}$. Define

- $\Gamma(X,T) = \{(0,x_1,x_4,t_1),(x_1,x_2,0,t_2),(x_2,x_3,x_1,t_1),(x_3,x_4,x_2,t_2),(x_4,0,x_3,1+4k)\};$
- $\Phi(X,Y,T,U) = \{(y_1,x_1,y_2,t_1), (y_1,x_2,y_2,t_2), (y_3,x_3,y_4,t_1), (y_3,x_4,y_4,t_2), (x_3,y_1,x_4,u_1), (x_3,y_2,x_4,u_2), (x_1,y_3,x_2,u_1), (x_1,y_4,x_2,u_2)\};$
- $\Lambda_j(X,T) = \{(x_1, 1+4j, x_2, 1+4k+2j), (x_1, 2+4j, x_2, 2+4k+2j), (x_3, 3+4j, x_4, 3+4k+2j), (x_3, 4+4j, x_4, 4+4k+2j), (3+4j, x_1, 4+4j, t_1), (3+4j, x_2, 4+4j, t_2), (1+4j, x_3, 2+4j, t_1), (1+4j, x_4, 2+4j, t_2)\}.$

Assign to \overline{C} the following blocks:

- the 4-cycles of C;
- the 4-cycles of $\Gamma(A_i, B_i)$ for every i = 1, 2, 3, 4 (these cycles induce the paths of an H(5, 3, 1) on $A_i \cup \{0\}$);
- the 4-cycles of $\Phi(A_i, A_j, B_i, B_j)$ for every i, j = 1, 2, 3, 4, i < j (these cycles induce a balanced decomposition of K_{A_i, A_j} into P_3 s);
- the 4-cycles of $\bigcup_{i=1}^4 \Lambda_j(A_i, B_i)$ for $j = 0, 1, \dots, k-1$ (these cycles induce a balanced decomposition of $K_{A_i, \{1+4j, 2+4j, 3+4j, 4+4j\}}$ into P_3 s);
- $(\alpha_1^i, \alpha_2^i, 2+4k, a_3^i), (a_4^i, \alpha_2^i, \alpha_1^{i+1}, 2+4k)$ for i = 1, 2, 3, 4 (i+1) is reduced (mod 4) to the range $\{1, 2, 3, 4\}$;
- $\bullet \ \, (1+4k,\alpha_1^1,\alpha_1^2,\alpha_1^3),(1+4k,\alpha_1^2,\alpha_2^3,\alpha_2^4),(1+4k,\alpha_2^1,\alpha_2^2,\alpha_2^3),\\ (1+4k,\alpha_2^2,\alpha_1^1,\alpha_1^4),(\alpha_1^3,\alpha_1^1,\alpha_2^3,\alpha_2^1),(\alpha_1^4,\alpha_2^1,\alpha_2^4,\alpha_1^2),(\alpha_1^4,\alpha_2^2,\alpha_2^4,\alpha_1^3);$

• for i=1,2,3,4, the blocks of an edge-disjoint decomposition into 4-cycles of $K_{\{a_1^i,a_2^i\},\{1+6k,2+6k,\dots,n-1\}}$, $K_{B_i,\{3+4k,4+4k,\dots,n-1\}}$ and (if $n \geq 5+6k$) $K_{\{a_1^i,a_4^i\},\{3+6k,4+6k,\dots,n-1\}}$.

It is easy to check that $(\overline{W}, \overline{C}, L)$ embeds an H(v + 16, 3, 1) on vertex set \overline{V} .

Remark 3.1 If in Lemma 3.5 we suppose that the handcuffed design (V, \mathcal{P}) embeds an $H(1+4\rho,3,1)$ $(V_{\rho},\mathcal{P}_{\rho})$ for every $\rho=1,2,\ldots,\frac{v-5}{4}$, then the produced H(v+16,3,1) $(\overline{V},\overline{\mathcal{P}})$ embeds an $H(1+4\rho,3,1)$ for every $\rho=1,2,\ldots,\frac{v+1}{4}$.

Theorem 3.1 $SH(n,4,3) = \{v \mid 5 \le v \le \theta(n), v \equiv 1 \pmod{4}\}$ for every integer $n \ge 10$.

Proof. By Lemma 3.1, it is sufficient to prove that $\{v \mid 5 \le v \le \theta(n), v \equiv 1 \pmod{4}\} \subseteq \mathcal{SH}(n,4,3)$. Let n be even. Then apply Lemmas 3.2 and 3.3 to Example 1.3.

Let n be odd. An MPC(11,4,1) which embeds an H(5,3,1) is given in Example 1.4.

An MPC(13,4,1) (W,C,L) embedding an H(5,3,1) on vertex set $V=\{0,1,\ldots,4\}$: $W=V\cup\{a_0,a_1,\ldots,a_7\}$, $L=\{(a_1,a_3,a_2),(a_2,a_4,a_6)\}$ and $C=\{(0,1,4,a_0),(1,2,0,a_1),(2,3,1,a_5),(3,4,2,a_3),(4,0,3,a_4),(0,a_3,1,a_4),(2,a_1,3,a_2),(2,a_6,3,a_7),(1,a_2,4,a_7),(a_1,a_7,a_2,a_0),(a_0,a_6,a_7,a_3),(a_5,a_1,a_6,4),(a_2,a_5,a_7,0),(a_0,a_7,a_4,2),(a_0,a_5,a_6,1),(a_5,a_3,a_6,0),(a_0,a_4,a_5,3),(a_1,a_4,a_3,4)\}.$

An MPC(15,4,1) (W,C,L) embedding an H(5,3,1) on vertex set $V_1 = \{0,1,\ldots,4\}$ and an H(9,3,1) on vertex set $V = V_1 \cup \{5,6,7,8\}$: $W = V \cup \{a_0,a_1,\ldots,a_5\}$, $L = \{(a_0,a_3,a_1,a_4,a_2)\}$, $C = (0,1,4,a_0),(1,2,0,a_1),(2,3,1,a_4),(3,4,2,a_1),(4,0,3,a_2),(0,5,8,a_3),(5,6,0,a_5),(6,7,5,a_0),(7,8,6,a_3),(8,0,7,a_0),(5,1,6,a_2),(5,2,6,a_4),(7,3,8,a_1),(7,4,8,a_2),(3,5,4,a_3),(3,6,4,a_4),(1,7,2,a_2),(1,8,2,a_3),(a_5,a_0,a_4,a_3),(a_4,a_5,a_2,0),(a_0,a_1,a_5,1),(a_1,a_2,a_3,5),(2,a_0,3,a_5),(4,a_1,6,a_5),(7,a_4,8,a_5).$

To complete the proof apply Lemmas 3.4, 3.5 and Remark 3.1 to the above MPC(n, 4, 1)s for n = 11, 13, 15.

References

- [1] C.J. Colbourn, A.C.H. Ling and G. Quattrocchi, Minimum embedding of P_3 -designs into $(K_4 e)$ -designs, Journal of Combinatorial Designs, 11 (2003), 352-366.
- [2] C.J. Colbourn, A.C.H. Ling and G. Quattrocchi, Minimum embedding of Steiner triple systems into $(K_4 e)$ -designs, *Discrete Mathematics*, to appear.
- [3] C.J. Colbourn, A.C.H. Ling and G. Quattrocchi, Embedding path designs into kite systems, *Discrete Mathematics*, **297** (2005), 38-48.
- [4] S. H. Y. Hung and N. S. Mendelsohn, (1974) Handcuffed designs, Aequationes Math., 18, 256-266.
- [5] P. Hell and A. Rosa, (1972) Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Mathematics, 2, 229-252.
- [6] C. C. Lindner and C. A. Rodger, Decomposition into cycles II: Cycle Systems, Contemporary Design Theory: A Collection of Surveys (eds. J. H. Dinitz and D. R. Stinson), John Wiley and Son, New York (1992), 325–369.
- [7] S. Milici and G. Quattrocchi, Embedding handcuffed designs with block size 2 or 3 in 4-cycle systems, *Discrete Mathematics*, 208/209 (1999), 443-449.
- [8] G. Quattrocchi, Embedding handcuffed designs in D-designs, where D is the triangle with an attached edge, Discrete Mathematics, 261 (2003), 413-434.
- [9] G. Quattrocchi and E. Mendelsohn, Minimum embedding of balanced P₄-designs into 5-cycle systems, Discrete Mathematics, 279 (2004), 407-421.
- [10] J. Schönheim and A. Bialostocki, Packings and coverings of the complete graph with 4-cycles, Canad. Math. Bull., 18 (1975), 703-708.